

The RELATIONAL
MODEL for DATABASE
MANAGEMENT:

VERSION 2

About the Author

Dr. Edgar E Codd joined IBM in 1949 as
a programming mathematician for the Selective
Sequence Electronic Calculator During the 1950s
he participated in developing several important IBM
products. Beginning in 1968, Dr. Codd turned his
attention to the management of large commercial
databases and developed the relational model as
a foundation. Since the mid-1970s, Dr. Codd has
been working persistently to encourage vendors to
develop relational DBMSs and to educate users,
DBMS vendors, and standards committees regarding
the services such a DBMS should supply and why
users need all these services.

In 1985, Dr. Codd established two lecturing and
consulting companies in San Jose. These companies
specialize in all aspects of relational database manage-
ment, relational database design, and evaluation of
products that are claimed to be relational.

Continued on back flap

E. F. C O D D

The Relational Model

for Database Management

• V e r s i o n 2 •

A
V V A D D I S O N - W E S L E Y P U B L I S H I N G C O M P A N Y

Read ing , Massachuse t t s • Men lo Park , Cal i fornia • New York

Don Mills, On ta r io • W o k i n g h a m , Eng land ° A m s t e r d a m

B o n n • Sydney • S ingapore ° T o k y o ° Madr id ° San Juan

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where

those designations appear in this book, and Addison-Wesley was
aware of a trademark claim, the designations have been printed

in initial caps or all caps.

The programs and applications presented in this book have been
included for their instructional value. They have been tested
with care, but are not guaranteed for any particular purpose.

The publisher does not offer any warranties or representations,
nor does it accept any liabilities with respect to the programs or

applications.

Library of Congress Cataloging-in-Publication Data

Codd, E. F.
The relational model for database management : version 2 / E.F. Codd.

p. cm.
Includes index.
ISBN 0-201-14192-2
1. Data base management. 2. Relational data bases. I. Title.

QA76.9.D3C626 1990
005.75'6--dc20 89-6793

CIP

Copyright © 1990 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior written permission of
the publisher. Printed in the United States of America.

ABCDEFGHIJ-HA-943210

To f e l l o w p i lo t s a n d a i r c r e w

in the R o y a l Ai r Force

d u r i n g W o r l d W a r II

a n d the d o n s at Oxfo rd .

These people were the source of my determination to
fight for what I believed was right during the ten or

more years in which government, industry, and
commerce were strongly opposed to the relational

approach to database management.

• P R E F A C E •

Today, if you have a well-designed database management system, you have
the keys to the kingdom of data processing and decision support. That is
why there now exists a prototype machine whose complete design is based
on the relational model. Its arithmetic hardware is a quite minor part of the
architecture. In fact, the old term "computer system" now seems like a
misnomer.

My first paper dealing with the application of relations (in the mathe-
matical sense) to database management was a non-confidential IBM research
report made available to the general public that was entitled Derivability,
Redundancy, and Consistency of Relations stored in Large Data Banks [Codd
1969]. I placed a great deal of emphasis then on the preservation of integrity
in a commercial database, and I do so now. In this book, I devote Chapters
13 and 14 exclusively to that subject.

Another concern of mine has been, and continues to be, precision. A
database management system (DBMS) is a reasonably complex system, even
if unnecessary complexity is completely avoided. The relational model in-
tentionally does not specify how a DBMS should be built, but it does specify
what should be built, and for that it provides a precise specification.

An important adjunct to precision is a sound theoretical foundation.
The relational model is solidly based on two parts of mathematics: first-
order predicate logic and the theory of relations. This book, however, does
not dwell on the theoretical foundations, but rather on all the features of
the relational model that I now perceive as important for database users,
and therefore for DBMS vendors. My perceptions result from 20 years of
practical experience in computing and data processing (chiefly, but not
exclusively, with large-scale customers of IBM), followed by another 20
years of research.

I believe that this is the first book to deal exclusively with the relational
approach. It does, however, include design principles in Chapters 21 and
22. It is also the first book on the relational model by the originator of that
model. All the ideas in the relational model described in this book are mine,
except in cases where I explicitly credit someone else.

_ r

vi • Preface

In developing the relational model, I have tried to follow Einstein's
advice, "Make it as simple as possible, but no simpler." I believe that in
the last clause he was discouraging the pursuit of simplicity to the extent of
distorting reality. So why does the book contain 30 chapters and two ap-
pendixes? To answer this question, it is necessary to look at the history of
research and development of the relational model.

From 1968 through 1988, I published more than 30 technical papers on
the relational model [Codd 1968-Codd 1988d]. I refer to the total content
of the pre-1979 papers as Version 1 of the relational model (RM/V1 for
brevity).

Early in 1979, I presented a paper to the Australian Computer Society
at Hobart, Tasmania, entitled "Extending the Database Relational MOdel
to Capture More Meaning," naming the extended version RM/T (T for
Tasmania). My paper on RM/T later appeared in A CM Transactions on
Database Systems [Codd 1979]. My aim was for the extensions to be tried
out first in the logical design of databases and subsequently to be incorpo-
rated in the design of DBMS products, but only if they proved effective in
database design.

Progress in this direction has been much slower than I expected. Vendors
of DBMS products have in many cases failed to understand the first version
RM/V1, let alone RM/T. One of the reasons they offer is that they cannot
collect all the technical papers because they are dispersed in so many
different journals and other publications.

This book collects in one document much of what has appeared in my
technical papers, but with numerous new features, plus more detailed ex-
planation (and some emphasis) on those features of RM/V1 and RM/V2
that capture some aspects of the meaning of the data. This emphasis is
intended to counter the numerous allegations that the relational model is
devoid of semantics. I also hope that this document will challenge vendors
to get the job done.

Figure P.1 is intended to show how features of RM/T are expected to
be gradually dropped into the sequence of versions RM/V2, RM/V3,
The dropping will be gradual to allow DBMS vendors and consumers time
to understand them.

RM/V2 consists of 333 features. A few of these features are of a
proscriptive nature, which may sound surprising or inappropriate. However,

Figure P.1 R e l a t i o n s h i p b e t w e e n the Various Vers ions of the
Re la t iona l M o d e l

RM/- I

R M / V l ~ R M / V 2 ~ R M / V 3 ~

P r e f a c e • vi i

they are intended to improve the understanding of the relational model and
help DBMS vendors avoid extensions that at first glance seem quite harmless,
but later turn out to block extensions needed to advance the DBMS from
a primitive to a basic status. The most famous example of a proscriptive
feature in the computing field was Dijkstra's assertion that new programming
languages should exclude the GO TO command.

The features of RM/V2 include all of the features of RM/V1, roughly
50 of them. Thus, this book covers both versions of the relational model.
However, except for some of the advanced operators in Chapter 5, there is
no sharp boundary between RM/V1 and RM/V2. This is partly due to
changes in some of the definitions to make them more general~for example,
entity integrity and referential integrity. Incidentally, the new definitions
[Codd 1988a] were available to DBMS vendors well before their first at-
tempts to implement referential integrity.

Domains, primary keys, and foreign keys are based on the meaning of
the data. These features are quite inexpensive to implement properly, do
not adversely affect performance, and are extremely important for users.
However, most DBMS vendors have failed to support them, and many
lecturers and consultants in relational database management have failed to
see their importance.

Most of the new ideas in RM/V2 have been published in scattered
technical journals during the 1980s. What is different about this version of
the relational model? Is all of RM/V1 retained?

Versions 1 and 2 are at the same high level of abstraction, a level that
yields several advantages:

• independence of hardware support;

• independence of software support;

• occasionally, vendors can improve their implementations "under the
covers" without damaging their customers' investment in application
programs, training of programmers, and training of end users.

A strong attempt has been made to incorporate all of RM/V1 into RM/V2,
allowing programs developed to run on RM/V1 to continue to operate
correctly on RM/V2. The most important additional features in RM/V2 are
as follows:

• a new treatment of items of data missing because they represent prop-
erties that happen to be inapplicable to certain object instances~for
example, the name of the spouse of an employee when that employee
happens to be unmarried (Chapters 8 and 9);

• new features supporting all kinds of integrity constraints, especially the
user-defined type (Chapter 14);

• a more detailed account of view updatability, which is very important
for users but has been sadly neglected by DBMS vendors (Chapter 17);

vi i i • P r e f a c e

• some relatively new principles of design applied to DBMS products and
relational languages (Chapters 21 and 22);

• a more detailed account of what should be in the catalog (Chapter 15);

• new features pertaining to the management of distributed databases
(Chapters 24 and 25);

• some of the fundamental laws on which the relational model is based
(Chapter 29).

A few of the ideas in RM/T have been incorporated into RM/V2. Many,
however, are being postponed to RM/V3 or later versions, because the
industry has not been able to maintain an adequate pace of product devel-
opment and improvement. Additionally, errorsmade in the design of DBMS
products along the way are also hindering progress~often it is necessary to
continue to support those errors in order to protect a customer's heavy
investment in application programs.

In this book, I attempt to emphasize the numerous semantic features in
the relational model. Many of these features were conceived when the model
was first created. The semantic features include the following:

[] domains, primary keys, and foreign keys;

• duplicate values are permitted within columns of a relation, but duplicate
rows are prohibited;

• systematic handling of missing information independent of the type of
datum that is missing.

These features and others go far beyond the capabilities of pre-relational
DBMS products.

Except in Chapter 30, very little is said about models for database
management other than the relational model. The relational model, invented
in 1969, was the first model for database management. Since then, it has
become popular to talk of many other kinds of data models, including a
network data model, a hierarchical data model, a tabular data model, an
entity-relationship model, a binary relationship model, and various semantic
data models.

Historically, it has often been assumed that the hierarchic and network
data models pre-dated not only the relational model, but also the availability
of hierarchical and network DBMS products. Actually, judging by what has
been published, no such models existed before the relational data model
was invented or before non-relational DBMS products became available.
With the sole exception of relational systems, database management system
products existed before any data model was created for them.

The motivations for Version 2 of the relational model included the
following five"

P r e f a c e • i x

1. all of the motivations for Version 1;

2. the errors in implementing RM/V1, such as the following:

a. duplicate rows permitted by the language SQL;

b. primary keys have either been omitted altogether, or they have been
made optional on base relations;

c. major omissions, especially of all features supporting the meaning
of the data (including domains);

d. indexes misused to support semantic aspects;

e. omission of almost all the features concerned with preserving the
integrity of the database.

3. the need to assemble all of the relational model in one document for
DBMS vendors, users, and inventors of new data models who seem to
be unaware of the scope of the relational model and the scope of
database management;

4. the need for extensions to Version 1, such as the new kinds of joins,
user-defined integrity, view updatability, and features that support the
management of distributed databases;

5. the need for users to realize what they are missing in present relational
DBMS products because only partial support of the relational model is
built into these products.

In Appendix A, the features index, there is a specialized and compre-
hensive index to all of the RM/V2 features. This index should facilitate the
cross-referencing that occurs in the description of several features. In ad-
dition to the exercises at the end of each chapter, simple exercises in
predicate logic and the theory of relations appear in Appendix B. The
reference section, in addition to full citations to the many papers and books
cited in the text, includes a short bibliographical essay.

I have tried to keep the examples small in scale to facilitate understand-
ing. However, small-scale examples often do not show many of the effects
of the large scale of databases normally encountered.

Finally, I would like to acknowledge the encouragement and strong
support provided by friends and colleagues, especially Sharon Weinberg, to
whom I am deeply indebted. I also wish to thank the reviewers of my
manuscript for their many helpful comments: Nagraj Alur, Nathan Good-
man, Michel Melkanoff, Roberta Rousseau, Sharon Weinberg, and Gab-
rielle Wiorkowski.

I hope that all readers of this bookmwhether they are students, vendors,
consultants, or users~find something of value herein.

Menlo Park, California
E. F. Codd

m C O N T E N T S m

C H A P T E R 1

I n t r o d u c t i o n to Vers ion 2 of t h e Re la t iona l M o d e l

1.1
1.2

1.3
1.4
1.5
1.6
1.7
1.8

1.9
1.10
Exercises

What Is a Relation? 1
The Relational Model 5
1.2.1 Relation as the Only Compound Data Type 6
1.2.2 Inter-relating the Information Contained in Distinct

Relations 7
1.2.3
1,2.4
1.2.5
1.2.6
1.2.7
1.2.8
The Transaction Concept 14
Classification of RM/V2 Features
Tables versus Relations 17

Examples of Relations 8
Omission of Features 10
The Goals of RM/V2 10
The Relational Model as an Abstract Machine
The Structured Query Language (SQL) 12
An Abstract Machine Standard 13

15

11

Terminology 20
Role of Language in the Relational Model 21
Keys and Referential Integrity 22
1.8.1 Semantic Aspects of Primary and Foreign Keys
1.8.2 Primary Keys on a Common Domain 25
1.8.3 Comments on Implementation 26
More on Terminology 26
Points to Remember 27

27

23

C H A P T E R 2

S t r u c t u r e - O r i e n t e d a n d D a t a - O r i e n t e d F e a t u r e s

2.1 Databases and Knowledge Bases 29
2.2 General Features 30

2.2.1 Repeating Groups 30

xi

29

xii • Contents

2.2.2 More on the Information Feature
2.2.3 Three-Level Architecture 33

2.3 Domains, Columns, and Keys 34
2.4 Miscellaneous Features 39
Exercises 41

31

3.1
3.2
3.3

3.4

Exercises

C H A P T E R 3

D o m a i n s as E x t e n d e d D a t a T y p e s

Basic and Extended Data Types 43
Nine Practical Reasons for Supporting Domains 45
RM/V2 Features in the Extended Data Type Class
3.3.1 General Features 49
3.3.2 Calendar Dates and Clock Times 50
3.3.3 Extended Data Types for Currency 53
The FIND Commands 55
3.4.1 The F A O ~ A V Command 56
3.4.2 The FAO~LISTCommand 57

58

43

49

C H A P T E R 4

T h e Bas ic O p e r a t o r s 61

4.1 Techniques for Explaining the Operators
4.2 The Basic Operators 66
4.3 The Manipulative Operators 87
Exercises 95

63

5.1

5.2

5.3
5.4
5.5
5.6

C H A P T E R 5

T h e A d v a n c e d O p e r a t o r s 97

Framing a Relation 98
5.1.1 Introduction to Framing 98
5.1.2 Partitioning a Relation by Individual Values 99
5.1.3 Partitioning a Relation by Ranges of Values 100
5.1.4 Applying Aggregate Functions to a Framed Relation 101
Auxiliary Operators 103
5.2.1 Extending a Relation 103
5.2.2 The Semi-theta-join Operator 104
The Outer Equi-join Operators 106
Outer Equi-joins with the MAYBE Qualifier 110
The Outer Natural Joins 113
The Outer Set Operators 115
5.6.1 The Inner Operators Revisited 115
5.6.2 The Outer Set Operators 116
5.6.3 The Relationship between the Outer Set Operators 122

5.7

5.8
5.9
5.10
5.11
Exercises

The Inner and Outer T-join 123
5.7.1 Introduction to the T-join Operators
5.7.2 The Inner T-join 125
5.7.3 The Outer T-join 134
5.7.4 Summary of T-joins 135
The User-defined Select Operator
The User-defined Join Operator
Recursive Join 140
Concluding Remarks 143

143

137
138

123

Contents e o o

X l I I

C H A P T E R 6

N a m i n g 145

6.1 Basic Naming Features 146
6.2 Naming Columns in Intermediate and Final Results
6.3 Naming Other Kinds of Objects 152
Exercises 153

148

7.1
7.2
7.3
7.4
Exercises

C H A P T E R 7

C o m m a n d s f o r t h e D B A 155

Commands for Domains, Relations, and Columns
Commands for Indexes 162
Commands for Other Purposes 163
Archiving and Related Activities 166

168

156

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

8.9
8.10
8.11

C H A P T E R 8

Miss ing I n f o r m a t i o n 169

Introduction to Missing Information 169
Definitions 171
Primary Keys and Foreign Keys of Base Relations 175
Rows Containing A-marks and/or I-marks 175
Manipulation of Missing Information 176
Integrity Rules 176
Updating A-marks and I-marks 177
Application of Equality 178
8.8.1 Missing-but-Applicable Information 179
8.8.2 Inapplicable Information 180
The Three-Valued Logic of RM/V1 180
The Four-Valued Logic of RM/V2 182
Selects, Equi-joins, Inequality Joins, and Relational Division 183

xiv • Contents

8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
Exercises

Ordering of Values and Marks 183
Joins Involving Value-Ordering 184
Scalar Functions Applied to Marked Arguments
Criticisms of Arithmetic on Marked Values 186
Application of Statistical Functions 187
Application of Statistical Functions to Empty Sets
Removal of Duplicate Rows 189
Operator-generated Marks 191
Some Necessary Language Changes 191
Normalization 193

194

185

188

C H A P T E R 9

R e s p o n s e to Technica l Crit ic isms Regard ing
Miss ing I n f o r m a t i o n 197

9.1
9.2
9.3

The Value-oriented Misinterpretation 197
The Alleged Counter-intuitive Nature 198
The Alleged Breakdown of Normalization in the Relational

Model 200
Implementation Anomalies 202
Application of Statistical Functions 202
Interface to Host Languages 203
Problems Encountered in the Default-Value Approach
A Legitimate Use of Default Values 204
Concluding Remarks 205

206

9.4
9.5
9.6
9.7
9.8
9.9
Exercises

203

C H A P T E R 10

Qualif iers 207

10.1 The 13 Qualifiers 209
10.1.1 Ordering Imposed on Retrieved Data 211
10.1.2 The ONCE Qualifier and Its Effect upon Theta-joins

Exercises 219
213

C H A P T E R 11

Indicators 221

11.1 Indicators Other than the View-Defining Indicators
11.2 TheView-Defininglndicators 226
Exercises 227

223

Contents • XV

C H A P T E R 12

Query and Manipulation

12.1
12.2
12.3
12.4
12.5
12.6
Exercises

Power-oriented Features 229
Blocking Commands 232
Modes of Execution 235
Manipulation of Missing Information
Safety Features 238
Library Check-out and Return 240

241

236

229

13.1
13.2
13.3
13.4
13.5
13.6
Exercises

C H A P T E R 13

Integrity Constraints 243

Linguistic Expression of Integrity Constraints 244
The Five Types of Integrity Constraints 244
Timing and Response Specification 246
Safety Features 250
Creating, Executing, and Dropping Integrity Constraints
Performance-oriented Features 254

257

253

14.1
14.2
14.3
14.4
14.5
14.6
14.7

14.8

14.9
Exercises

C H A P T E R 14

User-defined Integrity Constraints 259

Information in a User-defined Integrity Constraint 260
Condition Part of a User-defined Integrity Constraint 261
The Triggered Action 264
Execution of User-defined Integrity Constraints 264
Integrity Constraints Triggered by Date and Time 266
Integrity Constraints Relating to Missing Information 266
Examples of User-defined Integrity Constraints 268
14.7.1 Cutting Off Orders to Supplier s3 269
14.7.2 Re-ordering Parts Automatically 269
14.7.3 Automatic Payment for Parts 270
Simplifying Features 271
14.8.1 Integrity Constraints of the Database Design Type
Special Commands for Triggered Action 273

274

15.1
15.2

C H A P T E R 15

Catalog 277

Access to the Catalog 277
Description of Domains, Base Relations, and Views 279

272

x v i • C o n t e n t s

15.3 Integrity Constraints in the Catalog 281
15.4 Functions in the Catalog 282
15.5 Features for Safety and Performance 282
Exercises 283

C H A P T E R 16

Views 285

16.1 Definitions of Views 285
16.2 Use of Views 289
16.3 Naming and Domain Features
Exercises 292

291

17.1
17.2

17.3

17.4
17.5

C H A P T E R 17

View Updatabil i ty 293

Problem-oriented Definitions 296
Assumptions 297
17.2.1 Assumption A1 297
17.2.2 Assumption A2 297
17.2.3 Assumption A3 298
17.2.4 Assumption A4 298
17.2.5 Purposes of Assumptions 298
17.2.6 Assumption A5 299
View-updatability Algorithms VU-1 and VU-2 299
17.3.1 Prohibition of Duplicate Rows within a Relation
17.3.2 Solution-oriented Definitions 301
17.3.3 General Remarks about the Decision Problem
17.3.4 The Select Operator 302
17.3.5 The Project Operator 303
17.3.6 The Equi-join Operator 304

.7 Inner Joins Other than Equi-join 309

.8 The Natural Join Operator 312

.9 The Outer Equi-join Operator 312

17.3
17.3
17.3
17.3
17.3
17.3
17.3
17.3

.10

.11

.12

.13

.14
17.3.15
17.3.16
More Comprehensive Relational Requests
Fully and Partially Normalized Views 317
17.5.1 Normalization 317

The Relational Division Operator 312
The Union Operator 312
The Outer Union Operator 314
The Intersection Operator 314
The Outer Intersection Operator 315
The Relational Difference Operator 315
The Outer Difference Operator 316

316

300

302

Contents • xvii

17.5.2 Relating View Updatability to Normalization 319
17.5.3 New Operators for Partially Normalized Views and

Base Relations 320
17.5.4 Outer Equi-joins versus Inner Equi-joins as Views

17.6 Conclusion 322
Exercises 323

321

C H A P T E R 18

A u t h o r i z a t i o n 325

18.1 Some Basic Features 327
18.2 Authorizable Actions 331
18.3 Authorization Subject to Date, Time, Resource Consumption,

and Terminal 334
Exercises 336

C H A P T E R 19

F u n c t i o n s 337

19.1 Scalar and Aggregate Functions 338
19.2 User-defined Functions 340
19.3 Safety and interface Features 342
Exercises 344

C H A P T E R 20

P r o t e c t i o n o f I n v e s t m e n t 345

20.1 Physical Protection 345
20.2 Logical Protection 346
20.3 Integrity Protection 347
20.4 Re-distribution Protection 347
20.5 Summary of the Practical Reasons for Features RP-1-RP-5
Exercises 350

350

Exercises

C H A P T E R 21

Princ ip le s of D B M S D e s i g n

358

351

C H A P T E R 22

Princ ip les of D e s i g n for R e l a t i o n a l L a n g u a g e s

Exercises 369

361

xviii • Contents

C H A P T E R 23

S e r i o u s F l a w s i n SQL 371

23.1
23.2

23.3

23.4

23.5

23.6
23.7
Exercises

Introduction to the Flaws 372
The First Flaw: Duplicate Rows and Corrupted Relations 372
23.2.1 The Semantic Problem 373
23.2.2 Application of Statistical Functions 374
23.2.3 Ordering of the Relational Operators 374
23.2.4 The Alleged Security Problem 378
23.2.5 The Supermarket Check-out Problem 378
The Second Flaw" The Psychological Mix-up 379
23.3.1 The Problem 379
23.3.2 Adverse Consequences 382
The Third Flaw: Inadequate Support for Three- or Four.Valued

Logic 383
23.4.1 The Problem 383
23.4.2 Adverse Consequences 386
Corrective Steps for DBMS Vendors 386
23.5.1 Corrective Steps for Duplicate Rows 386
23.5.2 Corrective Steps for the Psychological Mix-up 387
23.5.3 Corrective Steps in Supporting Multi-Valued Logic
Precautionary Steps for Users 387
Concluding Remarks 388

388

387

24.1
24.2
24.3
24.4

24.5
24.6
24.7
24.8

C H A P T E R 24

D i s t r i b u t e d D a t a b a s e M a n a g e m e n t 391

Requirements 391
The Optimizer in a Distributed DBMS 393
A DBMS at Each Site 394
The Relational Approach to Distributing Data 395
24.4.1 Naming Rules 398
24.4.2 Assignment of Relations from the Global Database Z
24.4.3 Decomposition of Relations from the Global

Database Z 402
24.4.4 Combination of Relations from the Global

Database Z 404
24.4.5 Replicas and Snapshots 405
Distributed Integrity Constraints 406
Distributed Views 406
Distributed Authorization 407
The Distributed Catalog 408

401

Contents • xix

24.8.1
24.8.2
24.8.3
24.8.4 Dropping Relations and Creating New Relations

24.9 Abandoning an Old Site 412
24.9.1 Abandoning the Data as Well as an Old Site 413
24.9.2 Retaining the Data at Surviving Sites 413

24.10 Introducing a New Site 414
Exercises 415

Inter-site Move of a Relation 410
Inter-site Move of One or More Rows of a Relation
More Complicated Re-distribution 411

412

410

C H A P T E R 25

M o r e o n D i s t r i b u t e d D a t a b a s e M a n a g e m e n t

25.1

25.2
25.3
25.4
25.5
Exercises

Optimization in Distributed Database Management 417
25.1.1 A Financial Company Example 418
25.1.2 More on Optimization in the Distributed Case 421
Other Implementation Considerations 422
Heterogeneous Distributed Database Management 424
Step by Step Introduction of New Kinds of Data 425
Concluding Remarks 425

428

4 1 7

C H A P T E R 26

A d v a n t a g e s o f t h e R e l a t i o n a l A p p r o a c h 431

26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
26.10
26.11
26.12
26.13

Power 432
Adaptability 432
Safety of Investment 432
Productivity 433
Round-the-Clock Operation 433
Person-to-Person Communicability 434
Database Controllability 434
Richer Variety of Views 435
Flexible Authorization 435
Integratability 436
Distributability 436
Optimizability 437
Concurrent Action by Multiple Processing Units to Achieve

Superior Performance 437
26.14 Concurrent Action by Multiple Processing Units to Achieve Fault

Tolerance 438
26.15 Ease of Conversion 439

xx • Contents

26.16 Summary of Advantages of the Relational Approach
Exercises 440

439

C H A P T E R 27

P r e s e n t P r o d u c t s a n d F u t u r e I m p r o v e m e n t s 441

27.1

27.2
27.3

27.4

27.5
27.6

27.7

27.8
Exercises 446

Features: the Present Situation 441
27.1.1 Errors of Omission 442
27.1.2 Errors of Commission 443
Products Needed on Top of the Relational DBMS 443
Features of the Relational DBMS and Products on Top Assuming

that the Future is Logically Based 444
Features of Relational DBMS and Products on Top, Assuming that

Vendors Continue to Take a Very Short-term View 444
Performance and Fault Tolerance 444
Performance and Fault Tolerance Assuming that the Future is

Logically Based 445
Performance and Fault Tolerance Assuming that the Vendors

Continue to Take a Very Short-term View 445
Communication between Machines of Different Architectures 445

C H A P T E R 28

E x t e n d i n g t h e R e l a t i o n a l M o d e l

28.1
28.2
28.3
28.4
28.5
28.6
28.7

28.8
28.9
Exercises

Requested Extensions 447
General Rules in Making Extensions 448
Introduction to the Bill-of-Materials Problem
Constructing Examples 451
Representation Aspects 453
Manipulative Aspects 454
Integrity Checks 455
28.7.1 Checking for Unintended Cycles
28.7.2 Isolated Subgraphs 455
28.7.3 Strict Hierarchy 456
Computational Aspects 456
Concluding Remarks 457

457

455

451

447

C H A P T E R 29

F u n d a m e n t a l L a w s o f D a t a b a s e M a n a g e m e n t

Exercises 466

459

Contents • xxi

C H A P T E R 30

C l a i m e d A l t e r n a t i v e s t o t h e R e l a t i o n a l M o d e l

30.1
30.2

30.3

30.4
30.5
30.6
30.7
Exercises

4 6 7

The Universal Relation and Binary Relations 468
Why the Universal Relation Will Not Replace the Relational

Model 468
30.2.1 The Operators 469
30.2.2 Joins Based on Keys 470
30.2.3 Joins Based on Non-keys 470
30.2.4 Cyclic Key States 470
30.2.5 Insertion, Deletion, and Updating 471
30.2.6 Coping with Change 471
30.2.7 No Comprehensive Data Model 472
30.2.8 UR Not Essential for Natural Language 472
30.2.9 Concluding Remarks Regarding UR 473
Why the Binary Relation Approach Will Not Replace the

Relational Model 473
30.3.1 Normalization Cannot Be Forgotten 474
30.3.2 Much Decomposition upon Input 474
30.3.3 Extra Storage Space and Channel Time 475
30.3.4 Much Recomposition upon Output 475
30.3.5 Composite Domains, Composite Columns, and Composite

Keys Abandoned 476
30.3.6 The Heavy Load of Joins 476
30.3.7 Joins Restricted to Entity-based Joins 476
30.3.8 Integrity Constraints Harder to Conceive and Express 477
30.3.9 No Comprehensive Data Model 477
The Entity-Relationship Approaches 477
The Semantic Data Approaches 478
The Object-oriented Approaches 479
Concluding Remarks 480

481

A.1
A.2
A.3
A.4
A.5
A.6
A.7

A P P E N D I X A

R M / V 2 F e a t u r e I n d e x 483

Index to the Features 483
Summary of RM/V2 Features by Class 497
Classes of Features and Numbers of Features in Each Class
Principal Objects and Properties in RM/V1 498
Functions 500
Investment Protection 500
The Rules Index 500

498

x x i i • C o n t e n t s

A P P E N D I X B

Exerc i ses in Logic. a n d t h e T h e o r y of R e l a t i o n s

B.1
B.2
B.3

Simple Exercises in Predicate Logic 503
Simple Exercises in Relational Theory 504
Exercises Concerning Inter-relatedness of RM/V2 Features

R e f e r e n c e s 505

503

504

I n d e x 511

• C H A P T E R 1 •

I n t r o d u c t i o n to V e r s i o n 2

of t h e R e l a t i o n a l M o d e l

1.1 • W h a t Is a R e l a t i o n ?

The word "relation" is used in English and other natural languages without
concern for precise communication. Even in dictionaries that attempt to be
precise, the definitions are quite loose, uneconomical, and ambiguous. The
Oxford English Dictionary devotes a whole page of small print to the word
"relation." A small part of the description is as follows:

That feature or attribute of things which is involved in considering
them in comparison or contrast with each other; the particular way
in which one thing is thought of in connexion with another; any
connexion, correspondence, or association, which can be conceived
as naturally existing between things.

On the other hand, mathematicians are concerned with precise com-
munication, a very high level of abstraction, and the economy of effort that
stems from making definitions and theorems as general as possible. A special
concern is that of avoiding the need for special treatment of special cases
except when absolutely necessary. The generally accepted definition of a
relation in mathematics is as follows:

Given sets S1, $ 2 , . . . , Sn (not necessarily distinct), R is a relation
on these n sets if it is a set of n-tuples, the first component of which
is drawn from $1, the second component from $2, and so on.

2 • Introduction to Version 2 of the Relational Model

More concisely, R is a subset of the Cartesian product $1 × $2 x . . .
× Sn. (For more information, see Chapter 4.) Relation R is said to be of
degree n. Each of the sets S1, $2, . . . , Sn on which one or more relations
are defined is called a domain.

It is important to note that a mathematical relation is a set with special
properties. First, all of its elements are tuples, all of the same type. Second,
it is an unordered set. This is just what is needed for commercial databases,
since many of the relations in such databases are each likely to have thou-
sands of tuples, sometimes millions. In several recently developed databases,
there are two thousand millions of tuples. In such circumstances, users
should not be burdened with either the numbering or the ordering of tuples.

The relational model deals with tuples by their information content, not
by means extraneous to the tuples such as tuple numbers, tuple identifiers,
or storage addresses. The model also avoids burdening users with having to
remember which tuples are next to which, in any sense of "nextness."

As one consequence of adopting relations as the user's perception of
the way the data is organized, application programs become independent of
any ordering of tuples in storage that might be in effect at some time. This
enables the stored ordering of tuples to be changed whenever necessary
without adversely affecting the correctness of application programs.

Changes in the stored ordering may have to be made for a variety of
reasons. For example, the pattern of traffic on the database may change,
and consequently the ordering previously adopted may no longer be the
most suitable for obtaining good performance.

A mathematical relation has one property that some people consider
counter-intuitive, and that does not appear to be consistent with the defi-
nition in The Oxford English Dictionary. This property is that a unary
relation (degree one) can conform to this definition. Thus, a mathematical
relation of degree greater than one does inter-relate two or more objects,
while a mathematical relation of degree one does not. In some cases,
intuition can be a poor guide. In any event, whether the concept of a
unary relation is counter-intuitive or not, mathematicians and computer-
oriented people do not like to treat it any differently from relations of higher
degree.

In applying computers effectively (whether in science, engineering, ed-
ucation, or commerce) there is, or should be, a similar concern for precise
communication, a high level of abstraction, and generality. If one is not
careful, however, the degree of generality can sometimes be pursued beyond
what is needed in practice, and this can have costly consequences.

A relation R in the relational model is very similar to its counterpart in
mathematics. When conceived as a table, R has the following properties:

• each row represents a tuple of R;

• the ordering of rows is immaterial;

• all rows are distinct from one another in content.

1.1 W h a t Is a R e l a t i o n ? • 3

From time to time, objects are discussed that violate the last item listed,
but that are mistakenly called relations by vendors of database management
systems (abbreviated DBMS). In this book, such objects are called improper
relations or corrupted relations. Reasons why improper relations should not
be supported in any database management system are discussed in Chapter
23.

The fact that relations can be perceived as tables, and that tables are
similar to flat files, breeds the false assumption that the freedom of action
permitted [with] tables or flat files must also be permitted when manipulating
relations. The manipulation differences are quite strong. For example, rows
that entirely duplicate one another are not permitted in relations. The more
disciplined approach of the relational model is largely justified because the
database is shared by many people; in spite of the heavy traffic, all of the
information in that database must be maintained in an accurate state.

The concept of a relation in the relational model is slightly more abstract
than its counterpart in mathematics. Not only does the relation have a name,
but each column has a distinct name, which often is not the same as the
name of the pertinent set (the domain) from which that column draws its
values. There are three main reasons for using a distinct column name:

1. such a name is intended to convey to u~,ers some aspect of the intended
meaning of the column;

2. it enables users to avoid remembering positions of columns, as well as
which component of a tuple is next to which in any sense of "nextness;"

3. it provides a simple means of distinguishing each column from its un-
derlying domain. A column is, in fact, a particular use of a domain.

One reason for abandoning positional concepts altogether in the relations
of the relational model is that it is not at all unusual to find database
relations, each of which has as many as 50, 100, or even 150 columns. Users
therefore are given an unnecessary burden if they must remember the
ordering of columns and which column is next to which. Users are far more
concerned with identifying columns by their names than by their positions,
whether the positions be those in storage or those in some declaration. It
makes much more sense for a user to request an employee's date of birth
by name than by what its position happens to be (for example, column #
37).

One reason for discussing relations in such detail is that there appears
to be a serious misunderstanding in the computer field concerning relations.
There is a widely held misconception that, for one collection S of data to
be related to another collection T, there must exist a pointer or some kind
of link from S to T that is exposed to users. A pointer to T, incidentally,
has as its value the storage address of some key component of T. A recent
article [Sweet 1988] shows that this false notion still exists.

4 • I n t r o d u c t i o n t o V e r s i o n 2 o f t h e Relat ional Model

TabIe 1.1 Relat ions in M a t h e m a t i c s Versus Relat ions in t he
Relat ional M o d e l

M a t h e m a t i c s

Unconstrained values
Columns not named
Columns distinguished from each other
by position
Normally constant

Rela t i ona l Model

A t o m i c va lues

Each column named
Columns distinguished from each other
and from domains by name
Normally varies with time

For many reasons, pointers are extremely weak in supporting relations.
In fact, an individual pointer is capable of supporting no more than a relation
of degree 2, and even then supports it in only one direction. Moreover,
pointers tend to foster needlessly complex structures that frustrate interaction
with the database by casual users, especially if they are not programmers.
The slow acceptance of artificial intelligence (AI) programs has been largely
due to the use of incredibly complex data structures in that field. This
supports the contention that AI researchers write their programs solely for
other AI researchers to comprehend.

It is therefore a basic rule in relational databases that there should be
no pointers at all in the user's or programmer's perception. For implemen-
tation purposes, however, pointers can be used in a relational database
management system "under the covers," which may in some cases allow the
DBMS vendor to offer improved performance. ~

The term "relation" in mathematics means a fixed relation or constant,
unless it is explicitly stated to be a variable. In the relational model exactly
the reverse is true: every relation in the relational model is taken to be a
variable unless otherwise stated. Normally it is the extension of relations
(i.e., the tuples or rows) that is subject to change. Occasionally, however,
new columns may be added and old columns dropped without changing the
name of the relation.

The distinctions between the relation of mathematics and that of the
relational model are summarized in Table 1.1.

A final note about relations: every tuple or row coupled with the name
of the relation represents an assertion. For example, every row in the
EMPLOYEE relation is an assertion that a specific person is an employee
of the company and has the immediate single-valued properties cited in the
row. Every row in the CAN__SUPPLY relation is an assertion that the cited
supplier can supply the cited kind of part with the cited speed in the cited
minimUm package and at the cited cost. It is this general fact that makes
relational databases highly compatible with knowledge bases.

1. Occasionally it is necessary in this book to discuss some features of database management
that are at too low a level of abstraction to be included in the relational model. When this
occurs, such features are said to be under the covers or hidden from the user's view.

1.2 The Relational Model • 5

In a reasonably complete approach to database management, it is not
enough to describe the types of structure applied to data. In the recent past,
numerous inventors have stopped at that point, omitting the operators that
can be used in query and manipulative activities, data-description techniques,
authorization techniques, and prevention of loss of integrity (see [Chen
1976] for an example). All of these capabilities should be designed into the
DBMS from the start, not added afterwards. If a similar approach were
adopted in medical science, all that would be taught is anatomy. Other
important subjects such as physiology, neurology, and cardiology would be
omitted. Database management has many facets in addition to the types of
structure applied to data. Of key importance is the collection of operators
that can be applied to the proposed types of data structure.

The relational model provides numerous operators that convert one or
more relations into other relations; these are discussed in Chapters 4 and
5. Very few of these operators were conceived by mathematicians before
the relational model was invented. One probable reason for this was the
widely held belief that any problem expressed in terms of relations of
arbitrary degree can be reduced to an equivalent problem expressed in terms
of relations of degree one and two. My work on normalizing relations of
assorted degrees shows this belief to be false.

1.2 m T h e R e l a t i o n a l M o d e l

A database can be of two major types: production-oriented or exploratory.
In commerce, industry, government, or educational institutions, a produc-
tion-oriented database is intended to convey at all times the state of part or
all of the activity in the enterprise.

An exploratory database, on the other hand, is intended to explore
possibilities (usually in the future) and to plan possible future activities.
Thus, a production-oriented database is intended to reflect reality, while an
exploratory database is intended to represent what might be or what might
happen. In both cases the accuracy, consistency, and integrity of the data
are extremely important.

Database management involves the sharing of large quantities of data
by many usersmwho, for the most part, conceive their actions on the data
independently from one another. The opportunities for users to damage
data shared in this way are enormous, unless all users, whether knowledge-
able about programming or not, abide by a discipline.

The very idea of a discipline, however, is abhorrent to many people,
and I understand why. For example, I have encountered those who oppose
a special feature of the relational model, namely, the prohibition of duplicate
rows within all relations. They declare, "Why shouldn't I have duplicate
rows if I want them? I am simply not prepared to give up my freedom in
this regard." My response is as follows. If the data were a purely private
concern (to just this single user), it would not matter. If, on the other hand,
the data is shared or is likely to be shared sometime in the future, then all

6 • Introduct ion to Version 2 of the Relat ional Model

of the users of this data would have to agree on what it means for a row to
be duplicated (perhaps many times over). In other words, the sharing of
data requires the sharing of its meaning. In turn, the sharing of meaning
requires that there exist a single, simple, and explicit description of the
meaning of every row in every relation. This is necessary even though one
user may attach more importance to some facet of the meaning than some
other user does.

Returning to the questionable support of duplicate rows, if the DBMS
supports duplicate rows or records, it must be designed to handle these
duplicates in a uniform way. Thus, there must be a general consensus among
all of the users of a DBMS product regarding the meaning of duplicate rows,
and this meaning should not be context-sensitive (i.e., it should not vary
from relation to relation). My observation is that no such consensus exists,
and is not likely to exist in the future.

For this reason and others, the discipline needed for the successful
sharing of important data should be embodied within the database manage-
ment system. The relational model can be construed as a highly disciplined
approach to database management. Adherence to this discipline by users is
enforced by the DBMS provided that this system is based whole-heartedly
on the relational model.

As a normal mode of operation, if a user wishes to interpret the data
in a database differently from the shared meaning, the DBMS should permit
that user to extract a copy of the data from the database for this purpose
(provided that the user is suitably authorized), and should disallow re-entry
of that data into the database.

The management of shared data presents significantly tougher problems
than the management of private data. Also, the role of shared data in
efficiently carrying out business and government work is rapidly becoming
a central concern. These two facts strongly suggest that no compromises be
made on the quality of systems that manage the sharing of data simply to
support a small minority of users of private data.

1.2.1 R e l a t i o n as t h e O n l y C o m p o u n d D a t a T y p e

From a database perspective, data can be classified into two types: atomic
and compound. Atomic data cannot be decomposed into smaller pieces by
the DBMS (excluding certain special functions). Compound data, consisting
of structured combinations of atomic data, can be decomposed by the DBMS.

In the relational model there is only one type of compound data: the
relation. The values in the domains on which each relation is defined are
required to be atomic with respect to the DBMS. A relational database is
a collection of relations of assorted degrees. All of the query and manipu-
lative operators are upon relations, and all of them generate relations as
results. Why focus on just one type of compound data? The main reason is
that any additional types of compound data add complexity without adding
power.

1.2 The Relational Model • 7

This is particularly true of the query and manipulative language. In such
a language it is essential to have at least four commands" retrieve, insert,
update, and delete. If there are N distinct types of compound data, then for
these four operations 4N commands will be necessary. By choosing a single
compound data type that, by itself, is adequate for database management,
the smallest value (one) is being selected for N.

In non-relational approaches to database management, there was a
growing tendency to expose more and more distinct types of compound
data. Consequently, the query and manipulative languages were becoming
more and more complicated, and at the same time significantly less com-
prehensible to users, even those who were knowledgeable about programming.

Relational databases that have many relations, each with few rows
(tuples), are often called rich, while those that have few relations, each with
many rows, are called large. Commercial databases tend to be large, but
not particularly rich. Knowledge databases tend to be rich, but not partic-
ularly large.

About six years after my first two papers on the relational model [Codd
1969 and 1970], Chen [1976] published a technical paper describing the
entity-relationship approach to database management. This approach is
discussed in more detail in Chapter 30, which deals with proposed alterna-
tives to the relational model. Although some favor the entity-relationship
approach, it suffers from three fundamental problems:

11 Only the structural aspects were described; neither the operators upon
these structures nor the integrity constraints were discussed. Therefore,
it was not a data model.

2. The distinction between entities and relationships was not, and is still
not, precisely defined. Consequently, one person's entity is another
person's relationship.

3. Even if this distinction had been precisely defined, it would have added
complexity without adding power.

Whatever is conceived as entities, and whatever is conceived as rela-
tionships, are perceived and operated upon in the relational model in just
one common way: as relations. An entity may be regarded as inter-relating
an object or identifier of an object with its immediate properties. A rela-
tionship may be regarded as a relation between objects together with the
immediate properties of that relationship.

1.2.2 I n t e r - r e l a t i n g t h e I n f o r m a t i o n C o n t a i n e d
i n D i s t i n c t R e l a t i o n s

Some people who are used to past approaches find it extremely difficult to
understand how information in distinct relations can possibly be inter-related
by the relational model without the explicit appearance in the user's per-
ception of pointers or links.

8 • Introduction to Version 2 of the Relational Model

The fundamental principle in the relational model is that all inter-relating
is achieved by means of comparisons of values, whether these values identify
objects in the real world or whether they indicate properties of those objects.
A pair of values may be meaningfully compared, however, if and only if
these values are drawn from a common domain.

Some readers may consider the "common domain" constraint to be an
unnecessary restriction. The opportunities for comparing values even with
this constraint, however, are vastly superior in numbers and quality over
the old approach of requiring pointers, links, or storage contiguity. Regard-
ing the numbers, it should be remembered that not only object-identifiers
can be compared with each other, but also simple properties of objects.
Regarding the quality, those relational operators that involve the comparing
of values require the values that are compared to be drawn from a common
domain. In this way, these operators protect users from making very costly
kinds of errors.

An example may help. Suppose the database contains serial numbers
of suppliers and serial numbers of parts. Then, the immediate properties of
a supplier contained in the SUPPLIER relation can be inter-related to the
immediate properties of a supplier's capability contained in the CAPABIL-
ITIES relation by means of a single relational operator. This operator is the
equi-join, and its application in this case involves comparing for equality the
serial numbers of suppliers in the SUPPLIERS relation with those serial
numbers in the CAPABILITIES relation.

Suppose that values for the serial numbers of suppliers and parts happen
to have the same basic data type (i.e., character strings of the same length).
Naturally, it is not meaningful to compare the supplier serial number in the
SUPPLIER relation with the part serial number in the CAPABILITIES
relation, even though they happen to have the same basic data type. Thus,
the domain concept plays a crucial role in the inter-relating game. In fact,
in Chapter 3 I discuss the general problem of determining of a given
collection of relations whether they are all inter-relatable; domains are an
essential and central concept in that discussion.

1.2.3 Examples of Relat ions

Two examples of relations in the relational model, described next, are
intended to convey the structural uniformity of the approach to representing
the information in relational databases for users (including application pro-
grammers). The first of these examples is the parts relation P, which iden-
tifies and describes each kind of part carried in inventory by a manufacturer.

P# Part serial number

PNAME Part name

SIZE Part size

QP Quantity of parts

1.2 The Re lat iona l M o d e l m 9

OH__QP

O 0 _ Q P

MOH__QP

Quantity of parts on hand

Quantity of parts on order

Minimum quantity of parts to be in inventory

There are only four domains: P#, PNAME, SIZE, and QP.

OP

P P# PNAME SIZE OH_QP O O _ _ Q P MOH_QP

pl nut 10 500 300 400
p2 nut 20 800 0 300
p3 bolt 5 400 200 300
p4 screw 12 1200 0 800
p5 cam 6 150 150 100
p6 cog 15 120 200 1 O0
p7 cog 25 200 50 100

This relation has six columns and therefore is of degree six. All of the rows
(seven in this example) constitute the extension of the parts relation P.
Sometimes the extension of a relation is called its snapshot. The remaining
descriptive information constitutes the intension of the parts relation P.

The second example, the capabilities relation C, is intended to provide
information concerning which suppliers can supply which kinds of parts.

In many approaches to database management, such a concept is treated
entirely differently from the information concerning parts, differently from
both the structural and the manipulative points of view. (Most of these
approaches are pre-relational.) Parts are called entities, while each capability
is called a relationship between suppliers and parts. The problem is that
capabilities have immediate properties just as parts do. Examples of prop-
erties that are applicable to capabilities are the speed of delivery of parts
ordered, the minimum package size adopted by the supplier as the unit of
delivery, and the price of this unit delivered.

This example may help the reader understand why, in the relational
model, precisely the same structure is adopted for capabilities as for p a r t s ~
and, more generally, precisely the same structure is adopted for entities as
for relationships between entities.

S#

P#

SPEED

QP

U N I ~ _ Q P

MONEY

PRICE

supplier serial number

part serial number

number of business days to deliver

quantity of parts

minimum package

U.S. currency

price in U.S. dollars of minimum package

10 • Introduction to Version 2 of the Relational Model

There are five domains: S#, P#, TIME, QP, and MONEY.

C S# P# SPEED UNIT_QP PRICE

sl pl 5 100 10
sl p2 5 100 20
sl p6 12 10 600
s2 p3 5 50 37
s2 p4 5 100 15
s3 p6 5 10 700
s4 p2 5 100 15
s4 p5 15 5 300
s5 p6 10 5 350

This relation has five columns and is therefore of degree five. All of the
rows (nine in this example) constitute the extension of the capabilities relation
C. The remaining descriptive information constitutes the intension of rela-
tion C.

1 .2 .4 O m i s s i o n o f F e a t u r e s

When implementing a relational database management system, many ques-
tions arise regarding the relational model. Occasionally, support for some
basic feature has been omitted due to it being assessed as useless. Unfor-
tunately, the relational model has always had features that are inextricably
intertwined. This means that omission of one feature of the model in a
DBMS can inhibit implementation of numerous others. For example, omis-
sion of support for primary keys and foreign keys (defined in Section 1.8)
jeopardizes the implementation of

• view updatability (see Chapter 17),

• the principal integrity constraints (see Chapter 13), and

• logical data independence (see Chapter 20).

1.2 .5 T h e G o a l s of RM/ V2

Version 2 of the relational model (abbreviated RM/V2) now has 333 features,
which are even more inextricably intertwined than the approximately 50
features of Version 1 (abbreviated RM/V1). Most of the original definitions
and features of RM/V1 have been preserved unchanged in Version 2. A
very few of the original definitions and features have been extended to
become broader in scope!

In late 1978 I developed an extended version of the relational model
called RM/T [Codd 1979]. A principal aim was to capture more of the
meaning of the data. Acceptance of the ideas in this version has been
exceptionally slow. Consequently, it seems prudent to develop a sequence

1.2 The Relational Model • 11

of versions V1, V2, V3, . . . that are more gradual in growth. As the
development of this sequence proceeds, certain features of RM/T will be
selected and incorporated in appropriate versions.

My goals in developing Version 2 of the relational model included all
those for the original relational model, RM/V1. Three of the most important
of these goals were, and remain,

1. simplifying interaction with the data by users

a. who have large databases,

b. who need not be familiar with programming, and

c. who normally conceive their interactions independently from all
other users;

2. substantially increasing the productivity of those users who are profes-
sional programmers;

3. supporting a much more powerful tool for the database administrator
to use in controlling who has access to what information and for what
purpose, as well as in controlling the integrity of the database.

If these goals were attained, and I believe they have been, the market
for DBMS products would be expanded enormously. This suggests one more
goal, namely, that a very strong emphasis be placed on the preservation by
the DBMS of database integrity. Chapters 13 and 14 are devoted to the
treatment of integrity by the relational model. The DBMS products available
so far have supported very few of the integrity features of the model.

It is the database administrator (abbreviated DBA) who is responsible
for imposing controls on the database: controls that are adequate for the
DBMS to maintain the database in a state of full integrity, as well as controls
that permit access for specified purposes to only those users with authorized
access for those purposes. The DBMS, however, must provide the DBA
with the tools to carry out his or her job. Pre-relational DBMS products
failed to provide adequate tools for this purpose.

Implementation of a high-performance DBMS that supports every fea-
ture of RM/V2 is not claimed to be easy. In fact, it is quite a challenging
task. There are already clear indications that the DBMS products leading
in performance and in fault tolerance will be those based on new hardware
and software architectures, both of which exploit the many opportunities
for concurrency provided by the relational model.

1.2 .6 T h e R e l a t i o n a l M o d e l as a n A b s t r a c t M a c h i n e

The term "abstract" scares many people who work in computing or data
processing, even though they deal with abstractions every day. For example,
speed and distance are abstractions. An airline reservation is an abstraction.
Bits and bytes are abstractions. So are computer commands.

12 • Introduction to Version 2 of the Relational Model

In my book Cellular Automata [Codd 1968], I make use of at least four
levels of abstraction to explain concisely how a self-reproducing computer
that is capable of computing all computable functions might be designed
from a large number (in fact, millions) of simple identical cells, each of
which interacts with only its immediate neighbors.

It is useful to think of RM/V2 as an abstract machine. Its level of
abstraction is sufficiently high that it can be implemented in many distinctly
different ways in hardware, in software, or in both. This machine can be
advantageously treated by all DBMS vendors, standards committees, and
DBMS users as an abstract machine standard.

For example, consider the structural features introduced in Chapter 2.
Their level of abstraction is necessary for enabling different types of hard-
ware and software (possibly from different vendors) to communicate with
one another about their databases. The abstract machine must be comple-
mented with standards that deal with the following:

• the physical representation of data for inter-computer communication;

• transaction-c0ntrol signals to facilitate adequate control of each trans-
action that straddles two or more computer systems (e.g., the signal
from one system to the other "Are you ready to commit your data?");

• specific relational languages that have specific syntax.

These topics are discussed in detail in Chapters 24 and 25.

1.2.7 T h e S t r u c t u r e d Q u e r y L a n g u a g e (SQL)

Many people may contend that a specific relational language, namely SQL,
already exists as a standard. SQL, standing for structured query language,
is a data sublanguage invented by a group in IBM Research, Yorktown
Heights, N.Y. [IBM 1972].

SOL was invented in late 1972. Although it was claimed that the language
was based on several of my early papers on the relational model, it is quite
weak in its fidelity to the model. Past and current versions of this relational
language are in many ways inconsistent with both of the abstract machines
RM/V1 and RM/V2. Numerous features are not supported at all, and others
are supported incorrectly. Each of these inconsistencies can be shown to
reduce the usefulness and practicality of SOL.

The most noteworthy error in several current implementations is that
SQL permits the use and generation of improper or corrupted relations, that
is, "relations" that contain duplicate tuples or rows. In Chapter 23 this
problem is examined in sufficient detail to demonstrate the seriously adverse
consequences of this very simple infidelity to the model. As each feature of
RM/V2 is introduced in this book, the attempt is made to comment on
SQL's support, non-support, or violation of the feature.

Several relational languages other than SQL have been developed. An

1.2 The Relational Model • 13

example that I consider superior to SQL is Query Language (abbreviated
QUEL). This language was invented by Held and Stonebraker at the Uni-
versity of California, Berkeley, and was based on the language ALPHA
[Codd 1972]. More attention is devoted to SQL, however, because it has
been adopted as an ANSI standard, and is supported in numerous DBMS
products.

1.2 .8 A n A b s t r a c t M a c h i n e S t a n d a r d

The computing field clearly needs an abstract machine standard for database
management for at least the following reasons:

• The intrinsic importance of computer-based support for the sharing of
business information interactively and by program.

• The users involved in this sharing normally conceive their modifications
of the information independently of one another.

• Clearly the field of database management is moving toward the man-
agement of distributed databases, and at each of the sites involved there
may be hardware and software from a variety of vendors. Intercom-
munication among these systems will be a vital requirement.

• The boundary between hardware and software is moving out from the
yon Neumann position. Hardware is taking on more of the tasks pre-
viously handled by basic software, and already there are products in
which numerous components of operating systems and DBMS are sup-
ported by hardware. An abstract machine standard for database man-
agement should enable this boundary to move without the necessity of
continual reformulation of a new standard.

The relational model deals with database management from an abstract,
logical point of view only, never at the detailed level of bits and bytes. Does
this make the relational model incomplete? If incomplete in this sense, the
model is intended to be this way. It is important to stop short of prescribing
how data should be represented and positioned in storage, and also how it
should be accessed. This not only makes users and programmers more
productive, but also permits both hardware and software vendors to compete
in lower-level techniques for obtaining good performance.

This is an area of considerable technical significance in which DBMS
vendors can productively compete with one another. In the case of DBMS
products that are carefully based on the relational model, such competition
need not adversely affect the users' investment in training and application
development, precisely because their perception is at a high level of ab-
straction.

One final reason for a high level of abstraction is that the choice of
representation for data in storage and the choice of access methods depend
heavily on the nature and volume of the traffic on the database.

14 • Introduct ion to Version 2 of the Relat ional Model

Publication of the relational model in the June 1970 issue of Commu-
nications of the Association for Computing Machinery [Codd 1970] preceded
the completion of development of relational DBMS products by at least a
decade. The model is more abstract than these systems and has an existence
that is completely independent of them.

This is an advantage in many ways. First, it provides a useful goal,
target, and tool for the designers and developers of new DBMS products.
Second, it provides a special kind of standard against which dissimilar DBMS
products can be measured and compared. No DBMS product or data sub-
language marketed in the western world today fully supports each and every
feature of the relational model, even Version 1 [Codd 1969, 1970, 1971a-
d, 1974a]. Third, it provides a foundation upon which theoretical work in
database management has been and will continue to be based.

1.3 a T h e T r a n s a c t i o n C o n c e p t

Brief reference was made to the concept of a transaction in the preceding
discussion of the additional kinds of standards that are now needed. In the
relational model, this concept has a precise definition.

A transaction is a collection of activities involving changes to the data-
base, all of which must be executed successfully if the changes are to be
committed to the database, and none of which may be committed if any
one or more of the activities fail. Normally, such a collection of activities is
represented by a sequence of relational commands. The beginning of the
sequence is signaled by a command such as BEGIN or BEGIN TRANS-
ACTION. Its termination is signaled by a command such as END or COM-
M I T ~ o r , if it is necessary to abort the transaction, ABORT.

A simple example of a transaction is that in which a bank customer
requests the bank to transfer $1,000 from his checking account into his
savings account. In the bank's computer program the first action is to check
that there is at least $1,000 in the customer's checking account. If so, this
amount is deducted from the balance in that account. The next action is to
credit the customer's savings account with the $1,000.

If the first action were successful and the second action failed (due to
hardware malfunction, for example), the customer would lose the $1,000;
this would be unacceptable to most customers. Therefore, this is a case in
which both actions must succeed or neither must cause any change in the
database.

In DBMS products two methods of handling a transaction are as follows:

1. to delay storing in the database any data generated during execution of
a transaction until the DBMS encounters a COMMIT or END TRANS-
ACTION command, and then store all of this data;

2. to write details of each change in the recovery log as each change is
generated, and immediately record the change in the database. This log

1.4 Classification of RM/V2 Features • 15

is then used for recovery purposes if an A B O R T TRANSACTION
command is to be executed.

1.4 • C l a s s i f i c a t i o n o f R M / V 2 F e a t u r e s

Each feature of the relational model RM/V2 is assigned to one of the 18
classes listed in Table 1.2. The table includes the number of the chapter in
which each class of features is described. Each letter identifies the class.
Each feature has a unique label. Thus, in the feature RS-9, R stands for
relational, S for the structure class, and 9 for the ninth feature in that class.
The numbering of features within a class should be interpreted as a distinctive
label only, not as an ordering of importance.

There is no claim that the features of RM/V2 are all independent of
one another. In fact, as discussed earlier, there are numerous inter-depen-
dencies among the features. A minimal, totally non-redundant set would be
more difficult to understand, would probably reduce user productivity sig-
nificantly, and would probably lead to even more errors by vendors in
designing their relational DBMS products. Of course, I am not advocating

Table 1.2 The 18 Classes of Features and t h e P e r t i n e n t Chapters

Chapter Label Class

2 S Structural
3 T Extended data types
4 B Basic operators
5 Z Advanced operators
6 N Naming
7 E Elementary commands

10 Q Qualifiers
11 J Indicators
12 M Manipulative

13,14 I Integrity
15 C Catalog

16,17 V View
18 A Authorization
19 F Scalar and aggregate functions
20 P Protection of user investment in the DBMS, the database,

application programming, and user training
21 D DBMS design principles
22 L Language-design principles

24,25 X Distributed database management

16 • I n t r o d u c t i o n to V e r s i o n 2 of t h e R e l a t i o n a l M o d e l

the other extreme, namely complexity, since this runs counter to com-
prehensibility.

Two very important concepts of relational DBMS products are the
catalog and views. Some think that the basic relational model does not
mention the catalog or views, but these concepts were discussed in my early
papers on the relational model, although not by these names. I referred to
the catalog as the relational schema and to views as derived relations whose
definitions were stored in the schema. In this book I have adopted the
System R terms "catalog" and "view" [Chamberlin et al. 1981] because they
are concise and very usable, and are now quite widely used. System R was
one of three DBMS prototypes developed in distinct divisions of IBM and
based on the relational model.

When DBMS products are evaluated today, the evaluation should in-
clude fidelity of the product to the relational model, and specifically RM/
V2. In part, this is required because almost all vendors claim that their
DBMS products are relational. Therefore, one important concern for po-
tential users of these products is that they reap all the benefits of fidelity to
the relational model.

As with RM/V1, the features that are included in RM/V2 are intended
to be helpful for all users of relational DBMS, both application programmers
and end users. Also, as with RM/V1, they are intended to help the designers,
implementors, and evaluators of relational DBMS products. RM/V2 features
include all the features of RM/V1, together with the following:

• new features that cover important aspects of relational DBMS not
previously included in RM/V1, either because they were overlooked or
because I considered them too obvious to mention, until I discovered
that many people had not realized their obvious importance;

• new features that are in line with the original RM/V1, but at a slightly
lower level of abstraction.

A DBMS product is fully relational in the 1990s if it fully supports each
and every one of the features of RM/V2 defined in this book. A DBMS
product that is not fully relational can nevertheless qualify to b e called
relational in the early 1990s by fully supporting each one of the roughly 40
features listed in Appendix A.

Like the basic relational model RM/V1, all the features of RM/V2 are
based on the practical requirements of users, database administrators, ap-
plication programmers, security staff, and their managers. Along with the
description of each feature, I attempt to explain the practical reasons for
that feature.

The relational model RM/V2 is based on the original model RM/V1 and
on a single fundamental rule, which I call Rule Zero:

For any system that is advertised as, or claimed to be, a relational
database management system, that system must be able to manage

1.5 T a b l e s v e r s u s R e l a t i o n s • 17

databases entirely through its relational capabilities, no matter what
additional capabilities the system may support.

This must hold whether or not the system supports any non-relational
capabilities of managing data. Any DBMS that does not satisfy this Rule
Zero is not a relational DBMS.

The danger to buyers and users of a system that is claimed to be a
relational DBMS and fails on Rule Zero is that these buyers and users will
expect all the advantages of a truly relational DBMS, but will fail to receive
them.

One consequence of Rule Zero is that any system claimed to be a
relational DBMS must support database insert, update, and delete at the
relational level (multiple-record-at-a-time). (See Feature RM-6 in Chapter
12.) Another consequence is the necessity of supporting the information
feature and the guaranteed-access feature. (See Feature RS-1 in Chapter 2
and Features RM-1 and RM-2 in Chapter 12.)

Incidentally, "multiple-record-at-a-time" includes the ability to handle
those situations in which zero or one record happens to be retrieved,
inserted, updated, or deleted. In other words, a relation (often carelessly
called a table) may have either zero tuples (rows) or one tuple (row) and
still be a valid relation. Note that although it may be unusual for a relation
to have either zero rows or one row, it does not receive special treatment
in the relational model, and therefore users do not have to treat such a
relation in any special way either.

1.5 • T a b l e s v e r s u s R e l a t i o n s

Actually, the terms "relation" and "table" are not synonymous. As discussed
earlier, the concept of a relation found in mathematics and in the relational
model is that of a special kind of set. The relations of the relational model,
although they may be conceived as tables, are then special kinds of tables.
In this book they are called R-tables, although the term "relation" is still
used from time to time to emphasize the underlying concept of mathematical
sets, to refer to the model, or to refer to languages developed as part of
implementations of the model.

R-tables have no positional concepts. One may shuffle the rows without
affecting information content. Thus, there is no nextness of rows. Simi-
larly, one may shuffle the columns without affecting information content,
providing the column heading is taken with each column. Thus, there is no
"nextness" of columns.

Normally, neither of these shuffling activities can be applied with such
immunity to arrays. That is why I consider it extremely misleading to use
the term "array" to describe the structuring of data in the relational model.

Those relations, or R-tables, that are internally represented by stored
data in some implementation-defined way are called the base relations or

18 • Introduction to Version 2 of the Relational Mode l

base R-tables. All R-tables other than base R-tables are called derived
relations or, synonymously, derived R-tables. An example of a derived re-
lation is a view. A view is a virtual R-table defined in terms of other R-
tables, and is represented by its defining expression only.

In both RM/V1 and RM/V2, duplicate rows are not permitted in any
relations, whether base relations, views, or any other type of relations. For
details, see Features RS-3 and RI-3 in Chapters 2 and 13, respectively. This
rule has been applied in all of my technical papers on the relational model,
even the first one [Codd 1969].

In RM/V2, duplicate rows are still excluded from all relations. They are
excluded from base R-tables, primarily as a step to retain integrity of the
database: each row in such a table represents an object whose distinctiveness
is lost if duplicate rows are allowed in these R-tables. A very fundamental
property of the relational model is that each object about which information
is stored in the database must be uniquely and explicitly identified, and
thereby distinguished from every other object. As we shall see, the unique
identifier is the name of the R-table, together with the primary key value.
This fundamental property, an integrity-preservation feature, is not enforced
by any other approach to database management.

Duplicate rows are still excluded from all derived R-tables for semantic
reasons (see Fundamental Law 20 in Chapter 29). They are also excluded
because such duplicates severely reduce the interchangeability of sequencing
of operators within a relational command or in a sequence of commands.
This reduction in interchangeability has two serious consequences (see Chap-
ter 23 for more detail):

1. it reduces the optimizability of relational commands;

2. it imposes severe conceptual problems and severe constraints on users.

Two of the early prototypes of relational DBMS products were devel-
oped in the mid-1970s by the System R team at IBM Research in San Jose,
Calif. [Chamberlin et al. 1981] and the INGRES team at the University of
California Berkeley [Stonebraker 1986]. Curiously, both of these teams made
the same two criticisms of the relational model:

1. the expected loss of performance if duplicate rows had to be eliminated
in several types of relational operations without the user explicitly
requesting that elimination;

2. the alleged impossibility of applying statistical functions correctly to
columns that happen to have duplicate values legally.

Based on the first point, I conditionally agreed to the idea that duplicate
rows should be permitted in derived R-tables only, not in base R-tables.
The condition for this concession was that all of the effects upon the
relational operators be carefully examined for possibly damaging
consequences.

1.5 T a b l e s v e r s u s R e l a t i o n s • 19

On the second point, I found myself in strong disagreement, because
the mistake made in these two prototypes was to apply as a first step the
projection operator (see Chapter 4) on the column or columns for which
statistics were needed. Instead, I advised the researchers to apply the sta-
tistical function first in the context of whatever relation was given, and then
apply the projection operator, only if such action were necessary for other
reasons.

It now appears that neither project adequately examined the severely
damaging effects of duplicate rows (1) on the operators and (2) on common
interpretability by users (see Chapter 23).

This latter concern is related to the fact that, when hundreds, possibly
thousands, of users share a common database, it is essential that they also
share a common meaning for all o f the data therein that they are authorized
to access. There does not exist a precise, accepted, context,independent
ipterpretation of duplicate rows in a relation. These adverse consequences
are the reason that I still find that duplicate rows in any relation are
unacceptable.

Let us turn our attention to a table that is extracted from a non-relational
source for storage in a relational database. If it happens to contain duplicate
rows, these duplicate rows can easily be removed by means of a special
operator (see Feature RE-17 in Chapter 7). This operator removes all except
one occurrence of each row that has multiple occurrences. It leaves the table
unchanged if it happens to contain no duplicate rows.

From an evaluation standpoint, the RM/V2 features defined in this book
have been created with primary concern for those DBMS products that are
designed to support multiple users concurrently accessing shared data and
engaged in tasks that can be (and often are) conceived independently of one
another. Therefore, some of the features are not applicable to a DBMS
intended for very small computer systems, particularly single-user systems
such as personal computers.

An example of such a feature is concurrency control. Although locking
as a form of concurrency control is mentioned in very few features of RM/
V2, it is accompanied by the phrase "or some alternative technique for
concurrency control that is at least as powerful as locking (and provably
so)." I plan to say more about the subject of locking in a forthcoming book
on computer-aided development (CAD) and engineering extensions to the
relational model.

The logic that is usually encountered in data processing is propositional
logic, often called Boolean logic, which deals with only two truth-values:
TRUE and FALSE. In the field of database management, one reason that
propositional logic was considered adequate in the past is that, before the
relational model, logic was considered relevant to query products only, and
such products normally supported the use of logic in the querying of single
files only. Two truth values were considered adequate because no attempt
was made to handle missing values in a uniform and systematic manner
across the entire database.

20 • I n t r o d u c t i o n to Vers ion 2 o f t h e R e l a t i o n a l M o d e l

Mathematical logic plays a central role in the relational model. In RM/
V1 the logic is three-valued, first-order predicate logic, where the three truth-
values are TRUE, FALSE, and MAYBE. This logic is substantially more
powerful than propositional logic. The MAYBE truth-value means that the
DBMS cannot decide whether a truth-valued expression is TRUE or FALSE
due to values missing from the database.

In RM/v2 this logic is extended to four-valued, first-order predicate
logic, where the four truth-values are TRUE, FALSE, MAYBE BUT
APPLICABLE, and MAYBE BUT INAPPLICABLE. This is especially
relevant when it becomes necessary to handle information that may contain
some database values that are applicable but missing because they have not
been entered yet, and some values that are missing because the property in
question is inapplicable to the pertinent object (see Chapter 8 on missing
information).

1.6 m T e r m i n o l o g y

In this account of RM/V2, several terms that are now popular in database
management are used, instead of the longer established and more carefully
defined mathematical terms. Any ambiguity that is perceived in the use of
the database-oriented terms can be resolved by referring to Table 1.3.

The degree n of a relation is the number of columns, which can be any
positive integer, including the special case of a unary relation for which n
= 1. A relational database is perceived by all users, whether application
programmers or end users, as a collection of relations of assorted degrees.
Each relation can be thought of as inter-relating the identifying properties
of a type of object with the other immediate properties of that type of
object. Every value appearing in a relation is treated by the DBMS as
a tomic , except for certain special functions that are able to decompose
certain kinds o f values (see Chapter 19).

The phrases "delete duplicates" and "delete redundant duplicates" mean
delete all occurrences except one of an object (the object is determined by
the context in which this phrase is used, and it is usually a complete row of
an R-table).

Table 1.3 M a t h e m a t i c a l a n d D a t a b a s e T e r m s

Mathematical Term

Relation of degree n
Attribute
Domain
Tuple
Cardinality of relation

Database Term

R-table with n columns
Column of R-table
Extended data type
Row of R-table
Number of rows in R-table

1.7 Role of Language in the Relational Model • 21

In this book the terms "interrogation," "query," and "retrieval" are
used synonymously. Each of these terms denotes a read-only operation. No
data modification is involved. Notwithstanding their names, identifying the
database languages SOL and OUEL as just query languages is quite incorrect,
since both support much more than interrogation.

The terms "modification" and "manipulation" are used whenever data
modification is involved, whether it be data entry, deletion, or updating.
Except where otherwise indicated, the term "updating" denotes a particular
kind of modification, namely, modification applied to values already within
the database. Therefore, updating is normally an operation that is distinct
from both data entry and deletion.

When applied to any database activity, the term "dynamically" means
without bnnging any database traffic to a halt.

1.7 • R o l e o f L a n g u a g e i n t h e R e l a t i o n a l M o d e l

Early in the development of the relational model (1969-1972), I invented
two languages for dealing with relations: one algebraic in nature, and one
based on first-order predicate logic [Codd 1971a]. I then proved that the
two languages had equal expressive power [Codd 1971d], but indicated that
the logic-based language would be more optimizable (assuming that flow
tracing was not attempted) and easier to use as an interface to inferential
software on top of the DBMS.

During subsequent development of the relational model, I have avoided
the development of a specific language with specific syntax. Instead, it
seemed appropriate that my work remain at a very high level of abstraction,
leaving it to others to deal with the specific details of usable languages.
Thus, the relational model specifies the semantics of these languages, and
does not specify the syntax at all.

The abbreviation RL denotes the principal relational language supported
by the D B M S ~ a language intended specifically for database management,
and one that is not guaranteed to be usable for the computation of all
computable functions. RM/V2 specifies the features that RL should have,
and the specification is (as we just saw) semantic, not syntactic. Examples
of existing relational languages are SOL and OUEL, although neither of these
supports more than half the relational model.

The power of RL includes that of four-valued, first-order predicate logic
[Church 1958, Suppes 1967, Stoll 1961, Pospesel 1976]. The complete power
of RL should be fully exploitable in at least the following contexts:

• retrieval (database description, contents, and audit log);

• view definition;

• insertion, update, and deletion;

• handling missing information (independent of data type);

22 • I n t r o d u c t i o n to V e r s i o n 2 o f t h e R e l a t i o n a l M o d e l

integrity constraints;

authorization constraints;

if the DBMS is claimed to be able to handle distributed data, distributed
database management with distribution independence, including auto-
matic decomposition of commands by the DBMS and automatic recom-
position of results by the DBMS (see Feature RP-4 in Chapter 20).

One of the main reasons that "object-oriented" DBMS prototypes and
products are not going to replace the relational model and associated DBMS
products is these systems appear to omit support for predicate logic. It will
take brilliant logicians to invent a tool as powerful as predicate logic. Even
then, such an invention is not an overnight task~once invented, it might
well take more than a decade to become accepted by logicians. Thus, features
that capture more of the meaning of the data should be added to the
relational model [Codd 1979], instead of being proposed as replacements.

In the development of application programs, a relational language nor-
mally needs as a partner a host language such as COBOL, PL/1, FORTRAN,

or some more recently developed programming language. Some relational
DBMS support several such host languages to be used as partners, although
the user is normally required to select just one for developing an application
program. In this book I occasionally use the term "HL" (for "host language")
to denote such a language.

Languages are being developed that are significantly higher in level than
COBOL, PL/1, and FORTRAN; such languages frequently include statements
that must be translated into RE. Thus, an important requirement for RL is
that it be both convenient and powerful in two roles: as a source language
and as a target language.

Sometimes I am asked why I do not extend relational languages to
include the features of PROLOG or o f someone's favorite "fourth-generation"
language. My usual reply is that I do not wish to tie the destiny of the
relational model to any tool that has not been overwhelmingly accepted or
does not appear to be defined at the same level of abstraction as the relational
model. Moreover, I believe that the days of monstrous programming lan-
guages are numbered, and that the future lies with specialized sublanguages
that can inter-communicate with one another.

1.8 • K e y s a n d R e f e r e n t i a l I n t e g r i t y

The term "key" has been used in the computing field for a long time, and
with a great variety of meanings. In the relational model the term is normally
qualified by the adjectives "candidate," "primary," and "foreign," and each
of these phrases has a precisely defined meaning.

Each base R-table has exactly one primary key. This key is a combination
of columns (possibly just one column) such that

1.8 Keys and Referential Integrity • 23

• the value of the primary key in each row of the pertinent R-table
identifies that row uniquely (i.e., it distinguishes that row from every
other row in that R-table);

• if the primary key is composite and if one of the columns is dropped
from the primary key, the first property is no longer guaranteed.

Sometimes these two properties are called the uniqueness property and the
minimality property, respectively. Note, however, that "minimality" in this
context does not mean the shortest in terms of bits or bytes or the one
having the fewest components.

It is equally valid to interpret the uniqueness property in terms of object
identification: the value of the primary key in each row of the pertinent
R-table identifies the particular object represented by that row uniquely
within the type of objects that are represented by that relation. Everywhere
else in the database that there is a need to refer to that particular object,
the same identifying value drawn from the same domain is used. Any column
containing those values is called a foreign key, and each value in that column
is called a foreign key value.

Referential integrity is defined as follows:

Let D be a domain from which one or more primary keys draw
their values. Let K be a foreign key, which draws its values from
domain D. Every unmarked value which occurs in K must also exist
in the database as the value of the primary key on domain D of
some base relation.

Incidentally, a value in the database is marked if and only if it is missing.
The subject of missing information is discussed in some detail in Chapters
8 and 9.

The case in which K is a combination of columns, and some (perhaps
all) of the component values of a foreign key value are allowed to be marked
as missing, needs special attention. Those components of such a foreign key
value that are unmarked should adhere to the referential-integrity constraint.
This detail is not supported in many current DBMS products, even when
the vendors claim that their products support referential integrity.

To make use of this definition, it is necessary to understand primary
keys (PK) and foreign keys (FK). The example in the following subsection
is intended to give the reader some understanding of the semantic nature
of these keys.

1.8.1 S e m a n t i c A s p e c t s o f Pr imary a n d Fore ign Keys

Notice that referential integrity applies to pairs of keys only, one a primary
key PK and the other a foreign key FK. The keys may be simple (single-
column) or composite (two or more columns). The DBMS should not require

24 • Introduction to Version 2 of the Relational Model

that each and every combination of simple keys within a single relation be
treated as a foreign key, even if that combination appears as a composite
primary key in the database. This is clearly an issue that is related to the
meaning of the data.

Suppose, for example, that a database contains the relations listed in
Table 1.4.

Table 1.4 E x a m p l e R e l a t i o n s in a D a t a b a s e

Relation Meaning Primary Key

R1 Suppliers S#
R2 Parts p#
R3 The capabilities of suppliers to supply parts, including (S#,P#)

price and speed of delivery
Orders for parts placed with specified suppliers,
including date the order was placed

R4 (S#,P#,
DATE)

To avoid an extra relation and keep the example simple, assume that every
order is a one-line order (that is, only one kind of part appears on any
order) and that it is impossible for two orders with the same order date to
refer to identical kinds of parts.

Suppose that each of two companies has a database of this kind. In
company A, however, the relation R3 is used as advisory information, and
there is no requirement that every combination of (S#,P#) that appears in
R4 must appear in R3. In company B, on the other hand, R3 is used as
controlling information: that is, if an order is placed for part p from supplier
s, it is company policy that there must be at least one row in relation R3
stating that p is obtainable from s, and incidentally indicating the price and
the speed of delivery. Of course, there may be other rows in R3 stating that
p is obtainable from other suppliers. Thus, if referential integrity were
applied to the combination (S#,P#) as primary key in R3 and foreign key
in R4, it would be correct in company B, but incorrect in company A.

There are two ways in which this example (and similar ones) could be
handled:

1. Make the referential integrity constraint applicable to all PK-FK pairs
of keys (whether simple or composite) in which one key PK is declared
to be primary, and the other key FK is declared to be foreign. In
company B, declare the (S#,P#) combination in R4 as a foreign key
that has as its target the (S#,P#) primary key of R3. In company A,
avoid altogether the declaration that (S#,P#) in R4 is a foreign key.

2. Make the referential integrity constraint applicable to simple PK-FK
pairs of keys only, and require the DBA to impose a referential con-

1.8 Keys and Referential Integrity [] 25

straint on just those compound PK-FK pairs of keys for which the
constraint happens to be applicable in his or her companymby specifying
a user-defined integrity constraint, expressed in the relational language.

Method 1 is the approach now adopted in the relational model. It makes
the foreign-key concept a more semantic feature than does Method 2. After
all, the concepts of keys in the relational model were ahvays intended to
identify objects in the micro-world that the database is supposed to represent.
In other words, keys in the relational model act as surrogates for the objects
being modeled. Once again, Method 1 is adopted.

1.8.2 P r i m a r y K e y s o n a C o m m o n D o m a i n

Let us consider an example of the fact that primary keys on a given domain
can occur in more than one base relation. This is the database in which
there are two base R-tables that provide the immediate properties of sup-
pliers: one for the domestic suppliers, one for the foreign suppliers. There
would normally be some properties in the foreign suppliers table that do
not occur in the domestic suppliers table. Each R-table has as its primary
key the supplier serial number. Nevertheless, the database may contain
several R-tables that include the supplier serial number as a foreign key
without making any distinction regarding the R-tables in which the corre-
sponding primary key value resides. In general, that value may reside as a
primary key value in one, two, or even more R-tables.

No assumption is made in either RM/V1 or RM/V2 concerning the
adoption of the tighter discipline of the extended relational model RM/T
[Codd 1979]. For example, there is no requirement that type hierarchies be
incorporated in the database design, wherever they are appropriate. More-
over, there is no requirement that, for each primary key, a unary relation
(called the E-relation in RM/T) exists to list all of the distinct values in use
for that primary key.

A second example in the non-distributed case is that of a base relation
R that happens to have many columns, but a large amount of traffic on only
20% of these columns (call this A) and a very modest amount on the
remaining 80% (call this B). In such a case the DBA may decide to improve
performance by storing the data in the form of two base relations instead
of one:

1. a projection of R onto its primary key together with A;

2. a projection of R onto its primary key together with B.

A specific feature of the relational model that requires support in the
DBMS for multiple primary keys from a common domain is RS-10, described
in the next chapter.

In the case of distributed database management, it is not at all uncommon

26 • I n t r o d u c t i o n to V e r s i o n 2 o f t h e R e l a t i o n a l Model

to have the information distributed in such a way that several relations
at several sites all have a primary key based on a common domain. See
Section 24.4 for a detailed discussion of the relational approach to distrib-
uting data.

1.8.3 C o m m e n t s on I m p l e m e n t a t i o n

Referential integrity is discussed further in Chapter 13. It should be imple-
mented as far as possible as a special case of user-defined integrity (see
Chapter 14) because of their similarities. One such common need, for
example, is to give the DBA or other authorized user the freedom to specify
linguistically how the system is to react to any attempt to violate these
integrity constraints, whether the constraints are referential or user-defined.

Further, it should be remembered that referential integrity is a particular
application of an inclusion constraint (sometimes called an inclusion depe n -
dency). Such a constraint requires that the set of distinct values occurring
in some specified column, simple or composite, must be a subset of the
values occurring in some other specified column(simple or composite,
respectively). In the case of referential integrity, the set of distinct simple
FK values should be a subset of the set of distinct simple PK values drawn
from the same domain.

Inclusion constraints, however, may apply between other pairs of attri-
butes also (e.g., non-keys). When declared and enforced, such additional
constraints reflect either business policies or government regulations. One
would then like the DBMS to be designed in such a way as to provide
reasonably uniform support for referential integrity and these additional
(user-defined) inclusion constraints.

1.9 • M o r e o n T e r m i n o l o g y

The following terms are used in connection with relational languages and
user-defined functions.

• retrieval targeting: specifying the kinds of database values to be extracted
from the database, and then possibly specifying transformations to be
applied to occurrences of these values;

• retrieval conditioning: specifying a logical condition in a retrieval or
manipulative statement of a particular relational language for the pur-
pose of conditioning access;

PK-targeting: finding the primary key(s) corresponding to any given
foreign key;

FK-targeting: finding the foreign key(s) corresponding to any given
primary key;

Exercises • 27

• PK-based projection: a projection that includes the primary key of the
operand R-table;

• non-PK projection: a projection that does not include the primary key
of the operand R-table.

1 . 1 0 • P o i n t s t o R e m e m b e r

Four important points concerning relations follow:

1. every relation is a set;

2. not every set is a relation;

3. every relation can be perceived as a table;

4. not every table is a correct perception of a relation.

Designers of the relational DBMS products of many vendors appear to be
ignorant of these facts or to have ignored them.

E x e r c i s e s

Note that, for some exercises, additional chapters are identified as sources
of more information.

1.1

1.2

1.3

1.4

1.5

1.6

Identify the 18 classes of features in RM/V2. Supply a brief description
of each class.

When a relation is perceived as a table, what are the special properties
of that table? Is the ordering of columns crucial? Is the ordering of
rows crucial? Can the table contain duplicate rows?

The terms "table" and "relation" are not synonymous. Supply a
simple example of a table that is neither a relation of the relational
model nor a relation of mathematics.

What is your position on the entity-relationship approach? (See also
Chapter 30.) Will it replace the relational model? Give five technical
reasons for your answer.

What is a transaction in the relational model? Describe an application
that illustrates that there is a practical need for this concept.

Are either of the following statements true about the structures of
the relational model?

They are merely flat files.
They are merely tables.

In each case, if your answer is no, give an example of a fiat file that
is not a relation or an example of a table that is not a relation.

28 • I n t r o d u c t i o n to V e r s i o n 2 o f t h e R e l a t i o n a l M o d e l

1.7

1.8

1.9

1.10

1.11

What is your position on the object-oriented approach? (See also
Chapter 30.) Will it replace the relational model? Give five reasons
for your answer. You may wish to postpone this exercise, as well as
Exercise 1.8, until you have absorbed Chapter 28.

Can any object-oriented concepts be added to the relational model
without violating any of the principles on which the model is based?
Which concepts? (See also Chapter 30.)

When designing a database, is it possible to anticipate all of the uses
to which the data will be put? Is it possible to anticipate the batch
load, on-line teleprocessing load, and interactive query load for the
next three l five, or seven years? Conclude from your answer what
properties the DBMS should have if it is to protect the user's invest-
ment in application programs (See also Chapter 26.)

Are duplicate rows needed in a relation? If so, what for? Supply an
example. Should duplicate rows be allowed in any relation? State
reasons whyor why not, whichever is applicable, and supply examples.
(See also Chapters 2 and 23.)

In RM/V2 does the prohibition of duplicate rows within every relation
imply that no duplicate values (e.g,, currency values) can occur in
any column? Explain.

• C H A P T E R 2 •

S t r u c t u r e - O r i e n t e d

and D a t a - O r i e n t e d

Features

Chapters 2 through 25 describe and explain the 333 features of RM/V2. In
this chapter attention is focused on the way a relational database is s tructured
and how the information in various parts of the database is inter-related.
Each feature has a brief title and a unique label of the type RY-n, where Y
is a character that denotes the pertinent class of features and n is the feature
number within this class.

Reference is made occasionally to "the 1985 set" [Codd 1985]. This set
of 12 rules, a quick means of distinguishing the DBMS products that are
relational from those that are not relational, can still be used for coarse
distinctions. The features of RM/V2, however, are needed for distinctions
of a finer grain.

2.1 • D a t a b a s e s a n d K n o w l e d g e B a s e s

As explained in Chapter 1, both a commercial database in the relational
sense and a knowledge base consist largely of assertions. In commercial
databases most of the assertions contain no variables. There are few distinct
kinds of assertions, and very many assertions of each type (perhaps hundreds
of millions). In knowledge bases, on the other hand, most of the assertions
contain variables that are bound in the logician's sense. Moreover, there
are many distinct kinds of assertions, and very few of each type (often just
one).

The relational model is intended to be applied primarily to commercial

29

30 • Structure-Oriented and Data-Oriented Features

and industrial databases. Thus, it takes advantage of the large numbers of
assertions all of the same type. The predicate in the logician's sense that is
common to all the assertions of one type is factored out and becomes the
relation name.

There is a component of every relational database, however, that is very
similar to a knowledge base, and that is the database description. Further
discussion of this subject is postponed until Chapter 15. In any event, due
to the focus of the relational model on cleanly expressed assertions unen-
cumbered with irrelevant structural details (for example, the clutter of
pointers), this model has an outstandingly clean interface to knowledge
bases.

2.2 • G e n e r a l F e a t u r e s

R $ - I T h e I n f o r m a t i o n F e a t u r e

See Rule 1 in the 1985 set. The DBMS requires that all database
information seen by application programmers (AP) and interactive
users at terminals (TU) is cast explicitly in terms of values in
relations, and in no other way in the base relations. Exactly one
additional way is permitted in derived relations, namely, ordering
by values within the relation (sometimes referred to as inessential
ordering).

This means, for example, that, in the database, users see no repeating
groups, no pointers, no record identifiers (other than the declared primary
keys), no essential (i.e., non-redundant) ordering, and no access paths.
Obviously this is not a complete list. Such objects may, however, be supported
for performance reasons under the covers because they are then not visible
to users, and hence impose no productivity-reducing burden on them.

2.2.1 Repea t ing Groups

Many people experienced with pre-relational systems express shock or dis-
may at the exclusion of repeating groups from the relational model. Re-
peating groups had their origin in the trailer cards of the punched-card era.
Thus, it seems worthwhile to consider an example that illustrates how
repeating groups can be avoided.

Suppose that, at database-design time, it is decided that the database is
to contain information concerning parts in the inventory and orders placed
for more parts to be added to the inventory. An order usually consists of
heading information such as the name and address of the supplier with whom

2.2 General Features • 31

the order is to be placed, an appropriate employee in the supplier company,
the telephone number of this employee, the date when the supplier promises
to ship the parts, the expected cost, and possibly other items of information.
The line items then follow, and it is here that some think that a repeating
group is needed.

In the relational approach the heading information for all orders is
incorporated into a single relation, the heading relation. Similarly, the line
items for all orders are incorporated into a single relation, the trailing
relation. Each distinct order in the heading relation includes an order serial
number as a unique identifier of the order. This identifier is, of course, the
primary key of the heading relation. Every line item in the trailing relation
includes the pertinent order serial number as a foreign key. This identifier,
together with the line number for the pertinent line item, constitute the
primary key of the trailing relation.

It will be seen that in eliminating repeating groups from the database
design no information has been lost. Now the question arises, "Why elimi-
nate repeating groups? Surely, they are both natural and harmless!"

In fact, they are not harmless. One of the principal penalties is that
each repeating group must be positioned next to its heading information,
and all members of a group must be positioned next to each other. The
relational model avoids all decisions regarding positioning of information,
allowing positioning to be used purely for performance purposes.

A second penalty is that repeating groups represent an additional way
of representing information. Hence, one more retrieval command, one more
insertion command, one more update command, and one more deletion
command are needed in the data-manipulation vocabulary.

A third penalty is that logical database design now involves more de-
cision making without a theoretical foundation upon which to base those
decisions. Thus, if repeating groups were adopted, it would be necessary to
conceive clear, concise, and rigorously established criteria for the database
designers to choose whether or not to exploit repeating groups.

2 . 2 . 2 M o r e o n t h e I n f o r m a t i o n F e a t u r e

Returning to the information feature RS-1, even R-table names, column
names, and domain names are represented as character strings in some
R-tables. R-tables containing such names are normally part of the built-in
database catalog (see Chapter 15). The catalog is accordingly a relational
database itselfmone that is dynamic and active and that represents the meta-
data. Meta-data consists of data that describes all of the data in the database,
as well as the contents of the catalog itself.

The information feature is supported for several reasons. First, as ex-
plained in Chapter 1, this feature makes a simpler data sublanguage possible,
and therefore supports user productivity. Second, it greatly simplifies the
interface between the DBMS and software packages "on top of" the DBMS.

32 • Structure-Oriented and Data-Oriented Features

Examples of such software packages are application-development aids, ex-
pert systems, and dictionaries. These packages must not only interface with
relational DBMS but, by definition, must be well integrated with the DBMS.
This integration is necessary because these packages retrieve information
already existing in the database (including the catalog) and, as needed, put
new information in the database (and possibly in the catalog also).

An additional reason is to simplify the database administrator's task of
maintaining the database in a state of overall integrity and to make this task
more effective. There is nothing more embarrassing to a DBA than being
asked whether the database contains certain specific information, and, after
a week's examination of the database or of documents that allegedly describe
the database, of having to reply that he or she does not know.

R $ - 2 F r e e d o m f r o m P o s i t i o n a l C o n c e p t s

The DBMS protects the application programmers and terminal users
from having to know any positional concepts in the database.

Examples of positional concepts follow:

• Where is a particular relation stored?

• Which row is next to a given row?

• Which column is next to a given column?

In dealing with databases that contain R-tables with thousands (some-
times millions) of rows, as well as hundreds of columns, it would place a
heavy and unnecessary burden on users if the DBMS required them to
remember which row or which column is next. User productivity would
suffer seriously.

R S - 3 Duplicate Rows Prohibited in
Every Relation

The DBMS prohibits the occurrence of duplicate rows in any relation
(whether base, view, or derived), and in this way protects the user
from the subtle complexities and reduced optimizability that stem
from permitting duplicate rows.

As mentioned in Chapter 1, for duplicate rows there is no precise,
accepted definition that is context-independent. Consequently, there is no
common interpretation that all users can share. Many of the present versions

2.2 GeneralFeatures • 33

of SQL fail to support Feature RS-3. The adverse consequences are discussed
in some detail in Chapter 23. Note that Feature RS-3 refers to entire rows
being duplicated. It does not prohibit the occurrence of duplicate values in
any column.

R $ - 4 I n f o r m a t i o n P o r t a b i l i t y

If a row of a base R-table is moved in any kind of storage by the
DBMS, its information content as perceived by users remains un-
changed, and therefore need not be changed. The entire information
content of the DBMS as seen by users must not be dependent upon
the site or equipment in which any of the data is located.

An example of such a move is the archiving of a portion of an R-table.
Another example is the re-distribution to different sites of parts of a dis-
tributed database. Thus, any hashing of data done by the system must not
be perceptible to users. Similarly, if the primary key value is ever system-
generated, that value cannot be a pointer or an address, and cannot be
location-dependent in any way.

For the time being, this feature is not intended to include the case of
vendor-independent physical representation of data stored in or retrieved
from databases, especially on communication lines. This topic should be
treated by standards organizations as a matter needing urgent attention.
This feature is also not intended to apply to performance-oriented objects
such as indexes.

2.2.3 Three -Leve l A r c h i t e c t u r e

About 1976 the SPARC committee of the American National Standards
Institute (ANSI) announced with great fanfare something called the "three-
schema architecture." The definitions of the three levels supplied by the
committee in a report were extremely imprecise, and therefore could be
interpreted in numerous ways. Upon reflection, however, I believe the idea
had been already conceived and published as part of the relational model
and as part of the System R architecture [Chamberlin et al. 1981]. Of course,
the definitions in the relational model and in System R were much more
precise, but the terminology was different.

Base relations are those relations represented directly by stored data
(not by formulas or relational commands). Views are virtual relations defined
in terms of the base relations and possibly other views using the relational
operators. It is these definitions (either by formulas or by relational com-
mands) that are stored in the catalog. Storage representation is the repre-
sentation in storage for the information contained in base relations.

34 • Structure-Oriented and D a t a - O r i e n t e d F e a t u r e s

With an appropriate interpretation of the ANSI definitions, the corre-
spondence in terms is as follows"

ANSI term R-term

External schema
Conceptual schema
Internal schema

Views
Base relations
Storage representations

R S - 5 Three-Level Archi tec ture

A relational DBMS has a three-level architecture consisting of views,
base relations, and storage representations.

This feature is concerned with the structural aspect only. Full support
of the three-level architecture includes full support of view-manipulative
Features RV-4, RV-5, and RV-6. It also includes a systematic approach to
view updatability, which is the subject of Chapter 17.

2.3 m D o m a i n s , Columns , and Keys

Let us turn our attention to the concepts upon which the relations of the
relational model are built.

RS-6 Declarat ion of D o m a i n s as
E x t e n d e d Data Types

Each semantically distinct domain is distinctly named and declared
separately from the R-table declarations (since it may be used in
several R-tables). Each domain is declared as an extended data
type, not as a mere basic data type.

For an explanation of the differences between basic data types and
extended data types, see the introductory text in Chapter 3 (preceding
Feature RT-1). Feature RC-3 states in detail the kind of domain declaration
that should be stored in the catalog.

The concept of a domain is quite fundamental. It is essential in deter-
mining whether a given relational database can be split into two or more
independent databases without loss of meaningful derivable information~
or, to express it another way, without loss of inter-relatedness (see Chapter
3).

Many features of RM/V2, as well as the original RM/V1, depend on the

2.3 Domains, Columns, and Keys • 35

domain concept. Some of the advantages of supporting domains as extended
data types are as follows:

• a large component of the description of every column that draws its
values from a given domain need be declared only once in the domain
declaration (this is called the factoring advantage);

m for every operator that involves comparing pairs of database values, the
DBMS can ensure that each of the two components are semantically
comparable by checking either at the start of the operation or (when
possible) at compile time that both columns involved draw their values
from a common domain (see Feature RM-14 in Chapter 12);

• integrity checks are facilitated (see Chapters 13 and 14, and Feature
RD-7 in Chapter 21).

R S - 7 C o l u m n D e s c r i p t i o n s

For each column of each base R-table, there should be the capability
of declaring (1)from which domain that column draws its values
(thus identifying the extended data type) and (2)what additional
constraints, if any, apply to values in that column.

When the DBMS fully supports the domain concept, it can detect errors
resulting from users forgetting which columns have values of a given ex-
tended data type. Therefore, users can depend on the system to check
whether the values in two given columns are semantically comparable (i.e.,
of the same extended data type).

R S - 8 P r i m a r y K e y for E a c h B a s e R - t a b l e

For each and every base R-table, the DBMS must require that one
and only one primary key be declared. All of the values in this
simple or composite column must be distinct from one another at
all times. No value in any component column is allowed to be missing
at any time.

Whether the primary key is indexed or not is a purely performance
concern, and therefore a decision to be made by some authorized user quite
separately (see Feature RD-3 in Chapter 21). The primary key is constrained
by the DBMS to contain distinct primary key values in distinct rows, and
(because of Feature RI-3 in Chapter 13) is not permitted to have missing
values.

36 • Structure-Oriented and Data-Oriented Features

The constraints that values must be distinct and that missing values must
be excluded may also, at the discretion of the DBA, be enforced on columns
other than the primary key. Therefore, the mere existence of these con-
straints on some column or combination of columns does not identify which
column(s) constitute the primary key.

A primary key may consist of a simple column or a combination of
columns. When it consists of a combination of columns, the key is said to
be composite. Each column participating in a composite primary key may
be, but need not be, a foreign key.

R S - 9 P r i m a r y K e y f o r C e r t a i n V i e w s

For each view the DBMS must support the declaration of a single
primary key whenever the DBA observes that the definition of that
view permits the existence of such a key, including adherence to the
entity-integrity feature (see Feature RI-7 in Chapter 13). Where
possible, the DBMS must check that a primary key declaration for
a view is consistent with primary key declarations for the base
R-tables.

Note that, in some cases, views can have instances of missing information
in every column (although not all in one row, of course). In these cases, it
is impossible to declare a primary key for the view and have it adhere to
the entity-integrity feature. A simple example is a view that is a projection
of a base R-table that does not include any column of the table from which
missing values are prohibited (and thus does not include the primary key of
that R-table). In these circumstances and in the view thus defined, use is
made of the concept of a weak identifier, defined at the end of Section 5.3.

Generally, it is clearer to limit the specification of all kinds of integrity
constraints to base R-tables. It is helpful to users, however, to have a primary
key declared for each view whenever possible, because such a key plays a
significant role as a unique identifier of objects during user interaction with
a relational database. Further, it is reasonable to expect users to interact
with views rather than with base R-tables, because in this way they enjoy
more logical data independence. (See Feature RP-2 in Chapter 20.)

R S - I O F o r e i g n K e y

The DBMS permits the declaration of any column or combination
of columns of a base R-table as a foreign key (where this is se-
mantically applicable). Included in this declaration are the target
primary keys (usually just one) for this foreign key. However, the
DBMS must not, through its design, constrain the target to be just

2.3 Domains, Columns, and Keys • 37

one primary key for a given foreign key, even though the most
frequently occurring case may be just one.

In supporting more than one primary key as the target for a given
foreign key, the DBMS must no t assume that the corresponding primary
key values are partitioned into disjoint sets in distinct R-tables. Moreover,
the DBMS must not deduce foreign keys and their targets from the declared
primary keys and their domains. In the case of composite foreign keys, the
DBMS could be in error because of the semantic nature of key targeting
(i.e., the association of foreign keys with primary keys). An example of this
semantic nature is described in Section 1.8.1.

R S - 1 1 C o m p o s i t e D o m a i n s

A user-chosen combination of simple domains can be declared to
have a name, providing that name is distinct from that of any other
domain (simple or composite). The sequence in which the compo-
nent domains are cited in this declaration is part of the meaning of
the combination.

An example of a composite domain is the combination of two simple
domains: the supplier serial number domain and the part serial number
domain. Several composite columns in a database may draw their values
from this composite domain.

This declaration of combinations of domains enables them to be treated
as unit pieces of information without specifying their components (in other
words, as if they were simple domains). For example, if an equi-join (see
Chapter 4) is required that involves comparing one combination of columns
with another, and if both combinations happened to be based on the same
composite domain, the user would be able to gain confidence more rapidly
concerning the correctness of the join, and the DBMS would be able to
check this correctness more rapidly.

For each composite domain, of course, the sequence in which the
domains are specified is a vital part of the definition. For any composite
column based on a composite domain, the sequence in which the combination
of columns is specified must match the sequence in which the simple domains
are specified that participate in the composite domain.

~ R S - 1 2 C o m p o s i t e C o l u m n s

A user-chosen combination of simple columns within a base R-table
or view can be declared to have a name, providing that name is

38 • S t r u c t u r e - O r i e n t e d a n d D a t a - O r i e n t e d F e a t u r e s

distinct from that of any other column (simple or composite) within
that R-table, and providing a composite domain has already been
declared from which this composite column is to draw its values.
The sequence in which the component columns are cited in this
declaration is part of the meaning of the combination, and it must
be identical to the sequence cited in the declaration of the corre-
sponding composite domain.

An example of a frequently needed composite column is a postal address:
the combination of an apartment or suite number in a building, the building
number on some street, the street name, the city name within a state or
country, and finally the state or country.

Note that, if a composite column is declared to contain every column
of some R-table (admittedly a rare event), that combined column is not
itself an R-table and should not be treated as if it were. In this case, the
name of the R-table and the name of the composite column should be
distinct.

The naming and declaration of combinations of columns enables them
to be treated as unit pieces of information without specifying their compo-
nents (in other words, as if they were simple columns). For example, if an
equi-join (see Chapter 4) is required that involves comparing one combi-
nation of columns with another, and if these combinations happened to be
declared and each named as such, it would be easier to express the com-
parison in terms of the combination names. For each composite column, of
course, the sequence of simple domains corresponding to the sequence of
components in each combination would have to be identical in order for the
values to be comparable with one another.

Note that a composite column is restricted to combining simple columns
within a single base R-table. This restriction should be interpreted in the
sense that at present I am not taking a position either for or against the
kind of composite columns that combine columns that may be simple or
composite. Such columns are sometimes loosely referred to as "composites
of composites." So far, I fail to see the practical need for them.

The name of the composite column can be the same as the name of the
composite domain from which the composite column draws its values (bar-
ring ambiguity within the pertinent R-table). The name, however, should
be distinct from that of any R-table (base or view), and it m u s t be distinct
from

• any simple column within the pertinent base R-table, and

• any other composite column already declared and still in effect for that
R-table, and

• any word assigned special meaning within the relational language (i.e.,
any keyword of RL).

2.4 Miscellaneous Features • 39

To explain the meaning of a comparator such as LESS THAN (<)
applied to a pair of composite columns, suppose that the composite column
C, consisting of C1, then C2, then C3, is to be compared with a composite
column D, consisting of D1, then D2, then D3. The condition C < D is
equivalent to making a sequence of tests:

C1 < D1, then C2 < D2, then C3 < D3.

The first test that fails causes the whole test to fail for the truth-valued
expression C < D and that application of it. If duplicate values occur in
some or all of these columns, there is no guarantee that a request for an
ordering based on them will deliver exactly the same sequence of tuples in
repeated execution of the request. To obtain precise repeatability, requests
for ordering should be based on columns, which contain values that are
distinct from one another.

The treatment is tantamount to C1 and D1 being treated as high-order,
C2 and D2 as middle-order, and C3 and D3 as low-order in the usual
arithmetic sense (whether the operands are numeric or character strings).
The LESS THAN comparator applied to a pair of character strings makes
use of a collating sequence established as a standard for database manage-
ment and for data processing.

2.4 a Miscel laneous Features

R $ - 1 3 Missing Informat ion: R e p r e s e n t a t i o n

Throughout the database, the fact that a database value is missing
is represented in a uniform and systematic way, independent of the
data type of the missing database value. Marks are used for this
purpose. (Note that RS-13 is the structural part of Rule 3 in the
1985 set; see Feature RM-11 in Chapter 12 for the manipulative
part.)

The semantics of the fact that a database value is missing are quite
different from the semantics of the value that is missing. See Chapters 8
and 9 or [Codd 1986a and 1987c] for more details. Marks were previously
called nulls, and occasionally null values~which is even more misleading
because it suggests that nulls behave just like other database values. To be
independent of data type, they must be distinguishable from all database
values of all types. Thus, any value whose bit representation lies within the
bit boundaries of a database value is unacceptable in the role of representing
the fact that a database value is missing. For example, if the following are
stored in the same R-column as the corresponding non-missing database

40 • Structure-Oriented and Data-Oriented Features

values, they are unacceptable as representations of missing values (whether
built-in, default, DBA-declared, or user-declared):

[] the empty character string,

• a string of blank characters or any other character string,

• zero or any other number,

m any string of bits.

An example of a conforming representation for missing information is
that adopted in IBM's DB2. In this system, any column in which database
values are permitted to be missing is assigned an extra byte outside the bit
boundaries of the database values. This byte is reserved to indicate to the
DBMS whether the corresponding value, which is represented by the bits
within the bit boundaries of the database values in this column, is to be
taken seriously as an actual value or as a fictitious value left over from some
previous use.

To support database integrity, the DBMS should deduce from the pri-
mary key declaration that marks are not allowed for that column or com-
bination of columns. It must be possible, however, for the DBA or some
other suitably authorized user to specify "marks not allowed" for any other
columns for which this happens to be an appropriate integrity constraint.
An example would be certain foreign key columns.

Note that the "marks not allowed" declaration is n o t an alternative to
an explicit declaration of the primary key. By itself, such a declaration is
inadequate to distinguish primary key columns from other columns.

Techniques in database management before the relational approach
required users to reserve a special value peculiar to each column or field to
represent missing information. This would be most unsystematic in a rela-
tional database because users would have to employ different techniques for
each column or for each domain. This is a difficult task because of the high
level of language in use, and one that would lower the productivity of users
significantly.

R S - 1 4 Avoiding the Universal Relation

Neither the collection of all base relations nor the collection of all
views should be cast by the DBMS in the form of a single "universal
relation" (in the Stanford University sense) [Vardi 1988]. The DBA,
however, should have the option of creating such a relation as one
of the many views.

Generally, the database should be perceived as a collection of base
relations and a collection of virtual relations (views), all of assorted degrees.

Exercises • 41

If all of the base relations or all of the views are each cast as a single
universal relation (in the Stanford University sense), there are at least three
adverse consequences:

1. waste of space (disk and memory) due to the large number of values
that must be marked "property inapplicable," and waste of channel time
for the same reason;

2. loss of adaptability to changes in the kinds of information stored in the
database:

a. more human effort is required when the counterpart of a new base
R-table or view is defined,

b. application programs will be adversely affected because their logic
is not immune to the restructuring of the "universal relation," and

c. more of a reorganizing load at the storage level is likely to be
involved;

3. the need for joins on non-key values is not decreased, and their coun-
terpart is more difficult for the user to request, because the key-based
join built into the "universal relation" must be decomposed before the
join based on non-keys is constructed.

In the relational model a database is treated as a collection of relations
of assorted degrees. The Stanford University research on the universal
relation concept was, I believe, motivated by the desire to eliminate the
need for joins. In the universal relation approach, however, the combining
of several relations (perhaps many) into a single relation is necessarily based
on only one method of combination, and the method normally selected is
by key-based equi-joins.

One of the great advantages of the relational approach is that it supports
joins of all kinds, whether based on keys or not. It is quite likely that a
database that adheres to the relational model has more distinct kinds of
non-key-based joins than key-based ones. The approach adopted in the
relational model is far more flexible and more adaptable to change.

When new kinds of information are introduced into a database, one can
merely define new domains, new columns, and new R-tables as necessary.
On the other hand, using the Stanford approach, this new information would
have to be carefully fitted into the existing universal relation, which is a
much more complicated problem. For more detail, see Chapter 30.

Exercises

2.1 Does RM/V2 permit any information to be carded solely in the
ordering of rows in base relations? State reasons why or why not,
whichever is applicable.

4 2 • Structure-Oriented and Data-Oriented Features

2.2

2.3

2.4

2.5

2.6

2.7

.8

2.9

2.10

2.11

2.12

What is the precise definition of a domain in the relational model?
Which of the following statements is always true, which always false,
and which can be true in some cases and false in others?
1. A domain determines the type and range of values that may occur

in one or more columns.
2. A domain determines the type and range of values that may occur

in exactly one column.
3. Exactly one column determines the type and range of values that

may occur in a domain.
4. One or more columns determine the type and range of values

that may occur in a domain.

How should domains be supported? What is wrong with storing for
each and every domain all of the values that belong to it? (10, 17)

IBM's DB2 supports the language SQL for database interrogation,
manipulation, and control. Should the declaration of a primary key
for each base relation be optional, as in the SQL of Version 2 of IBM's
DB2? Give reasons for your answer.

Define the candidate-key concept. Define the primary-key concept.

Why does the primary-key concept preclude there being two or more
primary keys in a base table? Explain the problems that result from
having two or more primary keys per relation.

Why is a single primary key mandatory for each base relation? Does
this requirement reduce the range of applicability of the relational
model?

Does the fact that a column has been declared to be the primary key
of some base relation mean that the column must be indexed? How
about the reverse implication?

Does RM/V2 require a relation to be stored as (1)a table, (2)an
array, (3)a flat file, o r (4)a collection of records connected by
pointers? (See also Chapter 20.)

Does RM/V2 require a relation to be stored row by row? Does RM/
V2 require the components to be ordered within each row in storage
in the same sequence as the columns are declared in the catalog? (See
also Chapter 20.)

What does it mean for a value to be atomic with respect to the
DBMS? Is not an atomic value always atomic?

Supply two reasons why the DBA should always control the intro-
duction of new types of values into the database to ensure that these
values are atomic in meaning as well as atomic with respect to the
DBMS.

• C H A P T E R 3 m

D o m a i n s as E x t e n d e d

D a t a T y p e s

3.1 • Bas ic a n d E x t e n d e d D a t a T y p e s

The concept of domains has played a very important role in the relational
model since the model was conceived. It is not overstating the case to say
that the domain concept is fundamental. It participates crucially in the
definition of numerous features of RM/V1 and RM/V2. Consequently, many
of these features cannot be fully supported by a DBMS unless that DBMS
supports domains. Omission of support for domains is the most serious
deficiency in today's relational DBMS products.

In my first two papers on the relational model [Codd 1969 and 1970],
domains and columns were inadequately distinguished. In subsequent papers
(e.g., Codd 1971a, 1971b, and 1974a), I realized the need to make this
distinction, and introduced domains as declared data types, and attributes
(now often called columns) as declared specific uses of domains. It has
become clear that domains as data types go beyond what is normally under-
stood by data types in today's programming languages. Consequently, as
noted in Chapter 2, when domains are viewed as data types, I now refer to
them as extended data types. With regard to the data types found in pro-
gramming languages (excluding PASCAL and ADA), I refer to them as basic
data types.

An extended data type is intended to capture some of the meaning of
the data. It is conceptually similar to a basic data type found in many
programming languages. If, however, two semantically distinguishable types
of real-world objects or properties happen to be represented by values of

43

44 • D o m a i n s as E x t e n d e d Data Types

the same basic data type, the user nevertheless assigns distinct names to
these types and the system keeps track of their type distinction.

The description of an extended data type includes its basic data type
together with information Concerning the range of values permitted, and
whether the less than comparator (<) is meaningfully applicable to its values.
The distinction between extended data type and basic data type is not that
the first is user-defined and the second is built into the system, even though
many of the extended data types will, in practice, be user-defined.

Note that, unless it is built into the system, a domain, and hence an
extended data type, must be declared as an object itself before any use can
be made of it. Whenever an extended data type is built into the system, its
name as an object must be available to users.

In contrast, a basic data type is normally a property associated with an
object at the time of the declaration of that object. As an aside, given the
present state of the data sublanguages SQL and QUEL, a CREATE DOMAIN
command must be added to each language. Table 3.1 lists some of the
distinctionsbetween basic and extended data types.

By now it should be clear that it is quite incorrect to equate either
(1) basic data types with built-in data types, or (2) extended data types with
user-defined data types.

The distinction between built-in data types and user-defined data types
is a purely temporary consideration based largely on the kind of hardware
that is economically available; this boundary moves at least every decade,
possibly more frequently. On the other hand, the distinction between basic
and extended data types is both non-temporary and conceptual in nature: it
is closely related to the question of levels of abstraction.

In apparent opposition to the first row of Table 3.1, it has been con-
tended that both basic data types and extended data types have names. In
a sense this is true. The "names" of basic data types, however, can be used
only in designating certain properties of data (e.g., in a program). On the
other hand, the names of extended data types can be used not only in
designating properties of data, but also as objects themselves, when the user

Table 3.1

Basic Data Type

No object-oriented name
A property of an object
Not independently declarable
Range of values is not specifiable
Applicability of <, > is not specifiable

B a s i c v e r s u s E x t e n d e d D a t a T y p e s

Extended Data Type

Object-oriented name
An object
Independently declarable
Range of values is specifiable
Applicability of <, > is specifiable

Two database values with the same basic data type need not have the same
extended data type.

3.2 Nine Practical Reasons for Supporting Domains • 45

wishes to interrogate them or modify them either interactively from a
terminal or by using a program. This holds true of extended data types
because their names and descriptions are stored as data in the catalog.

3 .2 i N i n e P r a c t i c a l R e a s o n s for S u p p o r t i n g D o m a i n s

Full support for many of the features of the relational model depends on
full support of the domain concept. Some of the advantages of supporting
domains fully follow.

First, full support of the domain concept is the single most important
concept in determining whether a given relational database is integrated.
Consider the consequences of alleging that a relational database viewed as
a collection CD of domains and a collection CR of relations could be split
into two databases, without any loss of information or of retrieval capability.
How would one check whether this assertion were true?

One way of solving this problem is to look for a subset cd of the domains
CD and a subset cr of the relations CR with the following two properties:

1. the relations in cr make use of domains in cd only (no other domains);

2. the relations in (CR - cr) make use of domains in (CD - cd) only
(no other domains).

Note that in Property 1 a relation makes use of a domain if at least one of
its columns draws its values from that domain. In Property 2, the symbol "-"
in (CR - cr) and (CD - cd) denotes set difference.

When both these properties hold, the relational operators will not permit
the derivation of any relations that include information from cr as well as
information from (CR - cr), whether these two collections are regarded
by the DBA or by anyone else as a single database or as two databases.
There is a sound reason for this related to (1) value-comparisons that make
sense and (2) value-comparisons that do not. (See the third practical reason
for supporting domains later in this section.)

This first reason for supporting domains can be concisely stated as
follows: domains are the glue that holds a relational database together. Notice
that I said domains, not primary keys and foreign keys. The concept of keys
in the relational model provides an important additional and specialized
kind of glue.

Second, support of domains is necessary if the factoring advantage is to
be realized in declaring the types of data permitted in columns.

A large component of the description of every column that is defined
on a given domain need be declared only once for that domain. As an
example, consider a financial database that has 50 columns containing cur-
rency of some type (e.g., all U.S. dollars).

Using pre-relational DBMS, it was usually necessary to store 50 decla-
rations, One for each column; this task was often left to numerous application

46 • D o m a i n s as E x t e n d e d Data T y p e s

programmers, who inserted these declarations into their programs. With this
approach, the usual result was that no two currency declarations were in
precise agreement, placing an immense and unnecessary burden on the DBA
and on the community of users.

It was this phenomenon that spurred the development of add-on pack-
ages called dictionaries. Control over names and declarations, however,
should be handled by the DBMS itself, making it much more difficult for
any user to circumvent such control.

Using the relational approach, just one declaration of semantic data
type for the currency domain will suffice for all 50 currency columns. Then,
for any currency column that needs tighter control (an interval of permitted
values more narrow than that declared for the domain), an extra range
constraint can be declared for that column (type C or column integrity). All
domain declarations and all additional constraints applicable to specified
columns are stored by the DBA in the catalog, which is where they belong
if users are to receive the important benefit of not having to change appli-
cation programs whenever integrity constraints are changed.

Third, support of domains is necessary if domain integrity is to be
supported. Domain integrity consists of those integrity constraints that are
shared by all the columns that draw their values from that domain. Three
kinds of domain integrity constraints that are frequently encountered are
(1) regular data type, (2) ranges of values permitted, and (3) whether or
not the ordering comparators greater than (>) and less than (<) are appli-
cable to those values.

Fourth, full support of domains includes domain-constrained operators
and domain-constrained features of other kinds to protect users from costly
blunders. For every operator that involves comparing pairs of database
values, the DBMS ensures that the two components to be compared are
semantically comparable. It does this by checking either at the start of the
operation or (when possible) at compile time that both columns involved
are defined on a common domain. This constraint is supported by a relational
DBMS to help protect users from incorrectly formulating commands such
as joins (for example, a join in which quantities of parts are being compared
with quantities of people). If a special need arises "to compare apples with
oranges," with special authorizat ion~and a DBA would grant such au-
thorization rarely and for only short in tervals~a user may employ the
DOMAIN CHECK OVERRIDE qualifier in his or her command.

R T - I Safety Feature when Comparing
Database Values

When comparing a database value in one column with a database
value in another, the DBMS checks that the two columns draw their
values from a common domain, unless the domain check is overrid-

$.2 Nine Practical Reasons for Supporting Domains • 47

den (see Feature RQ-9 in Chapter 10). When comparing (1) a
computed value with a database value or (2) one computed value
with another computed value, however, the DBMS checks that the
basic data types are the same.

The main reason for checking the weaker basic data types when computed
values are involved is that the computing is likely to be expressed in some
host-programming language. Most such languages do not yet support the
extended data types of the relational model.

The following operators and features of the relational model require
implementation of domains to ensure that data is handled properly by the
DBMS and by the user:

Operators for retrieval and modifying:

• theta-select (whenever two components of a tuple are being
compared),

• theta-join,

• t-join,

• relational division,

• relational union, intersection, and difference,

• all of the outer operators (outer join, outer union, outer intersection,
outer difference),

• primary key update.

Integrity features:

referential integrity (type R),

• other inclusion dependencies,

• user-defined integrity constraints (type U) involving any of the op-
erators just listed,

• every integrity constraint involving cascading the action to all equal
values in all columns defined on the same domain (e.g., cascade
delete, cascade update, cascade insert).

Fifth, in the highly dynamic environment supported by a fully relational
DBMS, it is necessary to support domains in order to support transactions
that single out all occurrences of some value as a value of a specified extended
data type. Consider an example: business activity with supplier s3 has been
terminated in a completed state (no shipments are still due from this supplier
and all bills have been paid). A company executive requests that all rows
of a certain kind (wherever they occur in the database) be archivedm
specifically, all rows of all relations that contain s3 as a supplier serial
number.

48 • D o m a i n s as E x t e n d e d D a t a T y p e s

In executing this action, it is important to avoid archiving rows that
happen to contain s3 as something other than a supplier serial number (say,
a part serial number), if these rows do not also contain s3 as a supplier
serial number. It is inadvisable to expect any application programmer to
remember the information as to which columns draw their values from the
supplier serial number domain" this information may change even while the
programmer is thinking about the transaction because of activities by other
users and programmers. A relational DBMS supports a great variety of
users engaged concurrently in actions conceived independently of one an-
other. Most of these actions may be simple changes to the data, but some
may be changes in the database description. Thus, while the application
programmer is thinking about the transaction needed to archive all rows
that contain s3 as a supplier serial number, some other user may be intro-
ducing a new relation or adding a new column containing supplier serial
numbers. That user or another one may then insert s3 in such a column.

Consequently, it is essential that the DBMS retain in an extremely up-
to-date state the information as to which columns draw their values from
the supplier serial number domain. It is also essential that the relational
language contain a command that is capable of referring to all columns
currently drawing their values from a specified domain without the user
having to list these columns within the command or elsewhere. At present,
SOL and its dialects lack such a command.

Sixth, support of domains facilitates certain user-defined integrity checks
by the DBMS. An example is an inclusion constraint, in which the values
appearing in one column C1 (simple or composite) are required to be a
subset of the values appearing in another column C2. In this case, the
relational model requires that C1 and C2 draw their values from a common
domain.

Seventh, the domain concept participates in many definitions in the
relational model, including the definitions of primary domain, foreign key,
all value-comparing operators (as noted earlier in the third reason), union
compatibility, referential integrity, and inclusion constraints.

Eighth, domains can be used by the DBMS to establish the extent of
naming correspondence needed from the user when a union or similar
relational operator is requested. When forming R UNION S in the relational
model, it is required not only that the degree of R is equal to the degree
of S, but also that there exist at least one mapping (one-to-one) of the
columns of R onto the columns of S, such that the two columns of each pair
belonging to the mapping have a common domain.

Clearly, if all the domains of columns of R are distinct, then all the
domains of S must also be distinct, and the domains can be used by the
DBMS to determine the mapping of columns on columns completely. Thus,
in this case, the user need not become involved at all in the pair of column
names.

3.3 RM/V2 Features in the Extended Data Type Class • 49

If two or more domains of columns of R are identical, however, the
same must be true of S, and the user is faced with alternatives. He or she
must therefore be involved in column correspondence between R and S to
the extent of having to specify a mapping for just those columns of R that
share a common domain and just those columns of S that share a common
domain. Obviously, determining this correspondence can also affect the
naming of columns of the result.

Ninth, and last, it is necessary to support domains in order to support
an important performance-oriented tool, namely domain-based indexes. While
this tool is not itself part of the relational model, it is important because it
can cause certain types of relational DBMS (specifically those that make
use of indexes under the covers) to perform competitively with non-relational
DBMS.

A domain-based index is a single index on the combination of all the
columns that draw their values from the specified domain. Such an index is
usually a multi-relation index. However, not every multi-relation index is a
domain-based index. It provides immediate direction for the DBMS to find
all occurrences of each currently active value from that domain.

Once such an index has been declared by the DBA, the introduction
into the database of a new column drawing its values from the pertinent
domain causes automatic expansion by the DBMS of the domain-based
index. Similarly, whenever the DBA requests the dropping of a column that
is referenced by a domain-based index, the DBMS automatically removes
references to this column from the pertinent index.

It is worth noting that domain-based indexes can do more than improve
the performance of certain kinds of DBMS in the execution of joins and
other value-comparing operations. Also, when applied to primary domains
(domains from which primary keys draw their values), they can improve the
performance of tests of referential integrity.

One extreme case may be interesting, although I am not advocating it
as a preferred approach: the case in which the entire collection of values in
the database is stored in domain-based indexes only. Of course, in this case
such indexes cannot be dropped without losing information from the database.

3.3 • R M / V 2 F e a t u r e s i n t h e E x t e n d e d D a t a T y p e C l a s s

3 .3 .1 G e n e r a l F e a t u r e s

R T - 2 E x t e n d e d D a t a T y p e s B u i l t

i n t o t h e S y s t e m

The DBMS supports calendar dates, clock times, and decimal cur-
rency as extended data types, including the various kinds of dates

50 • Domains as Extended Data Types

and time units in common use, the computation of date intervals
and time intervals, and the use of partial as well as full dates (see
Features RT-3-RT-9, following). The DBMS must have access to
the date of the current day and the time of day at all times.

A justification for this feature is that very few institutions, whether
commercial, industrial, or governmental, can manage themselves without
these types of data. Incidentally, each built-in extended data type must have
a name that is usable in the catalog for appending integrity constraints of
type D to the data type.

R T - 3 U s e r - d e f i n e d E x t e n d e d D a t a T y p e s

The DBMS permits suitably authorized users to define extended
data types other than those for which it provides built-in support in
accordance with Feature RT-2. These data types can be used to
enrich the retrieval-targeting and retrieval-conditioning capabilities
of the principal relational language (e.g., with respect to text ma-
nipulation and computer-aided development/computer-assisted
manufacturing).

3.3.2 Ca lendar D a t e s a n d Clock T i m e s

As described in Features RT-4-7, the treatment of dates and clock times
(separately and in combination) in the relational model is intended to be
flexible enough to be suitable for managing databases of any of the following
types, among others:

• genealogical types at the headquarters of the Mormon church in Salt
Lake City, Utah;

• air-traffic control at major air-traffic-control centers of the Federal
Aviation Administration;

commercial databases used by institutions operating in a variety of
different time zones (possibly many time zones).

R T - 4 C a l e n d a r D a t e s

From the user's standpoint, dates appear to be treated by the DBMS
as if they were atomic values. However, the DBMS ,s/apports func-
tions that are capable of treating as separate components the year,
month, and day of the month.

3.3 RM/V2 Features in the Extended Data Type Class m 51

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

The services provided by Feature RT-4 include the 14 that follow:

Independence of date and time from particular time zones in which
users are located, by use of Greenwich dates and Greenwich mean
time.

The function called NOW yields for any site the current date and
time that are in effect in the time zone of the site.

Extraction of any one or any pair of the three components, a form
of truncation.

Extraction with rounding of either year alone or year followed by
month.

Conversion of the combination year, month, day of the month to the
year followed by day of the year, as well as conversion in the opposite
direction.

Computation of the difference between two dates of similar or distinct
external types, where each argument is expressed as
a. years only, or
b. years and months, or
c. years, months, and days of the month, or
d. years, and days of the year.

These four options must be available to users, and the result must be of
the same external type as the argument that is coarser.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

Conversion of date intervals into years only or months only or days
only, using truncation or rounding as specified, if the conversion is
from fine units to coarser units.

Arithmetic on dates, including computation of a date from a given
date plus or minus a date interval, without the adoption of dates and
date intervals as distinct data types.

Pairwise comparison of dates, including testing of pairs of dates to
see which is the more recent and which is the less recent.

Finding the most recent date of a collection.

Finding the least recent date of a collection.

All varieties of joins based on comparing dates.

The ability to report dates in at least one of the following formats:
a. European format: D,M,Y;
b. North American format" M,D,Y;
c. computer format: Y,M,D;
d. in the Indian calendar with lunar months.

Two types of date-conversion functions"
a. DATE__IN for transforming dates from external representation

of dates to the internal representation;

52 • Domains as Extended Data Types

b. DATEmOUT for transforming dates in the reverse direction,
with the DBA having the option of putting into effect functions
defined and specified by the DBA either for all users of a given
DBMS or for specified classes of users (instead of or in addition
to those supplied by the DBMS vendor).

This option is needed because users with different responsibilities and
those located in different countries (even within a single country) may
employdifferent kinds of dates externally with respect to the DBMS.
Table 3.2 shows an example of two distinct types of conversions that
may be needed in countries that use the Gregorian calendar.

Of course, the DBMS must know how many days there are in each of
the calendar months, and which years are leap years. The DBMS should
also have a standard internal representation of dates oriented toward arith-
metic on dates. The preferred representation is a date origin established by
the DBA (such as the first day of the year 1900), coupled with the number
of days following that day. This representation is compatible with the han-
dling of arithmetic operations upon dates (while abiding by all the usual
laws of arithmetic) and of comparisons between pairs of dates (such as LESS
THAN). Such a standard would ease the problem of communication between
heterogeneous DBMS products. Finally, the DBMS must know the date Of
the current day.

Note that the DBA may impose bounds, both lower and upper, on
acceptable values of dates using type D and type C integrity constraints.
Dates occur in the numerous examples included in this book. The standard
representation adopted is the computer format Y,M,D (year, month, day)
cited earlier in the discussion of Feature RT-4.13.

R T - $ Clock Times

From the user's standpoint, clock times appear to be treated by the
DBMS as if they were atomic values. The DBMS however, supports

Table 3.2

DOWN

UP

E x a m p l e s o f D a t e C o n v e r s i o n s

Type of Date

Internal date
Closest
earlier date
Closest later
date

Two examples
Any Year Non-Leap Year

September 31 February 29
September 30 February 28

October 1 March 1

3.3 RM/V2 Features in the Extended Data Type Class • 53

functions that are capable of treating as separate components the
hours, minutes of the hour, and seconds of the minute. The services
provided include counterparts to the first 12 of the 14 services listed
in the discussion of RT-4.

Whenever it is necessary to store fractions of a second (e.g., milliseconds
or microseconds) in one or more columns of the database, a user-defined
extended data type should be established for each distinct and pertinent unit
of time.

R T - 6 C o u p l i n g o f D a t e s w i t h T i m e s

The DBMS supports a composite data type consisting of the data
type DATE coupled with the data type TIME, allowing the functions
applicable to dates alone or times alone to be applied to combina-
tions in which DATE plays the role of the high-order part and TIME
the low-order part.

R T - 7 T i m e - z o n e C o n v e r s i o n

The DBMS supports (1) the conversion of every date-time pair from
any specified time zone to Greenwich date and Greenwich mean
time, and (2) the inverse conversion of Greenwich date-time pairs
back into a specified time zone.

3.3.3 E x t e n d e d D a t a T y p e s for C u r r e n c y

R T - 8 N o n - n e g a t i v e D e c i m a l C u r r e n c y

The DBMS supports non-negative decimal currency as a built-in
extended data type, but does not necessarily support automatic
conversion between currencies of different countries. The basic data
type is non-negative integers.

This extended data type permits the DBMS to distinguish those non-
negative integers representing currency from those that represent anything
else (e.g., numbers of people). The basic data type represents the monetary
amount expressed in terms of the smallest monetary unit in the currency
(cents in U.S. currency, new pence in British sterling).

54 • Domains as Extended Data Types

Monetary amounts can be expressed in larger units in selected columns.
For example, there may be a need to express such amounts in units of one
thousand dollars or one million dollars. If the DBMS does not support
conversion functions to convert a monetary amount expressed in small units
into much larger units (including either rounding up or truncation according
to the user's request), a user-defined extended data type will be necessary
for each column that employs units different from the smallest.

If an attempt is made to introduce a negative number into any column
drawing its values from the non-negative currency domain, the DBMS rejects
the request with an explanatory error message.

R T - 9 F r e e D e c i m a l C u r r e n c y

The DBMS supports decimal currency (in which values may be
negative, zero, or positive) as an extended data type. The basic data
type is integer.

The DBMS does not necessarily support automatic conversion between
currencies of different countries. This requires user-defined functions, to-
gether with a relation of degree of at least three, containing the current
conversion rates.

With some databases, the DBA may choose to use just one of the two
built-in extended data types for currency, namely the free version, because
of the need to compare currency values involving pairs of currency columns,
for which one column is not permitted to have negative values and the other
can accept both negative and positive values. If such comparisons are routine,
the DBA may with good reason decide that the pairs of columns involved
should be declared to have a common domain. Whenever the DBA makes
this choice, the prohibition of negative values in certain currency columns
be expressed as an extra constraint of type C for those columns only (not
for the domain).

Two additional extended data types (Features RF-9 and RF-10) built
into the DBMS are described in this chapter and in Chapter 19. These types
pertain to the names of functions and the names of arguments of functions.
They make the relational model easier to interface with activities that really
do not belong in the model. Their definitions are given here for ease of
reference, but are expressed differently.

R F - 9 D o m a i n s a n d C o l u m n s C o n t a i n i n g N a m e s

o f F u n c t i o n s

The DBMS supports names of functions as an extended data type.
The DBMS can use any one of these names to (1) retrieve the

3.4 The FIND Commands • 55

corresponding code for the function, (2) formulate a call for this
function as a character string, and (3) execute the string as an
invocation of the function.

Note that, prior to execution, the names of appropriate arguments must be
plugged into the character string that represents the invocation.

RF-IO D o m a i n s a n d C o l u m n s C o n t a i n i n g N a m e s

of A r g u m e n t s

The DBMS supports names of arguments of functions as an extended
data type. These arguments can be variables used in a host-language
program. The names are character strings that can be incorporated
with the name of a function to formulate a call for this function to
be applied to the pertinent arguments. The names can also be
incorporated in a source program expressed in RL, in the HL, or in
both.

3 .4 a T h e F I N D C o m m a n d s

In the next two chapters the basic operators and the advanced operators of
RM/V2 are described. Each of these operators transforms either one or two
relations into a relation. None of them deals with the entire database, which
may contain any number of relations.

The FIND commands presented here are different in type, because"

1. each has an operand that consists of all of the columns in the database
that draw their values from a specified domain; and

2. although the result is a relation, at least two of the columns are concerned
with database descriptive values.

The FIND commands are also intended for the DBA and his or her staff.
That is why as features of RM/V2 they are labelled RE-1 and RE-2 (see
Chapter 7).

In the relational model what does it mean to find something? Disk
addresses and memory addresses are concepts that do not belong to the
model. However, each occurrence of every atomic value in a relational
database has a uniquely identified "location." The identification of this
location is the combination of a relation name, a primary key value, and a
column name. The first two of these identify a row uniquely with respect to
the entire database, while the third identifies a component of that row. Now
it is possible to introduce the FIND commands one by one.

56 • D o m a i n s as E x t e n d e d D a t a T y p e s

Normally the FIND commands are limited to finding character strings,
because finding numeric values or the truth values of logic is not usually an
interesting thing to do.

3.4.1 T h e F A O ~ A V C o m m a n d

RE-I T h e F A O ~ A V C o m m a n d

This command is intended to find all occurrences of all active values
drawn from a specified domain. Note that for any domain (with the
possible exception of those domains that have very few legal values)
it is highly unlikely that all of its values are active (i.e., exist in the
database) at any one time.

Suppose the DBA believes that certain city names in the database are
incorrectly spelled, and he wants to check all of them either by reading a
list of all of them or by means of a spelling checker program along with a
dictionary of city names. Then, the following query would be appropriate:

Example: find all occurrences of all city names that exist anywhere in
the database.

If the domain of city names happens to be called CITY, and if the result-
ing relation is to be called CITY__DOM, this query could be expressed as:
C I T Y _ _ D O M (- F A O ~ A V domain CITY.

The result is a relation CIT~__DOM (RELNAME COLNAME PK
VALUE) where the RELNAME and COLNAME columns are always sim-
ple columns, (degree one) the VALUE column is either simple or composite
depending on the example, and the PK column is usually a composite column
of degree n (consisting of n simple columns), where n is adequate to hold
values for the primary key of highest degree in the entire database. Note
that, whenever the value of a primary key of degree p is inserted in the
result and p < n, the excess components in that row (there are n-p of them)
are marked as inapplicable (see chapter 8).

To find all these city names the DBMS takes the first step of searching
the catalog to find a column in some base relation that draws its values from
the domain CITY. Suppose it finds that column C1 of relation R1 is such a
column, and that R1 has N1 rows. It then copies the value part of the
primary key column of R1 (possibly composite)along with the value part
of column C1 into the relation CIT~__DOM being developed. To this partial
relation it appends a pair of columns containing the name of the relation
R1 and the name of the column C1 repeated N1 times. It names these two
columns RELNAME AND COLNAME.

The DBMS then takes the second step searching the catalog again and
finds another column C2 of a relation R2 that draws its values from the

3.4 The FIND Commands m 57

domain CITY. If R1 happens to have two such columns, then R1 and R2
are the same relation. However, the pair R1 and C1 cannot be identical to
the pair R2 and C2. It copies the value part of the primary key column of
R2 (possibly composite) along with the value part of column C2.

This process continues step by step until the last column in the database
based on the CITY domain has been treated. Now a spelling checker
program along with a dictionary of city names can be used as a utility to
check the spelling of each and every occurrence of the city names as listed
in a column of the relation C I T Y ~ D O M .

This FIND command (FAO__AV) can be applied not only to a simple
domain, but also to a composite domain: for example, the domain CITY-
STATE. Then the VALUE column is also composite (in this case, degree
2), since it has to hold pairs of simple values, where each pair consists of a
city name together with a state name.

3.4.2 T h e F A O ~ L I S T C o m m a n d

R E - 2 T h e F A O ~ L I S T C o m m a n d

This command is intended to find all occurrences in the database of
each of the currently active values in a given list of distinct values,
all of which are drawn from one domain, and that domain is specified
in the command.

Suppose the DBA wishes to inquire whether any of ten city names occur
in the database, and if so where they occur.

Example" find all occurrences in the database of each of the eight city
names in a given list L drawn from the domain CITY (where L is a
unary relation).

Suppose that the resulting relation is to be called OCC. Then, this command
could be expressed as:

OCC ~ FAO___LIST L domain CITY.

The result is a relation OCC (RELNAME COLNAME PK VALUE), where
PK is usually a composite column consisting of n simple columns and n is
adequate for the primary key of highest degree in the entire database. Note
that, whenever the value of a primary key of degree p is inserted in the
result and p < n, the excess components in that row (there are n-p of them)
are marked as inapplicable (see chapter 8).

Incidentally, when the FAO__LIST command is executed, it is possible
that the resulting relation OCC is entirely empty. This means that each and
every one of the eight city names does not occur at all in the database. Of

58 • D o m a i n s as E x t e n d e d D a t a T y p e s

course, the list L could have contained any strictly positive number of city
names.

Just like the FIND command introduced in section 3.4.1, this FIND
command (FAO___LIST) can be applied not only to a simple domain, but
also to a composite domain: for example, the CITY-STATE domain. Then
the VALUE column is also composite (in this case, degree 2), since it has
to hold pairs of simple values, where each pair consists of a city name
together with a state name.

Another feature of this FIND command is that a qualifier called
SUBSTRING may be attached to it, and this indicates that the list of values
is actually a list of substrings that the DBMS must search for in all columns
of the database that draw their values• from the specified doma!n. Whenever
a value is found in such a column that has as a substring one of the strings
in the given list, then that value and its location in the database are included
as a row in the resulting relation.

In both types of FIND command, if a domain is specified that the DBMS
discovers does not exist in the catalog, it turns on the DOMAIN NOT
DECLARED indicator (see chapter 11), and the relation that is generated
is empty.

Frequently, people get confused about the meaning of the following two
questions, although they are quite different. The first question is Q I" "Is v
a legitimate value for currency in this database?" The second question is
Q2" "Is v in the database at this time as a currency value?"

To check Q1 the user simply examines the declaration pertaining to
currency for this database, and of course this declaration is stored in the
catalog. Then he or she examines the value v to determine if its data type
is within the scope of the currency data type. I f and only if it is, v is a
legitimate value for currency in the database.

Before checking Q2 let us assume that Q1 has been answered affirma-
tively. Then one can (1) establish v as a single member of a unary relation
L; and (2) issue the request F A O ~ L I S T L CURRENCY. This will find all
occurrences of v in the entire database as a value drawn from the currency
domain. If the result is an empty relation, the proper conclusion is that v is
admissible as a currency value, but v does not occur in this role in this
database at this time.

Of course, if Q1 is answered negatively, then the proper answer for Q2
is that v does not occur in the database as a value of currency, but it is also
inadmissible in this role.

Exercises

3.1 Give at least eight reasons why domains should be fully supported in
a DBMS. List at least 10 features of RM/V2, other than Feature
RS-5, that a DBMS will be unable to support if it does not support
domains as extended data types.

Exerc ises • 59

3.2

3.3

3.4

3.5

3.6

Your DBA makes the whole of the catalog available to you for reading.
How would you determine where there exist parts of the database that
are not inter-relatable?

A critic has stated that basic data types and extended data types are
really built-in and user-defined, respectively. Supply the pertinent def-
initions and defend whatever position you take on this subject.

According to Feature RT-1, which extended data types are required
to be built into the DBMS?

List 10 of the 14 requirements for full support of calendar dates.

Assume that you have currency values expressed as follows:

w in U.S. dollars in column C of R-table S,

m in British sterling in column D of R-table T.

By introducing a currency-conversion relation, develop a method of
supporting automatic conversion to pounds sterling whenever a join
between S and T is executed using columns C and D as comparand
columns.

• C H A P T E R 4 •

The Basic Operators

The basic operators are intended to enable any user to retrieve information
from all parts of the database in a very flexible and powerful way, but
without requiring him or her to be familiar with programming details. First-
order predicate logic is a standard against which such power can be meas-
ured. (See the listing under "Texts Dealing with Predicate Logic" in the
reference section.) It has been proved [Codd 1971d, Klug 1982] that, col-
lectively, these operators have the same expressive power as first-order
predicate logic.

This logic is the standard adopted by the relational model. The operators
are not intended to be directly incorporated into a relational language.
Instead, a language based more directly on first-order predicate logic, such
as A L P H A [Codd 1971a], is more capable of supporting better performance,
because in use its statements are more likely to be optimizable to a greater
degree.

The operators of the relational model transform either a single relation
or a pair of relations into a result that is a relation. The operators are
designed to be able to express a class of queries that, if expressed in terms
of a logic, would require the power of at least four-valued, first-order
predicate logic. Such a logic is more powerful than any supported by pre-
relational database management systems.

The main reason for insisting on operators that yield relations from
relations is that this form of operational closure permits an interrogator to
conceive his or her ongoing sequence of queries based on the information
gleaned to date. In this "detective" mode, it is essential that any result
produced so far in the activities be capable of being used as an operand in

61

62 • The Basic Operators

later activities. This operational closure is similar to the operational closure
in arithmetic: every arithmetic operator acting upon numbers yields numbers
(except for the case of dividing by zero). It would be next to impossible to
handle accounting were it not for the operational closure in integer arith-
metic. In a few decades, I predict, we shall comment similarly on the virtual
impossibility of managing databases if the operational closure property in
relational DBMS were abandoned.

In this chapter we adopt the algebraic approach to explaining how a
relational language works, for two reasons:

,

2.

upon first encounter, that approach appears easier to understand;

it is much easier to explain integrity constraints, the authorization mech-
anism, and the view-updatability algorithms described in Chapter 17
using the relational algebra than in terms of predicate logic.

It should not be assumed, however, that an algebraic approach is to be
preferred over a logic-based approach when it comes to designing a relational
language, even though both approaches are at the same level of abstraction.
Quite the contraryma logic-based approach encourages users who have
complicated queries to express each query in a single command, whereas
an al~;ebraic approach seems to encourage users to split their queries into
several commands per query. The optimizers of existing relational DBMS
products are unable to optimize more than one command at a time. There-
fore, they accomplish more if more activity is packed into each single
command. The net result is that improved performance can be obtained
with a logic-based approach over that achievable with an algebraic approach.

In this connection, it is important to remember that very few optimizers
in the compilers for programming languages, and even fewer optimizers in
relational DBMS, attempt to optimize across more than a single command.
Otherwise, the optimizers would have to engage in flow tracingma difficult
problem at best, and often impossible because the flow may not be traceable
at all when it is expressed in certain programming languages.

Some consider it incongruous that the algebra is used as an explicative
tool, when logic is preferred as the basis for a relational language. The
example at the end of Section 4.2 illustrates the algebraic and logic-based
alternatives. It may also show the reader why it is easier to introduce the
query and manipulative capabilities step by step using the algebra.

Every relational operator in the relational model is designed to work
with operands that are relations free of duplicate rows, and to generate as
a result a relation that is also free of duplicate rows.

The feature of permitting duplicate rows in any relation, base or derived,
was added to SOL with the idea of making that language more powerful in
some sense. In fact, this feature made SOL less powerful, because duplicate
rows made use of the language more error-prone and damaged the inter-
changeability of ordering of the relational operators (see Chapter 23 for
more detail). I call this mistaken be l ie f~tha t one more feature cannot

4.1 Techniques for Explaining the Operators • 63

possibly detract from a system's usability and power~the "one-more-feature
trap."

Section 4.1 deals with the techniques used in explaining the operators.
Section 4.2 describes the basic operators, which may help the reader to
understand the power of relational languages. Section 4.3 discusses the
manipulative operators such as relational assignment, insert, update, and
delete. Chapter 5 deals with certain advanced operators, including outer equi-
joins, outer unions, T-joins, user defined joins, and recursive joins.

The explanation of each operator includes a rough idea of what it does
and how it is intended to be used. Also included are a precise definition, a
formal algebraic notation, and some practical examples.

The notations used in this chapter are not intended to be taken as a
serious proposal for a data sublanguage, but as illustrative and primarily for
conceptual purposes. The operators are, however, intended to be interpreted
as one definition of the power a relational language should possess. In
Chapter 8, the way these operators deal with operands, from which certain
kinds of information are missing, is discussed.

4.1 m T e c h n i q u e s f o r E x p l a i n i n g t h e O p e r a t o r s

Consider a relation S of degree m that has the following attributes:

Attribute A1 drawing its values from domain D1.
Attribute A2 drawing its values from domain D2.

Attribute Am drawing its values from domain Din.

The relation S is abbreviated

S (AI:D1 A2:D2 . . . Am:Dm),

and often

S (A 1 A 2 . . . Am)

when the domains are listed separately.

It must be remembered that the ordering

A1, A 2 , . . . Am

is insignificant in practice even to the user (except in the few cases where
the command being explained requires the column ordering to be made
explicit). Normally, we shall make use of column ordering for explanatory
purposes only, just as is done in mathematics. There is no implication that
components of tuples (i.e, rows) must be stored in any of the sequences
used in explaining how the operators transform the operands into results.

64 • The Basic Operators

In explaining the basic relational operators, we shall make use of the
relation S of degree m just cited, and also a relation T of degree n, denoted

T (Bi:E1 B2:E2 . . . Bn:En).

We shall consider the example of Cartesian product to illustrate the
explanatory techniques. Incidentally, the major use of this operator is itself
explanatory. Definitions of some of the other operators (such as relational
division) make conceptual use of it. The designer of a DBMS product is
advised to implement Cartesian product as a special case of the theta-join
discussed later because it is rarely needed in practice.

To introduce the relational version of Cartesian product gradually, let
us consider a simple example first. Suppose that a database contains infor-
mation about suppliers and shipments received from these suppliers. The
supplier relation S contains the serial number S# of all the suppliers in the
database, their names SNAME, and other immediate properties (marked
" . . . ") . The shipment relation SP contains the serial number S# of the
supplier making each shipment, the serial number P# of the part shipped,
the date S H I P _ D A T E the shipment was received, and other immediate
properties of the shipment (marked " . . . ") .

To keep the example simple, suppose that relation SP" is SP restricted
to those shipments with SHIP__DATE between 89-01-01 and 89-03-30 in-
clusive. Relation S has three rows; relation SP", four rows"

S (S # S N A M E . . .) SP" (S # P # S H I P _ D A T E . . .)

s l J o n e s . . . s l p l 8 9 - 0 3 - 3 1 . . .

s 2 S m i t h . . . s l p 2 8 9 - 0 3 - 2 0 . . .

s 3 C l a r k . . . s 2 p 7 8 9 - 0 2 - 1 9 . . .

s 3 p 2 8 9 - 0 1 - 1 5 . . .

In the relational model, the Cartesian product C of relation S with
relation SP" is as shown in the following 12-row relational table"

C (. . . S N A M E S # S # P # S H I P _ D A T E . . .)

• . . J o n e s s l s l p l 8 9 - 0 3 - 3 1 . . .

• . . J o n e s s l s l p 2 8 9 - 0 3 - 2 0 . . .

• . . J o n e s s l s 2 p 7 8 9 - 0 2 - 1 9 . . .

• . . J o n e s s l s 3 p 2 8 9 - 0 1 - 1 5 . . .

• . . S m i t h s 2 s l p l 8 9 - 0 3 - 3 1 . . .

• . . S m i t h s 2 s l p 2 8 9 - 0 3 - 2 0

• . . S m i t h s 2 s 2 p 7 8 9 - 0 2 - 1 9 . . .

• . . S m i t h s 2 s 3 p 2 8 9 - 0 1 - 1 5 . . .

• . . C l a r k s 3 s l p l 8 9 - 0 3 - 3 1 . . .

• . . C l a r k s 3 s l p 2 8 9 - 0 3 - 2 0 . . .

• . . C l a r k s 3 s 2 p 7 8 9 - 0 2 - 1 9 . . .

• . . C l a r k s 3 s 3 p 2 8 9 - 0 1 - 1 5 . . .

4.1 Techniques for Explaining the Operators • 65

The ordering of columns shown is there merely because the result must be
displayed on paper. This ordering should be ignored. Note how each row
of S is combined with each and every row of SP". The same result is generated
if the relational version of the Cartesian product of SP" with S is requested.

Clearly, the Cartesian product has two operands, each one a relation.
Consider the Cartesian product of S and T, denoted S x T. To form the
Cartesian product U = S x T, concatenate each and every tuple of S with
each and every tuple of T. In textbooks on mathematics the usual explanation
is that U is the set of all tuples of the form

< < a l , a 2 , . . . , a m > , < b l , b 2 , . . . , b n > > ,

where < a l , a 2 , . . . , a m > is a tuple of S and < b l , b 2 , . . . , b n > is a tuple
of T. In this case, U would be a binary relation whose pairs have an
m-tuple as the first component, and an n-tuple as the second component.
For purposes of database management, it is more useful to adopt a slightly
different definition, and to say that U is the set of all tuples of the form

< a l , a 2 , . . . , a m , b l , b 2 ,bn >.

In this case, U is a relation of degree m + n. Actually, because positional
concepts are de,emphasized in the relational model, it is preferable to define
U as a relation of degree m + n that has the form

U (Ai :D1 A2:D2 . . . Am:Din BI:E1 B2:E2 . . . Bn:En),

where column names and domain names are used rather than the positioning
of typical elements of these columns in tuples. Note that, with this de-
emphasis on positioning concepts, a surprising consequence is that

S x T = T x S ,

which holds true for all relations S and T.
It is necessary, however, to face up to the problem that, for some i and

some j, it may happen that the pair of names in the expression Ai:Di may
be the same as the pair of names in the expression Bj :E j - - the A and D
names come from S, whereas the B and E names come from T. According
to Feature RN-3 of the relational model (see Chapter 6), it is required that,
given any relation, every one of its columns must have a distinct name.

Assume that S and T do not refer to one and the same relation. Then,
all we need do to make sure the columns of the result are distinctly named
is to attach the prefix S to Ai (where S is the name of the relation from
which Ai came), and attach the prefix T to Bj (where T is the name of the
relation from which Bj came). Prefixing in these cases means adopting a
syntax such as S.Ai and T.Bj.

This technique will not work if S = T. In this case, if m is the degree
of S, there will be m pairs of columns having the property that each member

66 • The Basic Operators

of the pair has the same name, as well as precisely the same database values.
To make the column names distinct for each of the members of these pairs
of columns, eachcolumn name is qualified by the name of the source relation
(namely S in each case), followed by a punctuation mark (such as a period),
followed by a citation number, followed by a second punctuation mark (this
can be a period also). The citation number is either 1 or 2, depending on
whether the first-cited or the second-cited occurrence of relation S is the
source of the pertinent column in the result. In Chapter 6 we discuss column
naming and column ordering in more detail.

R B - 1 D e - e m p h a s i s o f C a r t e s i a n P r o d u c t as

a n O p e r a t o r

A relational DBMS must not support Cartesian product as an ex-
plicitly separate operator. A relational command, however, may
have an extreme case that is interpreted by the DBMS as a request
for a Cartesian product.

Note that the Cartesian product U contains no more information than
its components S and T contain together. However, U consumes much more
memory or disk space and channel time than the two relations S and T
consume together. These are two good reasons why, in any implementation
of the relational model, Cartesian product should be de-emphasized, and
used primarily as a tool for explanatory or conceptual purposes. The main
purpose in discussing this operator in some detail at this point is to show
how the relational operators will normally be treated.

One may ask, "Why is it necessary to discuss column naming and column
ordering at all?" The simple answer is that every result of executing a
relational operation can be either an intermediate or a final result of a
relational command. In either case, a subsequent relational operation may
employ this result as an operand, and, as we shall see, the specification of
some kinds of relational operation involves employing the names of columns
of one or other of the operands and sometimes the ordering of these columns
also.

Of course, we are not referring to "stored ordering" when we speak of
column ordering. We are referring either to the citation ordering (the or-
dering in which columns are cited in some relational command) or to an
ordering derived from such citation.

4.2 • T h e B a s i c O p e r a t o r s

The basic operators of RM/V2 include projection, theta'selecti°n' theta-join,
natural join, relational division, relational union, relational difference, and

4.2 The Basic Operators • 67

relational intersection. Projection and theta-selection act upon one operand
only, while each of the remaining operators acts upon two operands, In
every case, operands and results are true relations with no duplicate rows.

Figure 4.1 is a simple guide to the Basic operators of the relational
model. All of the operators except Cartesian product are intended to be
implemented in a relational DBMS. Cartesian product, although a good
conceptual tool, wastes storage space and channel time if implemented in
the DBMS and used by application programmers or invoked interactively
from terminals.

R B - 2 T h e P r o j e c t O p e r a t o r

The project operator employs a single R-table as its operand. The
operator generates an intermediate result in which the columns listed
by name in the command are saved, and the columns omitted from
the command are ignored. From this R-table it then generates the
final result by removing all occurrences except one of each row that
occurs more than once.

Suppose that the project operator is applied to the following R-table
EMP of degree five. Suppose that the columns are named as follows:

EMP# (primary key), ENAME, BIRTH__DATE, SALARY, and
H___CITY.

EMP (EMP# ENAME BIRTH_DATE SALARY H_CITY)

E107 R o o k 23-08-19 10,000 Wimborne
E912 Knight 38-11-05 12,000 Poole
E239 Knight 38-11-05 12,000 Poole
E575 P a w n 31-04-22 11,000 Poole

Note that there are two employees named "Knight," and that these two
Knights have the same birthdate, earn the same salary, and live in the same
city. The only piece of information that tells us that these are distinct
employees is the primary key EMP# (E912 for one person, E239 for the
other). If the primary-key values were not in the database, there would be
clear ambiguity in the data: specifically, do the two rows represent two
distinct persons, or are the duplicate rows there by accident? This is one of
the many reasons why the primary-key concept should be explicitly supported
in every relational database management system.

The intermediate result that is generated when applying project onto
ENAME, BIRTH__DATE, SALARY, and H-CITY is a table (but not an
R-table) obtained by selecting only those columns cited in the project
command:

68 • The Basic Operators

X (ENAME BIRTH_DATE SALARY H_CITY)

Rook 23-08-19 10,000 Wimborne
Knight 38-11-05 12,000 Poole
Knight 38-11-05 12,000 Poole
Pawn 31-04-22 11,000 Poole

The final result, in which duplicate rows are removed, is the following

Y (ENAME BIRTH_DATE SALARY H CITY)

R-table'

Rook 23-08-19 10,000 Wi m borne
Knight 38-11-05 12,000 Poole
Pawn 31-04-22 11,000 Poole

Notice how, in generating the R-table Y from the table X, the duplicate
row for "Knight" was removed. It has been asserted that duplicate rows
should not be removed, and in fact the language SQL fails to remove duplicate
rows unless the user adds to the command the qualifier DISTINCT. When
the user fails to add this SQL qualifier, the result is then no longer a true
relation in the mathematical sense. If such tables are permitted, the con-
sequences are devastating. The power of any relational language is severely
reduced because of the reduced interchangeability in the ordering of rela-
tional operators (see Chapter 23). The form of projection in which duplicate
rows are not removed from the result is called a corrupted version of the
project operator.

If the user must retain the two occurrences of rows containing the name
"Knight," he or she should retain the primary key EMP# as well by
projecting onto EMP#, ENAME, together with zero or more of the re-
maining columns of EMP. In Chapter 17 on view updatability, much em-
phasis is placed on retaining the primary key in defining a virtual relation
(usually called a view). When this is done, the user normally gains the
advantage of being able to perform inserts, updates, and deletes on this view.

A second example shows that removing duplicates can be precisely what
the user needs. Suppose we wish to find the cities in which the employees
live. By taking the projection of EMP onto H_.CITY, we obtain

Z (H__CITY)

Wimborne
Poole

which is exactly what was requested. If 100 employees happen to live in
Poole, why obtain 100 copies of the name Poole? If the number living in
each city is needed, the DBMS should be capable of counting these numbers
(as is RM/V2) and capable of providing the information as output in the
form of a second column (this one computed).

Using the notation I introduced in early papers on the relational model

4.2 The Basic Operators • 69

[Codd 1970, 1971a-d], the three applications of the project operator just
introduced are represented as follows"

Example 1"

Example 2:

Example 3:

Z ~-- EMP [ENAME, B I R T H ~ D A T E , SALARY,
H__CITY]

Z ~- E M P [EMP#, SALARY, H__CITY]

Z ~- E M P [H _ C I T Y]

The naming and virtual ordering of columns pertinent to the result of a
project operation are discussed in Chapter 6.

The version of the project operator just described is useful whenever
few columns are to be saved (and possibly many dropped). A second version
is useful whenever few columns are to be dropped (and possibly many
saved). In this version the columns to be dropped are listed, instead of the
columns to be saved. However, this version is less adaptable to changes in
the source relation. For example, if a new column is added to the source
relation, its name may have to be added to the list of columns to be dropped
in the projection.

R B - 3 - R B - 1 2 The Theta-Select Operator

The theta-select operator, originally called theta-restrict, employs a
single R-table as its operand. In normal use the term theta-select is
abbreviated to select, and this means that the equality comparator
' = ' should be assumed unless there is an explicit alternative com-
parator specified. It generates as a result an R-table that contains
some of the same complete rows that the operand contains--those
rows, in fact, that satisfy the condition expressed in the command.
To distinguish theta-select from the select command of SOL, we shall
sometimes refer explicitly to theta-select as the algebraic select, and
refer explicitly to SQL'S select as the select of SQL. It is important to
remember that the operand contains no duplicate rows, and that
therefore neither does the result.

The complete class of select operators is called theta-select, where theta
stands for any of the 10 comparators listed on page 70. Features RB-3-
RB-12 are the 10 types of theta-select operators corresponding respectively
to the 10 comparators. An extension of the select operator (Feature RB-13)
and an extension of the join operator (Feature RB-25) are also discussed.
These extensions permit Boolean combinations of comparisons.

Suppose that the select operator is applied to the same R-table as used
in the explanation of project, and that the rows specified to be saved are
those for which the SALARY has a specified value. In the three examples
of this kind of query cited next, I again use the notation introduced in my

70 [] The Basic Operators

early papers on the relational model [Codd 1970, 1971a-d]. The result for
each query is listed immediately after the query.

Example 4: Z ~-- EMP [SALARY = 12,000]

Z (EMP# NAME BIRTH_DATE SALARY H_CITY)

E912 Knight 38-11-05 12,000 Poole
E239 Knight 38-11-05 12,000 Poole

Example 5:

Z (EMP#

Z ~ EMP [SALARY = 11,000]

NAME BIRTH_DATE SALARY H__CITY)

E575 Pawn 31-04-22 11,000 Poole

Example 6:

z (EMP#

Z ~ EMP [SALARY = 20,000]

NAME BIRTH_DATE SALARY H_CITY)

Example 6 yields an R-table that happens to have no rows at all (since
no employee earns this amount); the five columns have the same headings
as the R-table EMP. An R-table of this kind is perfectly legitimate. It
represents an empty relation of degree five with the same column headings
as EMP. In each of the three examples (4, 5, and 6), the result is union-
compatible with EMP (.see RB-26 for an explanation of union-compatibility).

All of the select operators discussed so far involve the comparison of
database values, on the one hand, with a constant, on the other hand; the
comparator in each case has been equality. The theta-select operator can be
used to compare a database value within a row of an R-table with another
database value within the same row, and to execute this comparison for all
rows of that R-table (see Example 8).

Further, any of the following 10 comparators may be used:

°

2.

3.

4.

5.

6.

7.

8.

9.

10.

EQUALITY

INEQUALITY

LESS THAN

LESS THAN OR EQUAL TO

GREATER THAN

GREATER THAN OR EQUAL TO

GREATEST LESS THAN

GREATEST LESS THAN OR EQUAL TO

LEAST GREATER THAN

LEAST GREATER THAN OR EQUAL TO

In the following example of theta-select, theta is taken to be the LESS

4.2 The Basic Operators [] 71

THAN comparator (<):

Example 7: Z , - EMP [SALARY < 12,000].

Z (EMP# ENAME BIRTH~DATE SALARY H_CITY)

E912 R o o k 23-08-19 10,000 Wimborne
E575 Pawn 31-04-22 11,000 Poole

The relational model provides a very important safety feature, intro-
duced at the beginning of Chapter 3 and repeated here for convenience:

R T - I Safety Feature when Comparing
Database Values

When comparing a database value in one column with a database
value in another, the DBMS checks that the two columns draw their
values from a common domain, unless the domain check is overrid-
den (see Feature RQ-9 in Chapter 10). When comparing (1) a
computed value with a database value or (2) one computed value
with another computed value, however, the DBMS merely checks
that the basic data types are the same.

Table 4.1 shows the columns of EMP and the domains from which the
columns draw their values. Note that no two columns of EMP draw their
values from a common domain. Therefore, let us expand the EMP relation
by appending another column with the heading BONUS, and assume certain
values for the bonus component. All of the BONUS values are drawn from
the currency domain. The modified version of EMP follows:

EMP" (EMP# ENAME BIRTH~DATE SALARY H~CITY BONUS)

E107 R o o k 23-08-19 10,000 Wimborne 15,800
E912 Knight 38-11-05 12,000 Poole 6,700
E239 Knight 38-11-05 12,000 Poole 13,000
E575 Pawn 31-04-22 11,000 Poole 3,100

Table 4.1 C o l u m n s o f E M P a n d D o m a i n s f r o m w h i c h V a l u e s
are D r a w n

Column Domain

EMP# Employee serial numbers
ENAME Employee names
BIRTH_._DATE Dates
SALARY Currency
H__CITY City names

72 • The Basic Operators

Now consider Example 8:

Z ~ EMP" [BONUS > SALARY].

This command yields the following R-table"

Z (EMP# ENAME BIRTH_DATE SALARY H_CITY BONUS)

E107 R o o k 23-08-19 10,000 Wimborne 15,800
E239 Knight 38-11-05 12,000 Poole 13,000

The naming and virtual ordering of the columns in the result of a select
operator are discussed in Chapter 6.

RB-13 T h e B o o l e a n E x t e n s i o n o f T h e t a - S e l e c t

Let R denote any relation whose simple or composite columns
include A and B. Let @ denote one of the 10 comparators used in
theta-seleet, and let x denote a host-language variable or constant.
Suppose that R [A @ x] and R [A @ B] denote theta-select
operations. Then A @ x and A @ B are called comparing terms,
and each comparing term is truth-valued.

The usual comparing terms in all 10 types of theta-select can be used in
any Boolean combination within a single operator. Such an operator is called
extended theta-select. A Boolean combination of the comparing terms, each
of which is truth-valued, is any combination of these terms using the ele-
mentary logical connectives NOT, OR, AND, and IMPLIES.

Clearly, this operator is redundant from the user's viewpoint in the sense
that a query involving extended theta-select can be re-expressed in terms of
simple theta-selects, together with some combination of relational unions,
differences, and intersections. However, it permits such queries to be ex-
pressed more clearly and concisely.

Consider a simple example of the practical use of this extended join.
Suppose that a database includes a relation E describing employees, and
that two of the immediate properties recorded are the gender (male M or
female F) and present salary. The Boolean extension of theta-select can be
used to place a request for the names of the employees who are female and
earn more than $20,000:

E [(GENDER = F) A (SALARY > 20,000)].

One DBMS product on the market in the mid-1980s supported this single
feature of the relational model and no others. The vendor falsely advertised
that the product was a relational DBMS.

4.2 The Basic Operators • 73

R B - 1 4 - R B - 2 3 The Theta-Join Operator

The theta-join operator employs two R-tables as its operands. It
generates as a result an R-table that contains rows of one operand
(say S) concatenated with rows of the second operand (say T), but
only where the specified condition is found to hold true. For brevity,
this operator is often referred to as join.

The condition expressed in the join operator involves comparing each
value from a column of S with each value from a column of T. The columns
to be compared are indicated explicitly in the join command; these columns
are called the comparand columns. This condition can involve any of the 10
comparators cited in the list presented on page 74 (after a description of
the operator applied with equality as the comparator).

Suppose that the join operator is applied to the following two relational
tables:

S (EMP# ENAME H_CITY) T (WHSE# W__CITY)

E107 Rook Wimborne W17 Wareham
E912 Knight Poole W34 Poole
E239 Pawn Poole W92 Poole

For this example, we shall assume that the only pair of columns having a
common domain are S.H__CITY and T . W ~ C I T Y ; each of these two col-
umns draws its values from the CITY domain. Therefore, in this example,
these are the only two columns that can be used as comparand columns in
a join of these two relations. Normally, there are several pairs of potential
comparand columns, not just one pair.

The join operator based on equality that is now being discussed is called
equi-join. An equi-join of S on H ~ C I T Y with T on W ~ C I T Y finds all of
the employees and warehouses that are located in the same city. The formula
for this join is

U = S [H _ C I T Y = W _ C I T Y]T .

The result obtained assuming the values cited earlier is as follows:

(EMP# NAME H_CITY WHSE# W_CITY)

E912 Knight Poole W34 Poole
E912 Knight Poole W92 Poole
E239 Pawn Poole W34 Poole
E239 Pawn Poole W92 Poole

74 • The Basic Operators

Some people find it easier to think of the equi-join of S on H__CITY
with T on W ~ C I T Y as the Cartesian product of S with T, followed by the
selection of just those rows for which

H___CITY = W ~ C I T Y .

Naturally, if the goal is good performance, the designer of a DBMS should
not implement equi-join in this way.

Any of the following 10 comparators may be used in a join:

1. EQUALITY

2. INEQUALITY

3. LESS THAN

4. LESS THAN OR EQUAL TO

5. GREATER THAN

6. GREATER THAN OR EQUAL TO

7. GREATEST LESS THAN

8. GREATEST LESS THAN OR EQUAL TO

9. LEAST GREATER THAN

10. LEAST GREATER THAN OR EQUAL TO

The complete class of joins is called theta-join, where theta stands for
any of the 10 comparators just listed. As an example, consider

U = P A R T [O H _ _ Q < SHIP Q] S H I P .

The result U is generated from the following operands"

PART (P# PNAME OH__Q) SHIP (WHSE#

N12 nut 1000 W34
B39 bolt 1500 W92

U (P# PNAME OH_Q WHS#

1200
2000

SHIP_Q)

Just as mentioned in the discussion of the select operator, when com-
paring a database value in one column with a database value in another,
the DBMS checks that the two columns draw their values from a common
domain, unless the domain check is overridden (see Feature RQ-9 in Chapter
10 and Feature RJ-6 in Chapter 11). The practical reasons for this check
and its override were discussed in Chapter 3 (see the fourth reason to
support domains in a DBMS together with Feature RT-1).

It is possible to conceive of each of the 10 theta-joins of S with T as a
subset of the Cartesian product of S with T. However, as stated for equi-

SHiP_Q)

N 12 nut 1000 W34 1200
N 12 nut 1000 W92 2000
B39 bolt 1500 W92 2000

4.2 The Basic Operators • 75

join, Cartesian product should not be used in the implementation of any
one of the 10. The result of each of the 10 theta-joins has a degree equal to
the sum of the degrees of the operands.

The result of a join based on Comparators 3, 4, 5, or 6 in the preceding
list is often quite large in terms of the number of rows. Not surprisingly,
this number is often nearly as large as the number of rows in the Cartesian
product. If, on the other hand, any one of Comparators 7, 8, 9, or 10 in
the list is selected, the resulting relation is quite modest in size. That is one
of the more important reasons why a user may choose one of these com-
parators instead of Comparators 3, 4, 5, or 6.

It is certainly possible to join a relation with itself, provided that it has
two or more columns on a common domain. Let us modify the relation
EMP by adding a column that identifies the immediate manager for each
and every employee.

EMP (EMP# ENAME BIRTH_DATE SALARY CITY MGR#)

E107 Rook 23-08-19 10,000 Poole E321
E912 Knight 38-11-05 12,000 Wareham E321
E239 Knight 38-11-05 12,000 Wa reham E 107
E575 Pawn 31-04-22 11,000 Poole E239
E321 Queen 27-02-28 20,000 Wimborne m

In this table, M G R # is the employee serial number of the immediate
manager of the person designated by the left-most component (EMP#). The
employee designated E321 appears to be "top dog," since the serial number
of his or her immediate manager is unknown.

Because the columns EMP# and M G R # both draw their values from
the common domain of employee serial numbers, it is clear that we may
join EMP with itself, using the EMP# and M G R # columns as comparands.
The assignment could be

Z ~ EMP [EMP# = MGR#] EMP,

but fewer columns are needed in the final result. Suppose that projection is
applied to the result from the join,

Z +- (EMP [EMP# = MGR#] EMP)[EMP#, ENAME, CITY,
M G R # , MGR__NAME],

where MGR__NAME denotes the employee name ENAME of the manager.
The result of this evaluation is as follows'

Z (EMP# NAME CITY MGR# MGR~NAME)

E107 Rook Poole E321 Queen
E912 Knight Wareham E321 Queen
E239 Knight Wareham E107 Rook
E575 Pawn Poole E239 Knight

76 • The Basic Operators

The tuple < E321, Queen, Wimborne, m , __ > is omitted because it
does not satisfy the equality condition. The query "Who earns a higher
salary than his immediate manager?" can be answered by a join of EMP
with itself, once again using EMP# and M G R # as comparand columns.

Under certain quite broad conditions, the project, select, and join op-
erators can be executed in any sequence and yield a result that is independent
of the sequence chosen. This fact is important when the DBMS is attempting
to generate the most efficient target code from a relational language acting
as source code. This process is called optimization; the DBMS component
involved is called the optimizer. This inter-changeability of ordering of the
operators is damaged when duplicate rows are allowed. More is said about
this point in Chapter 23

The following observations are intended to complete the discussion of
theta-joins. Users who are wedded to the approaches of the past often think
that the only kind of join in the relational model is either the equi-join or
the natural join (discussed later in this section), and that the only comparand
columns allowed are primary keys or foreign keys. In other words, these
users see joins as key-based equi-joins only. This tunnel vision may be due
to the fact that DBMS products of the pre-relational variety tended to
support pointers or links only where the relational model supports primary
and foreign keys.

Theta-joins are the algebraic counterparts of queries that use the exis-
tential quantifier of predicate logic. A brief explanation of these quantifiers
appears later in the explanation of relational division (Feature RB-29).
Incidentally, the result of an equi-join can be empty, even if neither of its
operands is empty.

Note the following identities:

R [A = B I S = S [B = A I R
R [A < B] S = S [B > A I R .

Equi-join is commutative, whereas join on LESS THAN (<) is related simply
to join on G R E A T E R THAN (>), and is not commutative.

R B - 2 4 T h e B o o l e a n E x t e n s i o n o f T h e t a - J o i n

Let R, S denote any relations whose simple or composite columns
include R.B and S.C. Suppose that R.B and S.C draw their values
from a common domain. Let @ denote one of the 10 comparators
used in theta-join. Suppose that R [B @ C] S denotes a theta-join
operation. Then B @ C is called a comparing term, and each
comparing term is truth-valued.

4.2 The Basic Operators • 77

The usual comparing terms in all 10 types of theta-join can be used in
any Boolean combination within a single operator of the extended type. It
is important to remember that each pair of comparand columns cited in the
comparing terms must draw their values from a domain common to the pair.
Such an operator is called extended theta-join. A Boolean combination of
the comparing terms, each of which is truth-valued, is any combination of
these terms using the elementary logical connectives NOT, OR, AND, and
IMPLIES.

Consider a simple example of the practical use of this extended join.
Suppose that a database includes two relations T1 and T2, respectively
describing the members of two teams of employees (each team is assigned
to a different project). Suppose that the need arises to pair off individual
members of Team 1 with individual members of Team 2 based on both of
the following:

• equality in jobcode (abbreviated J1, J2);

• birthdate B1 of the Team 1 member being earlier than the birthdate B2
of the Team 2 member.

The Boolean extension of theta-join can be used to place a request for all
the eligible pairs of team members who satisfy both of these conditions:

T1 [(J1 = J2) A (B1 < B2)] T2.

Note that, if jobcode happened to have the same column name in T1 as in
T2, the name would have to be prefixed by the pertinent relation name
(e.g., T1.J). The same applies to the birthdate columns.

R B - 2 5 T h e N a t u r a l J o i n O p e r a t o r

As described in the last section, an equi-join generates a result in
which two of the columns are identical in values, although different
in column names. These two columns are derived from the com-
parand columns of the operands; of course, the columns may be
either simple or composite. Of the 10 types of theta-join, equi-join
is the only one that yields a result in which the comparand columns
are completely redundant, one with the other. The natural join
behaves just like the equi-join except that one of the redundant
columns, simple or composite, is omitted from the result. To make
the column naming clear and avoid impairing the commutativity,
the retained comparand column is assigned whichever of the two
comparand-column names occurs first alphabetically.

78 • T h e Bas ic Operators

The degree of the result generated by natural join is less than that
generated by equi-join on the same operands. The degree of the former
result is the sum of the degrees of the operands reduced by the number of
simple columr/s in the comparand column of either operand.

Natural join is probably most useful in the theory of database design,
especially in normalizing a collection of relations. It is included here pri-
marily for that reason.

As an aid to understanding the following three operators~relational
union, relational intersection, and relational difference~the reader may wish
to refer to Figure 4.1.

R B - 2 6 T h e U n i o n O p e r a t o r

The relational union operator is intentionally not as general as the
union operator in mathematics. The latter permits formation of the
union of a set of buildings with a set of parts and also with a set of
employees. On the other hand, relational union permits, for exam-
ple, (1) a set of buildings to be united with another set of buildings,
(2) a set of employees to be united with another set of employees,
or (3) a set of parts to be united with another set of parts.

Figure 4.1 The Basic Operators of the Relational Model

R

SELECT PROJECT JOIN

I i ,

UNION

• 4i®i~!iN

N

INTERSECTION

R ..

..... ~::::::'"'"'"'"':':'":: S

DIFFEREN(

R ~I~5~H~@~

S

PRODUCT

DIVIDE

-..F

I i

4.2 The Basic Operators • 79

Relational union is intended to bring together in one relation all of the
facts that happen to exist in whatever two relations are chosen to be its
operands, provided these two relations contain the same kind of facts. It
does this by copying rows from both of its operands into the result, but
without generating duplicate rows in the result. The relations that are com-
bined by the relational union operator must be compatible with one another
in having rows of similar type, thus ensuring that the result is a relation. It
must be remembered that all relations are sets, but that not all sets are
relations. Thus, relational union is intentionally not as general as set union.
Union compatibility is now discussed in more detail.

Suppose that S and T are two relations. Then, S and T are union-
compatible if they are of the same degree and it is possible to establish at
least one mapping between the columns of S and those of T that is one-to-
one, and with the property that, for every column A of S and every column
B of T, if column A is mapped onto column B, then A and B draw their
values from a common domain. Of course, the number of such mappings
between S and T may be zero, one, two, or more. If it happens that no
such mapping exists, then S and T are not union-compatible, and any request
from the user to form S UNION T causes an error code to be returned.

The union operator requires that its two operands (which are relations,
of course) be union-compatible. In practice, it is rare that two base relations
are union-compatible, but not at all rare that two derived relations are. The
union operator also requires that the column alignment for its two operands,
whether explicit or implied, be in conformity with one of the mappings that
guarantees union compatibility (this is discussed further later in this section).

The result of applying union to relations S and T is a relation containing
all of the rows of S together with all of the rows of T, but with duplicate
rows removed. The removal of duplicate rows becomes necessary when it
happens that relation S has some rows in common with relation T. Those
DBMS implementations that either require or permit the retention of du-
plicate rows in the final result of a union will give rise to the same severe
problems cited earlier in the description of the project operator.

The principal reason why relational union, intersection, and difference
are not as general as their mathematical counterparts is that, in a relational
system, it must be easy to find any desired information in the result. Hence,
the result is required to be a relation. The result of these operators is also
constrained to be a relation because this is necessary for operational closure
(see Feature RM-5 in Chapter 12).

Consider an example involving domestic suppliers S and overseas sup-
pliers T. These relations are likely to be separated from one another because
certain properties are applicable to one but not the other. For the example,
suppose that we take the projection S" of S and the projection T" of T on
certain columns common to both S and T, namely, supplier serial number
and supplier name.

Suppose that the corresponding snapshots are as follows:

80 • The Basic Operators

S" (S# NAME)

Sl l Peter
S12 Smith
S17 Clark
S23 Rock
$25 Roth

T" (S# NAME)

S2 Jones
S17 Clark
S3 Blake
S7 Tack

Applying the operator union, we obtain the following:

Z (S# NAME) Z ~ S" union T"

Sl l Peter
S12 Smith
S17 Clark
S23 Rock
S25 Roth
S2 Jones
S3 Blake
S7 Tack

We observe that Clark, with the serial number S17, is both a domestic and
an overseas supplier. Note that the row < S17, Clark > is not repeated in
the result.

The designer of a relational language must face the difficulty that, when
applying the union operator in some circumstances, the user must specify in
some detail which columns of one relation are to be aligned with which
columns of the second relation. This alignment is particularly relevant when
two or more columns of one operand have the same domain. When this is
true of one operand, it must be true of the other, if they are to satisfy the
requirement of union compatibility.

The simplest approach appears to be as follows:

if all the domains of one relation are distinct, then the DBMS aligns
the columns by ensuring that aligned pairs have the same domain;

if not all the domains of one relation are distinct, then

1. for those columns of one operand that have distinct domains within
that operand, the DBMS aligns them with the columns of the other
operand by ensuring that aligned pairs have the same domain; and

2. it aligns the remaining columns by accepting the pairing of these
columns as specified by the user in his or her request or, if no such
pairing is specified, it pairs columns by name alphabetically (lowest
alphabetically from one operand with lowest alphabetically from the
other, and so on).

The relational model requires this approach to be adopted within the DBMS
for the operators relational union, intersection, and difference.

4.2 The Basic O p e r a t o r s • 81

in countries that do not use the Roman alphabet, it may be necessary
to replace the alphabetic default by some other kind of default.

The DBMS sends an error message if either the implicit alphabetic
ordering or the explicit alignment declared by the user fails to satisfy the
constraint that pairs of columns that are aligned for the union operator must
draw their values from a common domain. This approach to column align-
ment is required by the relational model until such time as a simpler
technique is devised to deal with this column-alignment problem.

The following special case is noteworthy. Whenever the two operands
of a union have primary keys PK1 and PK2, which draw their values from
a common domain, and whenever PK1 and PK2 happen to be aligned for
a requested union, then the DBMS deduces that the primary key of the
result is a column PK that is formed by uniting PK1 with PK2. One con-
sequence of this is that the DBMS rejects duplicate values in column PK of
the result.

R B - 2 7 T h e I n t e r s e c t i o n O p e r a t o r

SuPpose that S and T are two relations that are union-compatible.
Then, they are sufficiently compatible with one another for the
intersection operator to be applicable. Columns have to be aligned
in the same way as for the union operator. The result of applying
intersection to relations S and T is a relation containing only those
rows of S that also appear as rows of T. Of course, the resulting
relation contains no duplicate rows, since neither of the operands
contain any.

Consider the same example as before involving domestic suppliers S
and overseas suppliers T. Assume that the same projections as before have
been made to generate relations S" and T".

S" (S# N A M E) T" (S # N A M E)

$11 Peter $2 Jones
$12 Smith $17 Clark
$17 Clark $3 Blake
$23 Rock $7 Tack
$25 Roth

Applying the operator intersection, we obtain the following R-table:

Z (S # NAME) Z ~- S" intersection T"

$17 Clark

The supplier Clark with the serial number S17 is both a domestic and an
overseas supplier. Note also how the row < S17, Clark > was not repeated
in the result.

82 • The Basic Operators

The approach to column alignment is the same as with union:

if all the domains of one relation are distinct, then the DBMS aligns
the columns by ensuring that aligned pairs have the same domain;

if not all the domains of one relation are distinct, then

1. for those columns of one operand that have distinct domains within
that operand, the DBMS aligns them with the columns of the other
operand by ensuring that aligned pairs have the same domain; and

2. it aligns the remaining columns by accepting the pairing of these
columns as specified by the user in his or her request or, if no such
pairing is specified, it pairs columns by name alphabetically (lowest

; alphabetically from one operand with lowest alphabetically from the
other, and so on).

In countries that do not use the Roman alphabet, it may be necessary to
replace the alphabetic default by some other kind of default.

The DBMS sends an error message if either the implicit alphabetic
ordering or the explicit alignment declared by the user fails to satisfy the
constraint that pairs of columns that are aligned for the intersection operator
must draw their values from a common domain.

R B - 2 8 T h e D i f f e r e n c e O p e r a t o r

Suppose that S and T are two relations that are union-compatible.
Then, they are sufficiently compatible with one another for the
relational difference operator to be applicable. Columns must be
aligned in the same way as for the union operator. The result of
applying relational difference to relations S and T is a relation
containing only those rows of S that do not appear as rows of T.
Of course, the resulting relation contains no duplicate rows.

Consider the same example involving domestic suppliers S and overseas
suppliers T. Assume that the same projections as before have been made
to generate relations S" and T""

S" (S# NAME) T" (S# NAME)

Sl l Peter $2 Jones
S12 Smith $17 Clark
S17 Clark $3 Blake
S23 Rock S7 Tack
S25 Roth

Applying the operator relational difference, we obtain the following:

4.2 The Basic Operators • 83

Z (S # N A M E)

$11 Peter
S12 Smith
S23 Rock
S25 Roth

Z ~- S" - T"

The supplier Clark with the serial number S17 is both a domestic and an
overseas supplier, which explains why the row < $17, Clark > does not
appear at all in the result.

The approach to column alignment is the same as with union:

if all the domains of one relation are distinct, then the DBMS aligns
the columns by ensuring that aligned pairs have the same domain;

if not all the domains of one relation are distinct, then

1. for those columns of one operand that have distinct domains within
that operand, the DBMS aligns them with the columns of the other
operand by ensuring that aligned pairs have the same domain; and

2. it aligns the remaining columns by accepting the pairing of these
columns as specified by the user in his or her request or, if no such
pairing is specified, it pairs columns by name alphabetically (lowest
alphabetically from one operand with lowest alphabetically from the
other, and so on).

In countries that do not use the Roman alphabet, it may be necessary to
replace the alphabetic default by some other kind of default.

The DBMS sends an error message if either the implicit alphabetic
ordering or the explicit alignment declared by the user fails to satisfy the
constraint that pairs of columns that are aligned for the relational difference
operator must draw their values from a common domain.

R B - 2 9 T h e R e l a t i o n a l D i v i s i o n O p e r a t o r

Relational division is similar in some respects to division in integer
arithmetic. In relational division, just as in integer arithmetic divi-
sion, there is a dividend, a divisor, the quotient, and even a re-
mainder. Thus, relational division has similarly named operands and
results. Instead of being integers, however, these operands and
results are all relations. None of them need contain any numeric
information at all, and even if the operands do contain such infor-
mation, it need not be the numeric components that play a crucial
role in relational division.

8 4 • The Basic Operators

Consider an example of division in integer arithmetic. Suppose that we
are dividing 29 by 7. One must find the largest multiplier for 7 that yields a
product that is equal to or less than 29. That multiplier is 4, since 4 × 7 =
28, and 28 is less than 29; while 5 × 7 = 35, and 35 is greater than 29.

In relational division the relational operator corresponding to multipli-
cation is Cartesian product. The relational comparator corresponding to
LESS THAN OR EQUAL T O (- <) is SET INCLUSION.

When dividing one relation by another, at least one pair of columns
(one column of the pair from the dividend, the other column from the
divisor) must draw their values from the same domain. Such a pair of
columns can be used as comparand columns (just as if we were attempting
an equi-join).

Suppose that (1) relation S is the dividend, (2) relation T is the divisor,
(3) the comparand columns are B from S and C from T, and (4) the column
A from S is to be the source of values for the quotient. Then suppose that
Q is the quotient obtained by dividing S on B by T on C. The assignment
to Q is represented by

Q ~--S [A , B / C] T,

and we obtain the largest relation Q, such that Q[A] × T[C] is contained
in S[A,B]. The term "largest relation" in this context means the relation
that has the most tuples (rows), while still satisfying the specified condition.

As an example, suppose that we have a list of parts required for a
certain job, and that the list is presented as a unary relation named LIST
containing part serial numbers. LIST is an R-table with one column named
P#. Suppose also that CAP has the same meaning as the CAPABILITY
relation used in Section 1.2.3. Suppose that CAP and LIST have the follow-
ing extensions:

CAP (S# P# S P E E D U N I T _ _ Q PRICE)

Sl P1 5 100 10
$1 P2 5 100 20
Sl P6 12 10 600
S2 P3 5 50 15
$2 P4 5 100 15
S3 P6 5 10 700
S4 P2 5 100 15
S4 P3 5 50 17
S4 P5 15 5 300
$4 P6 10 5 350

LIST (P#)

P2
P5
P6

4.2 The Basic Opera tors • 85

Note that SPEED denotes speed of delivery in number of working days.
Consider the query "Find the suppliers each of whom can supply every

one of the parts listed in the given R-table LIST." This query is equivalent
to

QUOT ~ CAP[S#, P# / P #]LIST.

This query calls for CAP on S#, P# to be divided by LIST on P#. The
result obtained is as follows:

QUOT (S# S P E E D UNIT_Q PRICE)

S4 5 100 15
S4 15 5 300
S4 10 5 350

Note that the relation QUOT [S#] contains only one row, and this row
contains only one component $4. Thus, the Cartesian product

CP ~-- QUOT [S#] × LIST [P#] is as follows:

CP (S# P#)

S4 P2
S4 P5
S4 P6

This is contained in CAP [S#, P#]. The quotient is accordingly the relation
QUOT of degree four just shown. The remainder is simply the dividend
with some of its rows removed~namely, those appearing in the quotient
QUOT with the P# column removed:

RMDR (S# P# S P E E D UNIT_Q PRICE)

Sl P1 5 100 10
Sl P2 5 100 20
S 1 P6 12 10 600
S2 P3 5 50 15
$2 P4 5 100 15
$3 P6 5 10 700
$4 P3 5 50 17

Note the degrees of the relations:

Dividend CAP Degree 5

Divisor LIST Degree 1

Quotient QUOT Degree 4

Remainder RMDR Degree 5

86 [] The Basic Operators

More generally, the degree of the quotient is equal to the degree of the
dividend minus the degree of the divisor. The degree of the remainder is
equal to the degree of the dividend.

Relational division is the principal algebraic counterpart of queries that
involve the universal quantifier of predicate logic. Now follows the promised
and brief explanation of the quantifiers of predicate logic. The example just
used to explain relational division is now used with more concise notation
to explain the two quantifiers: the existential and the universal.

Suppose that the relations in a database include S, P, and C, where S
describes suppliers, P describes parts, and C describes capabilities of sup-
pliers in supplying parts. Let the primary key of suppliers be supplier serial
numbers S#; for parts, the primary key is part serial numbers P#; for
capabilities, the primary key is the combination of S# and P#. Let the
description of suppliers include for each supplier its name; the corresponding
column is called SNAME. Suppose also that a list of parts needed for some
project is given as a unary relation L whose only column P# draws its values
from the part serial number domain P#.

Two quite different kinds of queries are now discussed from the stand-
point of a relational language ALPHA [Codd 1971a], which is based on
predicate logic, rather than algebra, and uses tuple variables, rather than
domain variables. Q1 requires the existential quantifier, and Q2 requires
the universal quantifier.

Q l: Retrieve the names of all suppliers, each of whom can supply at
least one of the parts listed in L.

range of s is S

range of p is L

range of c is C

s, p, and c are tuple variables.

get s.SNAME where

EXISTS p EXISTS c (c.s# = s.s# AND c.p# = p.p#).

The term "EXISTS" denotes the existential quantifier of predicate logic.
It corresponds to the theta-join operators. It does not denote the same use
of the term "EXISTS" as in the language SQL.

Q2: Retrieve the names of all suppliers, each of whom can supply all
of the parts listed in L.

Assuming the same three range statements as listed under Q1,

get s. SNAME where

FOR ALL p EXISTS c (c.s# = s.s# AND c.p# =p.p#)

The phrase "FOR ALL," which denotes the universal quantifier of
predicate logic, corresponds to relational division. Present versions of the

4.3 The Manipulative Operators • 87

language SQL cannot express relational division in any direct manner. Con-
sequently, SQL users must translate Q2 into the following:

Q2": Retrieve the name of every supplier, for whom it is not true that
there exists a part in the list L that it cannot supply.

This kind of translation represents a significant burden on users that is
completely unnecessary. (Refer back to Figure 4.1 on page 78 for a sum-
mation of all the basic operators.)

4 .3 m T h e M a n i p u l a t i v e O p e r a t o r s

The manipulative operators are those concerned with making changes to
the contents of the database. Eight such operators are described:

RB-30

RB-31

RB-32

RB-33

RB-34

RB-35

RB-36

RB-37

Relational assignment

Insert

Update
Primary key update with cascaded update
Primary key update with cascaded marking

Delete
Delete with cascaded deletion

Delete with cascaded marking.

In contrast to pre-relational DBMS, each one of these operators is
capable of handling multiple-records-at-a-time, where "multiple records"
means zero, one, two, or more rows of a relation. No special treatment is
given to any data on account of the number of records.

R B - 3 0 R e l a t i o n a l A s s i g n m e n t

When querying a database, the user may wish to have the result of
the query (a relation, of course) retained in memory under a name
of his or her choosing. The user may also wish to be able to require
this retained relation to participate in some later relational query or
manipulative activity. Both of these desires are satisfied to a certain
extent by relational assignment. This operator is denoted by ~-- in
the expression T ~- rye, where (1) rve denotes a relation-valued
expression (an expression whose evaluation yields a relation), and
(2) T denotes a user-selected name for the relation that is specified
by rve and that is to be retained in memory.

88 • The Basic Operators

Note that the relatien obtained by executing rve may, as usual, contain zero,
one, two, or more rows.

Since a relation may consist of a very large number of rows, and since
each row is likely to consist of a combination of character strings, numbers,
and logical truth-values, a relational assignment is beyond the capability of
most programming languages. However, a fully relational language must be
able to express relational assignment, while a fully relational DBMS must
be able to execute such an assignment.

If the qualifier SAVE is attached to the command, the DBMS establishes
the data description of T in the catalog, unless an appropriate description
of T is already there. The domain of any column of T in which the values
are derived by means of a function is identified as function-derived, because
the DBMS usually cannot be more specific than that.

When the qualifier SAVE is attached, the user should be required to
declare which simple column or combination of simple columns constitutes
the primary key.

If the user needs this relation only temporarily (within a particular
interactive session or within a single execution of an application program),
the qualifier SAVE may be omitted. Then,

1. the DBMS does not record the description of T in the catalog;

2. if T still exists, T is dropped by the DBMS at the end of the interactive
session or at the end of execution of the program.

RB-31 T h e I n s e r t O p e r a t o r

The insert operator permits a collection of one or more rows to be
inserted into a relation. The user has no control, however, over
where these rows go. They may even be appended by the DBMS
"at one end or the other" of the target relation. I place this phrase
in quotation marks because there is no concept of the end of a
relation in the relational model. It is the responsibility of the DBMS
alone to determine exactly where the rows should be stored, al-
though this positioning may be affected by the access paths already
declared by the DBA for that relation. It is assumed that, for
insertion of new rows into a relation T, the catalog already contains
a detailed description of T.

If the collection of rows to be inserted includes two or more rows that
are duplicates of one another, only one of these rows is inserted. If the
collection of rows to be inserted includes a row that duplicates any one of
the rows in the receiving relation, that row will not be inserted. Thus, at
the end of the insertion the resulting relation contains no duplicate rows; to
achieve this, several rows in the collection to be inserted may have been
withheld. Whenever rows are withheld by the DBMS from insertion (to

4.3 The Manipulative Operators • 89

avoid duplicate rows in the result), the duplicate row indicator is turned on
(see Feature RJ-8 in Chapter 11, "Indicators").

One or more rows in the collection to be inserted may be withheld by
the DBMS for another reason: the resulting relation is not allowed to have
duplicate values in its primary key. In the event that such a withholding
occurs for this reason, the duplicate primary-key indicator is turned on (see
Feature RJ-9 in Chapter 11). This constraint is more restrictive than the no-
duplicate-row constraint, since it is entirely possible that the non-primary-
key components may be different from one another, even though the primary-
key values are identical.

If one or more indexes exist for the target relation, the DBMS will
automatically update these indexes to support the inserted rows.

If the new rows for relation T are derived from one or more other
relations in the same relational database in accordance with a relation-valued
expression rve, then an alternative way of obtaining the result of inserting
these rows into T is by using the union operator and relational assignment-

T ~- T UNION rve.

However, to be able to use this method, T must be either a base relation
or a special kind of v i ew~the kind that the DBMS at view-definition time
has determined can accept insertions. It is worth noting that not all views
can accept insertions, a point discussed in detail in Chapter 17, "View
Updatability." It is worth noting that the insert operator eliminates duplicate
rows and duplicate primary-key values just as the union operator does.

R B - 3 2 T h e U p d a t e Operator

In managing a database, it may be necessary occasionally to change
the values of one or more components of one or more rows that
already exist within a relation. This is usually distinguished from
inserting entirely new rows because the components to be changed
in value may represent a very small percentage of the number of
components in each row.

This observation is the justification for the update operator. The information
that must be supplied with this operator consists of the name of the relation
to be updated, the specification of the rows in that relation to be updated,
and the column names that identify the row components of these rows to
be identified, and the new values for these components. The DBMS should
provide two options for identifying the rows to be updated; the user should
supply either a list of primary key values or an expression that (1) is a valid
condition for a select operation and that (2) involves the DBMS in conducting
a search for those rows that satisfy this condition.

Existing indexes for the target relation are automatically updated by the
DBMS to reflect the requested update activity.

90 • The Basic Operators

Referential integrity may be damaged if the column to which the update
is applied happens to be the primary key of the pertinent relation or a
foreign key. Normally, Feature RB-33 should be used to update a primary-
key value. When updating a foreign-key value only, the user should make
sure that the new value for this key exists as the value of a primary key
defined on the same domain. Otherwise, the DBMS will reject the update

RB-33 P r i m a r y - K e y U p d a t e w i t h C a s c a d e d

U p d a t e o f F o r e i g n K e y s a n d O p t i o n a l U p d a t e

of Sibling Primary K e y s

It is seldom necessary to update the value of a primary key, but,
when this is necessary, it is very important that it be done correctly.
Otherwise, integrity in the database will be lost, and it will be quite
difficult to recover from the damage.

An important check made by the DBMS is that each allegedly new
value for a primary key is not only of the data type specified for that key,
but is also new with respect to that simple or composite column" that is, at
this time the new value does not occur elsewhere in that primary-keycolumn.

When a primary-key value is changed, it is usually necessary to make
the same change in value of all of the matching foreign-key values drawn
from the same domain. Why cannot this be programmed as a transaction
that includes an update command for the row that contains the primary key
value followed by an update command for each of the rows in the database
that contain that same value as a foreign key whose domain is the same as
that of the primary key? To prepare such a transaction correctly, the user
must have extremely recent knowledge of which columns in the entire
database draw their values from the domain D of the given primary key;
"recent" means down to the millisecond level or some shorter time interval.

It is important to remember that the relational approach is highly
dynamic, and that users who are appropriately authorized can at any time
request new columns be added to one or more relations. Thus, it would be
very risky to assume that any user (even the DBA) knows at any time
precisely which columns draw their values from any giVen domain. It is
precisely for this reason that

• the kind of transaction cited in the preceding paragraph is unacceptable;

• the relational model includes the cascading option in some of its manip-
ulative operators and in the reaction of the DBMS to attempted violation
of certain integrity constraints.

If a DBMS is fully relational, it maintains in the catalog the knowledge
concerning which columns draw their values from any given domain in a
state that is consistent with the most recently executed relational command.

4.3 The Manipulative Operators • 91

This means that the DBMS is in a better position than any user to handle
correctly the updating of all the matching foreign-key values drawn from
the pertinent primary domain.

The primary-key update command not only updates a primary-key value,
but also updates in precisely the same way all of the matching foreign-key
values drawn from the same domain as the primary-key value. For the
DBMS to support this command, it is essential that the DBMS support
domains.

This command is not included in the present version of the language
SQL. In fact, it is impossible to express a precisely equivalent action in SOL.
Moreover, it is extremely cumbersome to express any action in SOL that is
even superficially similar, but is based on the false assumption that some
user knows precisely which columns draw their values from a given domain.
Such an expression takes about three pages of commands, some expressed
in SQL and some in a host language. This is just one of the severe penalties
stemming from the failure of SOL to support domains as extended data types
(see Chapters 3 and 23).

A more detailed account follows. The primary-key update operator is
intended to simplify the updating of primary-key values. The DBMS finds
from the catalog which domain (say D) is the domain of the specified primary
key. It then finds all of the columns in the entire database that draw their
values from domain D. From this set of columns, it selects two subsets:

SI:D

S2:D

Those columns that are primary-key columns for other relations, but
defined on D

Those columns that are declared to be foreign-key columns with
respect to the given primary key

The set Si:D is called the set of sibling primary keys. The set S2:D is called
the set of dependent foreign keys, where "dependent" refers to the fact that
foreign-key values are existence-dependent on their primary key counterparts.

Unless the qualifier EXCLUDE SIBLINGS is attached to the command,
the DBMS takes primary-key action as follows. It hunts in each column
cited in Si:D for the value of the given primary key. It then updates this
value in precisely the same way as the original primary key was updated.
Unconditionally, the DBMS takes foreign-key action as follows. It hunts in
each column cited in S2:D for the value of the given primary key, now
occurring in a foreign-key role. Whenever such a value is found, it is updated
in precisely the same way as the primary key was updated. In this way,
referential integrity is maintained.

Thus, the DBMS executes all of these primary- and foreign-key updates
in addition to the update of the specified primary-key value, except that the
action on other primary keys is omitted if the qualifier EXCLUDE SIB-
LINGS is attached to the pertinent command. Whenever an index involves
any of the keys (primary or foreign) being updated, that index is also
automatically updated by the DBMS to reflect the updating of the actual
key.

92 u The Basic Operators

The entire sequence of activities is treated as if it had been requested
as a transaction. Thus, either the whole series of updates is successful, or
none of it is successful. This is what one should expect in any case, since
only a single relational command is involved.

Existing indexes for all of the columns of all of the relations involved
are automatically updated by the DBMS to reflect the requested update
activity. These changes are committed to the database if and only if the
aforementioned changes are committed.

R B - 3 4 P r i m a r y - k e y U p d a t e w i t h

C a s c a d e d M a r k i n g o f F o r e i g n K e y s

This operator behaves in the same way as that of Feature RB-33,
except in regard to all of the foreign keys based on the same domain
as the primary key. Instead of updating the matching foreign-key
values, the DBMS marks each foreign-key value as missing-but-
applicable. Of course, if one or more of these foreign keys happens
to have a DBA-declared constraint that there be no missing values,
then the whole command is rejected by the DBMS.

R B - 3 5 T h e D e l e t e O p e r a t o r

The delete operator permits a user to delete multiple rows from a
relation: "multiple" includes the special cases of zero and one, and
these cases do not receive special treatment. Why include zero as a
possibility? One reason is that a condition that the user has incor-
porated in the delete command might not be satisfied by any row.
Of course, it is necessary for the user to specify the pertinent relation
and identify the rows to be deleted in either of the two ways
permitted by the simple update operator.

Existing indexes for the target relation are automatically updated by the
DBMS to reflect the requested deletion activity.

Users of the delete command are advised to be very cautious, since
every row of a base relation that is deleted results in the deletion of some
primary-key value. Then, if in the database there happen to be matching
values of foreign keys, referential integrity can be damaged: hence, the next
two commands.

4.3 The Manipulative Operators • 93

RB-36 T h e D e l e t e O p e r a t o r w i t h

C a s c a d e d D e l e t i o n

This delete operator is similar to that of Feature RB-35, except that
it takes into account the fact that a simple or composite component
of each of the rows being deleted happens to be the value of the
primary key of a base relation. This is true even if the deletion is
executed through a view (a virtual relation). Thus, execution of
RB-35 will often violate referential integrity. Since usually refer-
ential integrity is not fully checked until the end of a transaction,
this violation may be just a transient state that is permitted to exist
within the pertinent transaction only. (See Chapter 13 for more
details.)

When a primary-key value of a base relation participates in a deletion,
referential integrity is normally violated if any foreign keys exist elsewhere
in the database, in that relation or in others, that are drawn from the same
domain as that primary key and are equal in value to it. There is no violation
if the primary-key value still exists as a sibling primary-key value. This is the
primary key of some other relation, provided that key draws its values from
the same domain. Use of the delete with cascaded deletion operator causes
the DBMS to propagate deletions to those rows in the database that happen
to contain dependent foreign-key values as components.

If the qualifier EXCLUDE SIBLINGS is attached to the command, no
action is taken with respect to the other occurrences of this value as a sibling
primary key from this domain. If this qualifier is not attached, the rows that
contain the same value in the role of a sibling primary key are deleted also.

Existing indexes for all of the relations involved are automatically up-
dated by the DBMS to reflect the requested deletion activity.

This operator should be used with great care. In fact, few people in any
installation should be authorized to use it; they should probably be on the
staff of the DBA. The reason is simple. The deletions can occur in wave
after wave, all automatically. (See Chapter 18, "Authorization," for more
details.)

The deletion of each row that contains a pertinent foreign-key value
must also result in the deletion of a value of some primary key; this primary
key will often be different from the primary key that initiated the cascading
action. Quite often, the initial deletion of one row results in the deletion of
many other rows elsewhere in the database. Then, each of these deletions
results in the deletion of many other rows in the database, and so it proceeds.

94 • The Basic Operators

R B - 3 7 The D e l e t e Operator w i t h C a s c a d e d
A - m a r k i n g and O p t i o n a l Sibl ing D e l e t i o n

This operator is similar to that of Feature RB-36, but is far less
dangerous, because the initial cycle of cascading does not trigger
any subsequent cycles of deletion. This reduced danger is a strong
reason why foreign keys should be allowed to have missing values,
unless the DBA has an overriding reason why not.

The DBMS finds all of the columns that draw their values from the
domain of the primary key involved: primary domain D. From these columns
it selects the two subsets SI:D (the sibling columns) and S2:D (the dependent
foreign-key columns) as defined earlier. The DBMS then examines the
catalog to see whether any column cited in S2:D has the declaration that
missing values are prohibited.

Suppose that one or more of the columns cited in S2:D is of the missing-
values-prohibited type. If the value v (say) found in the primary key of the
row or rows to be deleted does not occur at all in any of the missing-values-
prohibited columns, then execution of the command may proceed. If,
however, there is at least one occurrence of the value v in these missing-
values-prohibited columns, then the DBMS aborts the deletion and marking
altogether. It also turns on an indicator asserting that the deletion has been
aborted. If the command participates in a transaction, then the transaction
is aborted also.

Assume that the tests just described are satisfactorily passed, and that
no abortion occurs. Then, the DBMS searches all of the foreign-key columns
cited in S2:D to find all occurrences of the pertinent value and marks each
one as missing-but-applicable.

If the qualifier EXCLUDE SIBLINGS is attached to the pertinent
command, no action is taken on the columns cited in Si:D. If this qualifier
is not attached, however, all of the rows containing the pertinent primary
key value in each of the columns cited in Si:D are deleted. Then, regardless
of any attached qualifier, all of the columns cited in S2:D that permit missing
values are searched for the value v, and each such value is A-marked.

Existing indexes for each of the relations involved are automatically
updated by the DBMS to reflect the requested deletion activity. Of course,
these changes are committed if and only if the aforementioned changes are
committed.

In subsequent chapters frequent use is made of the basic operators
described in this chapter. A good understanding of these operators is essen-
tial to any real understanding of the relational model.

E x e r c i s e s • 95

Exercises

4.1 The connectives LESS THAN, EQUAL TO, GREATER THAN
participate in almost every programming language. In that context
they are often called the relational operators. Are the relational
operators of the relational model simply these connectives revisited?
If not, explain.

4.2 In the relational model why is row selection called select, while column
selection is called project? Hint: do not confuse the select of the
relational model with the select of SOL.

4.3 Execution of a join usually involves comparing values drawn from
pairs of columns (each simple or composite) in the database. These
are called the comparand columns for this operator.
• What is wrong with requiring for every join that the comparand

columns in a join be identically named?
• What constraints, if any, are placed by the relational model on

pairs of comparand columns? Why?

4.4 Is it adequate for the DBMS to check that the comparand columns
involved in joins contain values of the same basic data type? State
reasons for your answer.

4.5 Consider the following query: find the suppliers, each of whom can
supply every part in some given list of parts. What relational operator
provides the most direct support for this query? Is this a brand-new
operator? What is the shortest SQL representation of this request?

4.6 In what sense are the union, intersection, and difference operators of
the relational model different from their counterparts in set theory?

4.7 What is union compatibility? To which of the operators does the
relational model apply this as a constraint? Why does the model make
union compatibility a requirement in these cases? Can this constraint
be overridden?

4.8 In what sense are the operators of the relational model closed? Does
this mean that no new operators may be invented? How is this closure
useful in the real world?

4.9 What are the sibling primary keys of a given primary key? Does every
primary key have a sibling primary key?

4.10 Is updating a primary key any more complicated than updating any
other piece of data? If so, state why, and then describe how RM/V2
handles the problem.

4.11 Do present versions of the SOL language handle the problem stated
in Exercise 4.10 correctly without requiring the assistance of the host
language? Do present versions of SOL handle this problem correctly
with assistance from the HL? Explain.

• C H A P T E R 5 •

The Advanced Operators

The operators discussed in this chapter are intended to meet some practical
needs and, in so doing, increase the flexibility and power of the relational
model without introducing programming concepts. Any reader who finds
this chapter difficult to understand can, and should, skip it on first reading;
most of the following chapters are simpler.

The advanced operators include framing a relation, the extend operator,
semi-join, outer join, outer union, outer difference, outer intersection, the
T-joins, user-defined selects, user-defined joins, and recursive join. The set
of advanced operators is intentionally open-ended. When conceiving exten-
sions, however, it is very important to adhere to the operational closure of
all relational operators. See Feature RM-5 in Chapter 12, as well as Chapter
28.

In this chapter, unlike its predecessors, the sample relations that explain
each operator involve the use of abstract symbols to denote values. For each
column, however, the values must be assumed to be all of one declared data
type. For example, all the values may be character strings, integers, floating-
point numbers, or the truth-values of some logic. On the other hand, the
collection of columns belonging to a relation can have any mixture of these
data types. A reader who is unfamiliar with the use of symbols to denote
values of these types may wish to take the time to substitute actual values
of his or her choosing in place of the symbols, taking care to abide by any
domain constraints explicitly mentioned.

Thus, in the example in Section 5.1.2~namely R1 (K A C D E) ~ K
is intended to be the primary key, so all of its values must be distinct from

97

98 • The Advanced Operators

one another, and C is specified as a numeric column, so all of its values
must be numeric. Thus, a specific case of the relation R1 would be the
PARTS relation with K as the part serial number (character-and-digit strings
of length 8); A as the part name (strings of characters only, of fixed length
12); C as the quantity-on-hand (modest-sized non-negative integers); D as
the quantity-on-order (of the same extended data type as quantity-on-hand);
and E as the minimum quantity that should be maintained in inventory (of
the same extended data type as quantity-on-hand).

5.1 • F r a m i n g a R e l a t i o n

5.1.1 I n t r o d u c t i o n t o F r a m i n g

Occasionally users must partition relations into a collection of subrelations,
whose comprehensive union restores the original relation. Each of the
subrelations is a member of the partition. A well-known property of a
partition is that every pair of these subrelations has an empty intersection.

Consider a relation that contains information about employees in a
company. Suppose that it includes a column containing the employee's
present annual salary, and another column indicating the department to
which that employee is assigned. With this database, consider a request that
involves a partition" find the total salaries earned in each department along
with the department identification. A user may wish to find for each de-
partment the sum of all the present salaries earned by employees in that
department, and may want the corresponding totals to appear in one of the
columns of the result, along with other columns such as the department
number.

Many subrelations may be involved in partitioning a given relation. The
approach described next avoids generating these subrelations as a collection
of separate relations, for two reasons"

°

2.

each of the subrelations would have to be assigned a distinct name;

a new type of operand and result would have to be introduced--namely,
a collection of relations. This type appears in RM/T, an earlier extended
version of the relational model [Codd 1979], but for other reasons.

Instead of the approach just described, a frame is placed on the relation to
be partitioned.

R Z - I Framing a Re la t i on

A frame separates the set of rows in any one member of the partition
from the set of rows in any other member. This separation is
achieved by appending a new column to the relation and, within

5.1 Framing a Relation • 99

this column, assigning a distinct value for each distinct member of
the partition. The standard name for this column is FID, or frame
identifier.

In the relational model, in line with the emphasis on basing all operators
on explicit values in the database, the act of partitioning is always based on
values. In generating partitions, RM/V2 offers the options of using the
individual values that occur in a column, simple or composite, or else
specified ranges of values that occur therein. Since individual values are
simpler to understand, let us consider them first.

5.1.2 P a r t i t i o n i n g a R e l a t i o n b y I n d i v i d u a l V a l u e s

The following steps are taken to generate a simple partition of a relation R
by changes in values within a simple or composite column C:

1. The DBMS reorders the rows of relation R into ascending order by the
values encountered in column C, whether these values are numeric,
alphabetic, alphanumeric, or even the truth-values of some logic. (In
the last case, the ascending sequence is FALSE, TRUE, MAYBE-AND-
APPLICABLE, and MAYBE-BUT-INAPPLICABLE pending the es-
tablishment of a standard.);

2. The DBMS appends the new frame-identifier column FID to R. The
initial value in the frame identification column (FID) is 1; this value is
increased by one each time that a distinct value in C is encountered in
the ascending order cited in Step 1.

In the case of alphabetic and alphanumeric columns, the DBMS uses
some standard collating sequence for ordering purposes.

The result is a single relation with a frame that represents partitioning
of R according to the distinct values in C. The frame is identified by the
integers in column FID. Let R / / / C denote relation R framed according to
column C.

For example, relation R2 is R1 framed according to column C in the
simple sense just described. The dotted lines portray the frame. In this
example the pivotal column C happens to contain numeric values. Those
readers who like "real" examples can assume the following denotations:

R1 PARTS relation

K Part serial number

A Part name

C Quantity on hand

D Quantity on order

E Quantity for triggering reorder

100 • The Advanced Operators

R2 = R 1 / / / C

R1 (K A C D E)

kl al 13 dl e3
k2 al 9 d2 e7
k3 a2 37 dl e2
k4 a3 24 d2 e6
k5 a3 13 d3 el

R2 (K A C D E FID)

k2 al 9 d2 e7 1

k5 a3 13 d3 el 2
kl al 13 dl e3 2

k4 a3 24 d2 e6 3

k3 a2 37 dl e2 4

Column FiD identifies the interval and makes it unnecessary for the DBMS
to keep the row ordering illustrated. Note that relation R1 has five tuples,
but that column C has just four distinct values. Consequently, R1 framed
according to C by individual values has precisely four members. Of course,
each of these four members is a subrelation, which is a set. Three of the
members of the partition are sets consisting of just one tuple, while the
fourth member is a set containing two tuples.

5.1.3 Par t i t i on ing a R e l a t i o n by Ranges of Va lues

A more complicated partitioning involves a sequence of ranges of values in
the pivotal column C. Suppose the desired ranges for this new partitioning
are as follows:

1-10, 11-20, 21-30, 31-40, and so on.

This sequence could be expressed more concisely as follows:

Begin at 1; the range interval is 10.

When the range interval is not constant, a ternary relation may be used
as a listing of all the range intervals. For example,

RANGE (FROM TO FID)

1 11 1
12 25 2
26 32 3
33 48 4

Note that in such a table it is required that the intervals do not overlap one
another.

Thus, a user may wish to request the DBMS to use the RANGE relation
(any name that satisfies the naming features will do) for determining the

5.1 Framing a Relation • 101

starting value and intervals. Now, a different result R3 is generated. Once
again, the dotted lines portray the frame.

R3 = R / / / C per RANGE

R3 (K A C D E FID)

k2 a 1 9 c2 87 1

k5 a3 13 c3 81 2
kl al 13 cl 93 2
k4 a3 24 c2 76 2

k3 a2 37 cl 52 4

Column FID identifies the interval and makes it unnecessary for the DBMS
to keep the row ordering illustrated. Note that the values in FID determine
membership in various elements of the partition. Thus, there is no need for
the DBMS to preserve the ascending ordering based on column FID as
illustrated in the preceding table.

5.1.4 A p p l y i n g A g g r e g a t e F u n c t i o n s t o a F r a m e d R e l a t i o n

Assume that the relation R1 discussed in Section 5.1.2 is framed on column
C according to the ternary relation RANGE discussed in Section 5.1.3. Let
the result be R3. Normally, applying the function SUM to column E in any
of the relations R1, R2, R3 (whether framed or not) yields the sum of all
the values in column E. If, however, a relational command requests that
the function SUM be applied to column E of either relation R2 or R3
according to the frame implied by column FID, then SUM is applied to each
member of the partition; that can yield as many resulting values as there
are distinct values in column FID.

SUM R1.E SUM-per-FID R2.E SUM-per-FID R3.E

389 87 87
174 250
76 52
52

Of course, it is quite likely that in the third case the user would like to have
the pertinent range from the RANGE relation with each of the three totals.
This can easily be accomplished by requesting column R3.FID along with
the SUM according to FID(R3.E), and then requesting either the natural
join or the equi-join of this relation, with the RANGE relation, using the
pair of FID columns (one from each of the operand relations) as the
comparand columns.

102 • The Advanced Operators

The result is relation R4:

R4 (FROM TO FID SF(R3.E))

1 11 1 87
12 25 2 250
33 48 4 52

SF denotes the function SUM-per-FID.
The following example illustrates partitioning and applying an aggregate

function to the members of the partition. Assume that the following base
relation provides the identification EMP# and immediate properties of
employees:

EMP1 (EMP# ENAME DEPT# SALARY H_CITY)

•

E107 Rook D12 10,000 Wimborne
E912 Knight D10 12,000 Poole
E239 Knight D07 12,000 Poole
E575 Pawn D12 11,000 Poole
E123 King D01 15,000 Portland
E224 Bishop D07 11,000 Weymouth

Consider the following two steps:

Partition the relation EMP1 according to the DEPT# column:

EMP2 ~ EMP1/ / /DEPT#

EMP2 (EMP# ENAME DEPT# SALARY H_CITY FID)

E123 .King D01 1 5 , 0 0 0 Portland 1

E224 Bishop D07 1 1 , 0 0 0 Weymouth 2
E239 Knight D07 1 2 , 0 0 0 Poole 2

E912 Knight D10 1 2 , 0 0 0 Poole 3

E107 Rook D12 1 0 , 0 0 0 Wimborne 4
E575 Pawn D12 1 1 , 0 0 0 Poole 4

Find for each department the department serial number and the total
salary earned by all employees assigned to that department:

0

DSAL(DEPT#, TOTSAL) ~-- EMP2(DEPT#, SUM-per-FID(SALARY))

DSAL (DEPT# TOTSAU

D01 15,000
D07 23,000
D10 12,000
D12 21,000

5.2 Auxiliary Operators • 103

Although the GROUP BY feature of SOL is quite concisely expressed,
it is neither as powerful nor as flexible as the framing feature of RM/V2.

5.2 a A u x i l i a r y O p e r a t o r s

One reason to introduce the auxiliary operators here is to keep the definition
of the three outer set operators in the next section reasonably concise.
Another reason is that these operators can be useful in other contexts.

Common to all three outer set operators~outer union, outer difference,
and outer intersection~is an initial step that makes the two operands union-
compatible. This step is explained by introducing the operator discussed in
Section 5.2.1. (see [GOOD]).

5.2.1 E x t e n d i n g a R e l a t i o n

RZ-2 E x t e n d t h e D e s c r i p t i o n o f o n e R e l a t i o n t o

I n c l u d e a l l t h e C o l u m n s o f A n o t h e r R e l a t i o n

The relation cited first in the command is the one whose description
is altered to include all the columns of the second-cited relation that
are not in the first. The columns thus introduced into the first relation
are filled with A-marked values, unless the VALUE qualifier
RQ-13 (see Chapter 10) is applied to specify a particular value.

Considerable care must be taken in using the extend operator. A column
of one of the operands may have the same name and certain other properties
(such as the domain) as a column of the second operand, but the two
columns may have different meanings. Such columns are called homographs
of one another.

The extend operator may not be able to distinguish between the different
meanings, and may incorrectly assume that they are identical. The only
known solution to this problem is for the DBA to be continually concerned
about the possibility of homographs and try to avoid them altogether.
Homographs can be deadly in other contexts also.

It is possible, although unlikely, for the DBMS to discover that no new
columns need be added to the first-cited relation. To make a pair of relations
(say S and T) mutually union-compatible, it is normally necessary to extend
the columns of both relations by requesting

St ~-- S per T and Ts ~-- T per S,

where "per" denotes the extend operator. Note that, in general, union
compatibility is attained only after two applications of the extend operator.

104 a The Advanced Operators

Two applications of this kind constitute the first step in each of the outer
set operators.

This extend operator is used in defining the outer joins and the outer set
operators. Of course, it may be used independently of these operators.

It is quite common for some banks to record accounts in more than one
way. For example, the following two types might have been es tab l i shed
(they are simpified for exposition):

% $
ACCOUNT (ACCOUNT# NAME INTEREST_RATE BALANCE)

$
ACCT (ACCOUNT# NAME MATURITYmDATE BALANCE)

The first type is unique in having INTEREST__RATE as a column,
while the second is unique in having M A T U R I T Y ~ D A T E as a column.
Thus, these two relations are n o t union-compatible. They can be converted
into a pair of relations that are union-compatible by applying the extend
operator to each one.

A1 ~ ACCOUNT EXTEND per ACCT

A2 ~- ACCT EXTEND per ACCOUNT

Both A1 and A2 have as their columns A C C O U N T # , NAME,
MATURITY__DATE, I N T E R E S T ~ R A T E , and BALANCE. The relation
A1 UNION A2 may be exactly what the headquarters planning staff needs
for analysis and planning purposes.

An unlikely special case, which is not given special treatment, does not
permit the operands (relations S and T) to have any domains in common.
Hence, there are no comparable columns at all.

5.2.2 T h e S e m i - t h e t a - j o i n O p e r a t o r

The idea for the semi-join operator has been circulating for many years; it
is not clear who originated the concept. One discussion is found in a paper
by Bernstein and Chiu [1981]. In this section, a slight generalization of the
semi-join operator is discussed: the EQUALITY comparator that is normally
assumed is replaced by theta, where "theta" can be any one of the 10
comparators:

1. EQUALITY

2. INEQUALITY

3. LESS THAN

4. LESS THAN OR E Q U A L TO

5. G R E A T E R THAN

5.2 Auxiliary Operators • 105

6. G R E A T E R THAN OR EQUAL TO

7. GREATEST LESS THAN

8. GREATEST LESS THAN OR EQUAL TO

9. LEAST G R E A T E R THAN

10. LEAST G R E A T E R THAN OR EQUAL TO

Once again, it is important to recall that the relational model provides
a very important safety feature, first cited in Chapter 3:

R T - I Safety F e a t u r e w h e n Comparing
D a t a b a s e V a l u e s

When comparing a database value in one column with a database
value in another, the DBMS merely checks that the two columns
draw their values from a common domain, unless the domain check
is overridden (see Feature RQ-9 in Chapter 10). When comparing
(1) a computed value with a database value or (2) one computed
value with another computed value, however, the DBMS checks
that the basic data types (not the extended data types) are the same.

Several of the advanced operators involve comparing of database values.
The following operators are examples of this.

Let n = 3,4, . . . ,12. Then the RZ feature with n as its number is a
semi-theta-join that makes use of the comparator numbered n-2 in the list
of comparators cited at the beginning of this section.

RZ-J through RZ-12 Semi-Theta-Join

Suppose that the operands of a theta-join are S and T, where theta
is any one of the 10 comparators listed earlier, and the columns to
be compared are simple or composite column A of S with simple
or composite column B of T. Suppose that relation T is projected
onto column B. The result of this projection contains only those
values from B that are distinct from one another. The semi-join of
S on A with T on B yields that subrelation of S whose values in
column A are restricted to just those that qualify in accordance with
the comparator theta with respect to the projection of T onto B.

Suppose that, when theta happens to be EQUALITY, the operator semi-
theta-join is denoted by sere=. Then, S sere= T is that subrelation of S
containing all of the rows of S that match rows of T with respect to the

106 • The Advanced Operators

comparand columns. The remaining rows of S are those that fail to match
any row of T in accordance with the comparand columns. When the com-
parand columns are not explicitly specified (as in the preceding case), the
DBMS assumes that the set of these columns is maximal with respect to the
given operands, disregarding keyhood. (Incidentally, I use the term "match"
only when values are being compared for equality.)

The semi-join can be useful when relations S and T happen to be located
at different sites as part of a distributed database. Suppose that relation T
has many more rows than relation S. Then, the load on the communication
lines between the site containing S and the site containing T can often be
reduced by (1) transmitting the projection of S onto A to the site containing
T, (2) executing the semi-join of T with S [A] at this site, yielding a subset
of relation T, and then (3) transmitting this subset of relation T back to the
site containing S for the full join to be completed there.

It is the responsibility of the optimizer in the DBMS to select this
method of handling a join, whenever it happens to be the most efficient.
Such a selection certainly should not be a burden on end users or on
application programmers.

The following example shows the semi-join operator in action. The
operands are as follows:

S (EMP# ENAME H_CITY) T (WHSE# W__CITY)

E107 Rook Wimborne W17 Wareham
E912 Knight Poole W34 Poole
E239 Pawn Poole W92 Poole

Consider this query: find the employee information and the warehouse
information for every case in which an employee's residence is in the same
city as a company warehouse. The formula for the join is

U ~- S [H _ C I T Y = W__CITY] T,

and the result obtained assuming the values just cited is as follows:

U (EMP# NAME H~CITY WHSE# W~CITY)

E912 Knight Poole W34 Poole
E912 Knight Poole W92 Poole
E239 Pawn Poole W34 Poole
E239 Pawn Poole W92 Poole

5.3 • T h e O u t e r E q u i - j o i n Operators

Several operators referred to as the outer join are supported in the relational
model. The join operatorsJntroduced in Chapter 4 are henceforth called
inner joins, when a need arises to refer to them as a collection.

5.3 The O u t e r Equi - jo in O p e r a t o r s [] 107

The outer joins are based on a proposal made in 1971 by Ian Heath,
then of the IBM Hursley Laboratory in England [Heath 1971]. In this section
and Section 5.4, examples of the inner and outer equi-join with and without
the MAYBE qualifier are described, and the close relationship of the inner
and outer joins is explained. The MAYBE qualifier pertains to the four-
valued logic supported by a relational DBMS, assuming its fidelity to the
model with respect to the treatment of missing information. This qualifier
is discussed in detail in Chapters 8, 9, and 10.

The following two simple relations are used as sample operands in
explaining the outer join operators. Notice that values in column B of relation
S are to be compared with values in column C of relation T. More concisely,
S.B and T.C are the comparand columns. Further, bl occurs in S.B but not
in T.C, while b4 occurs in T.C but not in S.B.

S (A B) T (C D)

al bl b2 dl
a2 b2 b2 d2
a3 b3 b3 d3

b4 d4

Columns S.B and T.C draw their values from the same domain. Thus,
it is meaningful to compare values from S.B with those from T.C.

There are three kinds of outer joins: left outer equi-join (Feature RZ-
13), right outer equi-join (Feature RZ-14), and symmetric outer equi-join
(Feature RZ-15).

R Z - 1 3 L e f t O u t e r E q u i - j o i n

The left outer join of S on B with T on C, denoted U = S [B /=
C] T, is defined in terms of the inner equi-join (IEJ) and the left
outer increment (LOI). LOI is defined as follows: pick out those
tuples from S whose comparand values in the comparand column
S.B do not participate in the inner join, and append to each such
tuple a tuple of nothing but missing values and of size compatible
with T.

In more formal terms,

LOI = (S - IEJ [A, B]) per IEJ.

Then, U is defined by

U = IEJ U LOI.

I08 • The Advanced Operators

Its extension is as follows"

U (A B C D)

al bl - - ~ } left outer increment
a2 b2 b2 dl)
a2 b2 b2 d2 ~ inner equi-join
a3 b3 b3 d3

R Z - 1 4 R i g h t O u t e r E q u i - j O i n

The right outer join of S on B with T on C, denoted V = S [B =
\ C] T, is defined in terms of the inner equi-join (IEJ) and the
right outer increment (ROI). ROI is defined as follows: pick out
those tuples from T whose comparand values in the comparand
column T.Y do not participate in the inner join, and append to each
such tuple a tuple of nothing but missing values and of size com-
patible with S.

In more formal terms,

ROI = (T - IEJ [B, C]) per IEJ.

V is then defined by

V = IEJ U ROI.

Its extension is as follows"

V (A B C D)

a2 b2 b2 dl]
a2 b2 b2 d2
a3 b3 b3 d3
- - - - b4 d4 }

inner equi-join

right outer increment

R Z - 1 5 S y m m e t r i c O u t e r E q u i - j o i n

The symmetric outer equi-join of S on B with T on C, denoted
W = S [B / = \ C] T, is defined by W = LOI u n i o n I E J u n i o n

ROI. This implies that W = U u n i o n V.

Its extension is as follows:

5.3 The Outer Equi-join Operators • 109

left outer join

w (A B C D)

al bl - -

a2 b2 b2 dl

t a2 b2 b2 d2

a3 b3 b3 d3
---- - - b4 d4

right outer join

Note that this particular result contains an A-marked value in every column,
which is not necessarily true of other examples of symmetric outer join. Also
note that the following identity holds for outer join results:

outer join = left outer join LI right outer join.

It is important to observe that the result of a symmetric outer join is
likely to contain one or more missing values in each and every column,
although no single row contains a missing value in every column. This is
why such a result cannot have a primary key that satisfies the entity-integrity
rule~namely, that a primary key must have no missing values (see Chapter
13).

Because duplicate rows are prohibited in every relation of the relational
model, however, it is still true that every row is distinct from every other
row in the result of a symmetric outer join. Thus, for every relation R of
this type, an identifier is defined that consists of every column of R; this is
called the weak identifier of R.

Even though outer joins are not well supported in many of today's
DBMS products, they are frequently needed and heavily used. Consider the
following example.

A database contains information about suppliers and shipments received
from these suppliers. The supplier relation S contains the serial number S#
of all of the suppliers in the database, their names SNAME, and other
immediate properties. The shipment relation SP contains the serial number
S# of the supplier making each shipment, the serial number P# of the part
shipped, the date SHIE__DATE the shipment was received, and other
immediate properties of the shipment, such as the quantity received
SHIP~Q.

A company executive requests a report listing all the shipments received
in the first six months of 1989. The report must include, for each shipment,
the supplier's serial number and name, together with the serial number of
the part, the quantity shipped, and the date received. The executive also
requests that the report include those suppliers on record in the database
from which the company received no shipments at all, accompanied by an
indication that each one shipped nothing at all during the specified period.
Such a request can be expressed in terms of a left outer join.

Suppose that the supplier relation S is as shown below, and relation SP"
is derived from the shipment relation SP by row selection, retaining exclu-

110 • The Advanced Operators

sively those rows that pertain to shipments with SHIPmDATE between the
dates 89-01-01 and 89-06-30 inclusive.

S (S# SNAME . . .) SP" (S# P# SHIP_DATE SHIP_..~)

s l Jones . . . s l p l 89-05-31 1000

s2 S m i t h . . . s l p2 89-03-20 575

s3 Clark . . . s2 p7 89-02-19 150

s4 Rock . . . s4 p2 89-06-15 900

s5 Roth . . . s4 p4 89-04-07 250

s4 p8 89-02-28 650

The left outer join of S on S# with SP on S# is denoted,

SSP ~--S [S# / = S#] SP,

in which the relation S is the left operand. Alternatively, the operands may
be switched and the right outer join may be used,

ssP ~ sP [s# = \ s#] s,

in which the relation S is the right operand.
In either case the extension of SSP is as follows:

SSP (. . . SNAME S#

• . . J o n e s s l

. . . J o n e s s l

. . . S m i t h s2

. . . Clark s3

. . . Rock s4

. . . Rock s4

. . . Rock s4

• . . Roth s5

S# P# SHIP_DATE SHIP_Q)

s l p l 89-05-31 1000

s l p2 89-03-20 575

s2 p7 89-02-19 150

s4 p2 89-06-15 900

s4 p4 89-04-17 250

s4 p8 89-02-28 650

Note that, to conform with the request, the suppliers Clark and Roth in this
report have designations of missing items in the shipments-half of their
r ows~no shipment was received from either of these suppliers in the first
six months of 1989.

In Section 17.5.4, it is argued that, in certain circumstances, the outer
equi-join operator is clearly superior as a view to its inner counterpart. I am
confident that this use of the outer equi-join was not conceived when the
operator was invented.

5.4 m Outer Equiojoins w i t h the MAYBE Qualifier

A common characteristic of real databases is that values are missing in
various rows and columns for a variety of reasons. As a result, a DBMS

5.4 O u t e r E q u i - j o i n s w i t h t h e M A Y B E Q u a l i f i e r • 111

that has only two truth values (TRUE and FALSE) designed into it may be
unable to determine in a non-guessing mode the truth value of a truth-
valued expression in the condition part of a relational request. A relational
DBMS that supports all of the features of RM/V2 has four truth values
designed into it"

TRUE (t), FALSE (f), MAYBE-APPLICABLE (a),

and

MAYBE-INAPPLICABLE (i)

Both of the latter two truth values reflect the fact that missing data can
make it impossible for the DBMS to determine whether the truth value is
T R U E or FALSE. These truth values are distinguished by whether a value
is missing but applicable (simply unknown at this time) or missing and
inapplicable (e.g., the sales commission earned by an employee who is not
a salesman).

While describing the o u t e r e q u i - j o i n s , it is worthwhile to consider the
effect of the MAYBE qualifier on the operator. The MAYBE qualifier
should be distinguished from the MAYBE truth values. For data to be
retrieved, it is normally required that the specified condition evaluate to
TRUE. The MAYBE qualifier alters the truth value that is required for
data to be retrieved. The alteration is from the truth value T R U E to one
of the MAYBE truth values (see Chapters 8 and 10 for more details). In
other words, the data retrieved is that for which the condition is evaluated
to be neither TRUE nor FALSE.

Let al and b3 in S be missing but applicable (A-marked). Let dl and
the second occurrence of b2 in T be missing but applicable (A-marked).
Thus, the new operands are as follows:

s" (A B) T" (C t))

bl b2
a2 b2 - - d2

a3 ~ b3 d3

b4 d4

The 12 possible comparisons between the values from S".B and the
values from T".C have the following truth-values:

Stt, B

T".C
truth

b2
b2

t

bl b2
n n b2 b3 b4

m m m m m m

bl bl bl b2 b2
b2 b3 b4 b3 b4

f f f f f

where t, f, m respectively denote the truth values TRUE, FALSE, and
MAYBE.

112 • The Advanced Operators

The symmetric outer equi-join of S on B with T on C accompanied by
the MAYBE qualifier is denoted

U" = S"[B / = \ C] T" MAYBE.

Its extension is as follows:

U" | A B C D)

- - b l - - d2

a2 b2 - - d2

a 3 - - b 2

a 3 - - - - d2

a3 - - b3 d3

a3 - - b4 d4

Note that < a2 b2 b2 m > is the only tuple that belongs to the inner equi-
join with no MAYBE qualifier. It does not belong to either the inner or
outer equiojoin with the MAYBE qualifier.

In this example, the outer join with MAYBE happens to be equal to
the inner join with MAYBE. In other words, the left outer increment and
the right outer increment happen to be empty in the MAYBE case. In the
next example, all four of the following results are distinct:

inner equi-join TRUE,

outer equi-join TRUE,

inner equi-join MAYBE,

outer equi-join MAYBE.

To provide some additional explanation of these operators, consider the
outer equi-join of S on X with T on Y, where the comparand columns are
S.X and T.Y.

The increment over the inner equi-j0in contributed by the left outer
increment (LOI) is defined as follows:

LOI with or without the MAYBE qualifier: pick out those tuples
from S whose comparand values in the comparand column S.X do
not participate in the inner join, and append to each such tuple a
tuple of nothing but missing values and of size compatible with T.

Non-participation of a comparand value in the MAYBE case means that
no comparison involving that value yields the truth-value m. Non-partici-
pation in the true case (reflected by the absence of the MAYBE qualifier)
means that no comparison involving that value yields the truth value t.

The increment over the inner equi-join contributed by the right outer
increment (ROI) is defined as follows:

ROI with or without the MAYBE qualifier: pick out those tuples
from T whose comparand values in the comparand column T.Y do
not participate in the inner join, and append to each such tuple a
tuple of nothing but missing values and of size compatible with S.

5.5 T h e O u t e r N a t u r a l J o i n s • 113

Now for the p romised example . A s s u m e the ope rands are as follows"

S2 (A B) T2 (C D)

al - - b2 dl
a2 b2 b2 d2
a3 b3 b3 d3

b4 d4

The 12 possible compar i sons b e t w e e n the occur rences of values in S2.B and

T2 .C have the following t ruth-values:

S2.B b2 b2 b3 b2 b2 b3 b3 b3

T2.C b2 b2 b3 b2 b2 b3 b4 b3 b4 b2 b2 b4

truth t t t m m m m f f f f f

The results ob ta ined by applying the four ope ra to r s are as follows:

Inner equi-join TRUE Inner equi-join MAYBE

a2 b2 b2 dl al - - b2 dl

a2 b2 b2 d2 al - - b2 d2

a3 b3 b3 d3 al - - b3 d3

al - - b4 d4

Outer equi-join TRUE Outer equi-join MAYBE

al - - - - - - } LOI a2 b2 - -

a2 b2 b2 dl "1 a3 b3

a2 b2 b2 d2 I inner al ~ b2

a3 b3 b3 d3 al ~ b2

~ b4 d4 } ROI al ~ b3
al ~ b4

} LOI

dl

d2 inner
d3
d4

No te tha t R O I is e m p t y in the outer equi - jo in with M A Y B E . All four of

these re la t ions are distinct.

5.5 • T h e O u t e r N a t u r a l J o i n s

Cons ider two re la t ions S and T that h a p p e n to have extens ions as follows:

S (P A) T (Q B)

kl al ml a2
k2 a2 m2 a2
k3 a2 m3 a4
k4 a3

Suppose that co lumns S .A and T .B draw their values f rom a c o m m o n

domain , and it is t he re fo re meaningfu l to c o m p a r e values f rom one co lumn

114 • The Advanced Operators

with values from the other. Consider two kinds of joins: the symmetric outer
natural join of S on A with T on B, and the symmetric outer equi-join of S
on A with T on B.

U = S [A / * \ B] T
V = S [A / = \ B] T

left outer join

Symmetric
outer natural

join
U (P AB Q)

Symmetric outer
equi-join

V (P A B Q)

kl a l ~ kl a l ~

k4 a3 - - k4 a3 - -

k2 a2 rn l k2 a2 a2 m l

k3 a2 m l right outer join k3 a2 a2 m l

k2 a2 m2 k2 a2 a2 m2

k3 a2 m2 k3 a2 a2 m2

a4 rn3 ~ ~ a4 m3

In table U, the left outer and right outer natural joins are shown as subre-
lations of the symmetric outer natural join. The three outer natural joins are
defined constructively (Features RZ-16-RZ-18)mtha t is, in terms of an
algorithm that will generate the appropriate result. An implementation can
make use of this algorithm, but is not required to do so. It is only necessary
that the implementation generate the same result as the defining algorithm.

R Z - 1 6 L e f t O u t e r N a t u r a l J o i n

First, form the inner natural equi-join W of S on A with T on B.
Then, form the relational difference W1 = S - W [P, A]. Then,
extend W1 per S to yield W2. Finally, form the left outer natural
join LONJ = W union W2.

R Z - I 7 R i g h t O u t e r N a t u r a l J o i n

First, form the inner natural equi-join W of S on A with T on B.
Then, form the relational difference W3 = T - W [A, Q]. Then,
extend W3 per S to yield W4. Finally, form the right outer natural
join RONJ = W union W4.

R Z - 1 8 S y m m e t r i c O u t e r N a t u r a l J o i n

First, form W and W2 as in the first three steps of Feature RZ-16.
Then, form W4 as in the first three steps of Feature RZ-17. Finally,

5.6 T h e O u t e r S e t O p e r a t o r s • 115

form the symmetric outer natural join by taking the union: SONJ =
W2 union W union W4. Alternatively, symmetric outer join = LONJ
union RONJ. Note that union in the relational model always includes
removal of duplicate rows from the result.

It may be recalled that the inner natural join is a simple projection of
the inner equi-join, in which one of two mutually redundant comparand
columns is removed. The outer joins, however, are not related to one another
so simply.

The columns in the outer equi-join that stem from the comparand col-
umns in the operands are not necessarily mutually redundant columns. In
fact, in this example columns A and B are clearly not mutually redundant.
Thus, the outer natural join is not necessarily a projection of the outer equi-
jo inma fact that may decrease the usefulness of the outer natural join.

5 .6 • T h e O u t e r S e t O p e r a t o r s

In this section I define the three outer set operators in the relational m o d e l ~
union, set difference, and set intersection--and compare them with their
inner counterparts. A close correspondence is shown to exist between an
identity that pertains to the inner operators and one that pertains to the
outer operators. 1

5.6.1 T h e I n n e r O p e r a t o r s R e v i s i t e d

In the relational model, each of the inner set operatorsmunion, set differ-
ence, and set intersection--is applied exclusively to a pair of relations of
precisely the same type. In other words, between the two operands (relations
S and T, say) there must exist a one-to-one correspondence between the
columns of S and the columns of T, such that each of the pair of columns
in this correspondence draws its values from a common domain. Any pair
of relations that are of precisely the same type are said to be union-
compatible. When restricted in this way, these operators are called relational
union, relational difference, and relational intersection, respectively.

This correspondence must be specified in the expression that invokes
the pertinent relational operator. The reason is as follows. The domains
from which the columns of S and T draw their values are, in general,
inadequate to establish such a correspondence, because two or more of the
columns of either S or T may draw their values from the same domain.

1. I am grateful to Nathan Goodman [1988], who contributed to the definitions in their final

form.

116 • The Advanced Operators

An important relationship called the inner identity holds between these
three inner relational operators"

(s u T) = (S - T) U (S n T) U (T - S)

for any relations S and T that are union-compatible, where the minus sign
denotes relational difference.

5.6.2 T h e O u t e r Se t O p e r a t o r s

With the inner set operators, the operands S and T are required to be union-
compatible, that is, of exactly the same type. One important reason for the
outer set operators is to allow the operands S and T to differ somewhat in
type, and even in degree. Thus, S may include columns not found in T, and
T may include columns not found in S.

In the context of the inner set operators, two rows (one from S, the
other from T) are duplicates of one another if there is pairwise equality
between corresponding components. In the context of the outer set opera-
tors, however, equality between a row in S and a row in T is seldom
encountered, because S and T are not required to be union-compatible.
Therefore, it is necessary to include the following concept, which is more
general than row equality.

A row from relation S is a close counterpart of a row from relation T if
all the following conditions hold:

• the operands S and T have primary keys defined on the same domain;
[] the two rows (one from S, one from T) have equal primary-key values;
• pairwise equality in non-missing values holds for those properties of S

that correspond to properties of T,

This concept is heavily used in the outer set operators: union, difference,
and intersection.

The outer set operators are potentially important in distributed database
management. For example, consider a bank that stores customer accounts
in a distributed database. Suppose that customer accounts are represented
using logical relations of different types in different cities or in different
states. The differences may be slight, or may be quite significant. An extreme
case, not likely to be found in banks, and not part of this example, is that
S and T have no domains at all in common. In the discussion following
Feature RZ-19, the bank example is pursued in more detail with explicit
data.

For each of the three outer set operators, a precise definition is presented
followed by an example and some informal discussion. The definitions of
the outer operators are crafted so that the identity cited for the three inner
operators applies also to the outer operators.

The following sample relations are used as operands to illustrate the
outer set operations:

5.6 The Outer Set Operators • 117

S (A B } T (E C) T" (E C }

al bl a2 c3 al cl
al b2 a3 c4 al c2
a2 b3 a2 c3

a3 c4

For generality, columns A, B, C, and E may be either simple or composite.
B is assumed to consist of al l--and nothing b u t ~ t h e simple columns whose
domains do not occur in T. C is similarly assumed to consist of al l--and
nothing b u t ~ t h e columns whose domains do not occur in S. Thus, A consists
of al l--and nothing b u t ~ t h e simple columns whose domains occur in both
S and T. A similar remark applies to column E.

In the examples, either the pair S and T or the pair S and T" is used as
the two operands. All of the columns S.A, T.E, T".E draw their values from
a common domain, whether simple or composite. Columns B and C draw
their values from domains that are different from one another and from the
domain of A.

R Z - 1 9 Outer U n i o n

Suppose the operands of outer union are S and T. As the first step,
apply the extend operator to both S and T: extend S per T and call
it St; extend T per S and call it Ts. Now, St and Ts are of the same
degree, and each contains columns based on all the domains in S
and all the domains in T. In fact, St and Ts are completely union-
compatible. As the second and final step, form St union Ts, which
yields the outer union S \ U / T .

The outer union S \ U / T of relation S with relation T is generated by
means of the following three steps:

1. form St = S per T;

2. form Ts = T per S;

3. form S \ U / T = St U Ts.

The close-counterpart concept (see p. 116 for its definition) is used instead
of row equality to remove duplicate rows.

By definition,

S \ U / T = (S p e r T) U (T p e r S) .

And clearly,

S \ U / T = T \ U / S.

118 • The Advanced Operators

Take the sample relations as operands, and apply the outer union. The
results are as follows:

S \ U / T (A B C) S \ U / T " (A B C)

al b l - al bl - - (1)

al b2 - - al b2

a2 b 3 - a2 b3

a 2 - c3 a l - c1(2)
a3 m c4 al - - c2

a2 - - c3

a3 - - c4

Note that rows of S \ U / T " marked (1) and (2) in the preceding
R-table are not coalesced into < al, bl, cl >, primarily because the operands
S and T" do not have primary keys with a common domain. Judging from
their present extensions, S and T" merely have weak identifiers. Lacking a
common primary key means that a typical row of S and a typical row of T"
represent quite different types of objects in the micro-world. Under these
circumstances, it would be very risky to assume that the missing B-compo-
nent of row < al, m , cl > of operand T" is equal to b l, and that the
missing C-component of row < al, bl, - - > of operand S is equal to cl.

In the following example, the coalescing of rows is acceptable. In this
example, a bank has accounts of two different types. Suppose that one type
is recorded in relation ACCOUNT; the other, in relation ACCT. The
primary key of each relation is ACCOUNT#. No claim is made, of course,
that the few columns in each relation are adequate for any bank. The small
number was selected to keep the example simple.

(ANNUAL) ($)
ACCOUNT (ACCOUNT# NAME INTEREST_RATE BALANCE)

121-537 Brown 7.5 10,765
129-972 Baker 8.0 25,000
126-343 Smith 7.5 15,000
302-888 Jones 8.0 18,000

ACCT (ACCOUNT# NAME MATURITY~DATE BALANCE)

645-802 Green 95-12-31 35,680
645-195 Hawk 94-09-30 50,000
640-466 Shaw 96-03-31 22,500
642-733 Piper 97-10-30 30,900
302-888 Jones 96-07-31 18,000

Note that the first table is unique in having INTERES~__RATE as a
column, while the second table is unique in having M A T U R I T Y ~ D A T E
as a column. Thus, these two relations are not union-compatible. Part of

5.6 The Outer Set Operators • 119

the outer union operation is to convert them into a pair of relations that are
union-compatible by applying the extend operator to each one.

For purposes of exposition, not implementation, the outer union A of
these two relations is developed in two stages. First is the generation of a
temporary result A':

(ANNUAL) ($)
A' (ACCOUNT# NAME MATURITY=DATE INTEREST_RATE BALANCE)

121-537 Brown - - 7.5 10,765

129-972 Baker m 8.0 25,000

126-343 Smi th m 7.5 15,000

645-802 Green 95-12-31 ~ 35,680

645-195 Hawk 94-09-30 ~ 50,000

640-466 Shaw 96-03-31 ~ 22,500

642-733 Piper 97-10-30 M 30,900

302-888 Jones - - 8.0 18,000

302-888 Jones 96-07-31 m 18,000

The final result A differs from A' in only one respect: the DBMS
attempts to coalesce the two rows describing accounts held by Jones, because
the two operands have a primary key in common, and these rows have a
common primary-key value. The attempt succeeds because each of the
corresponding non-missing properties in the two rows has ~ pairwise equal
values. Thus, the two Jones rows in A' are close counterparts. The end
result A contains the row < 302-888, Jones, 96-07-31, 8.0, 18,000 > instead
of the two Jones rows in A' .

R Z - 2 0 Outer Set D i f f e r e n c e

The outer set difference S \ - / T between relations S and T, with
S as the information source and T as the reducing relation, is
generated by means of the following steps:

1. form St = S per T;

2. form Ts = T per S;

3. form the semi-equi-join U = St[sem =]Ts;

4. f o r m S \ - / T = St - U.

The close-counterpart concept (p. 116) is used instead of row equality.

By definition,

S \ - / T = St - (St sere= Ts).

120 • T h e A d v a n c e d Operators

And dearly,

S \ - / T 4= T \ - / S .

Take the sample relations as operands, and apply the outer set difference:

S \ - / T (A B C)

al bl

al b2

T \ - / S (A B C)

a3 --- c4

S \ - / T " (A B C)

empty

T " \ - / S (A B C)

a3 - - c4

Once again, consider the operands ACCOUNT and ACCT in the bank
example. Suppose that a user requests all of the accounts information from
the ACCOUNT relation, but excluding those rows that have close counter-
parts in the ACCT relation. The DBMS responds by extending each operand
in accordance with the other, and then removing those rows in the extended
ACCOUNT relation that have close counterparts in the extended ACCT
relation. The result is defined by

DIFF ~ ACCOUNT \ - / A C C T .

Its extension is as follows:

(ANNUAL) (S)
DIFF (ACCOUNT# NAME MATURITY_DATE INTEREST_RATE BALANCE)

121-537 Brown - - 7.5 10,765

129-972 Baker --- 8.0 25,000

126-343 Smith - - 7.5 15,000

R Z - 2 1 Outer Set I n t e r s e c t i o n

The outer set intersection S \ n / T of relations S and T is generated
by means of the following steps:

1. form St ~- S per T;

2. form Ts ~- T per S;

3. form U ~- St sem = Ts;

4. form V ~- Ts sem= St;

5. f o r m S \ n / T ~ - U n V.

The close-counterpart concept (p. 116) is used instead of row equafity.

5.6 The Outer Set Operators • 121

By definition,

S N n / T = ((S per T) sere = (T per S)) U ((T per S) sere =
(S per T))

and clearly,

S \ A / T = T \ N / S .

Take the sample relations as operands, and apply the outer set intersection:

s \ n / T (A B C)

a2 b3

a2 ~ c3

S \ n / T " (A

al

al

a2

al

al

a2

B C)

bl

b2

b3

cl

c2

c3

T \ n / s (A B C)

a2 b3

a2 - - c3

T " \ A / S (A B C)

al b l

al b2

a2 b3

al - - c l

al ~ c2

a2 - - c3

The sample operands S and T, displayed at the beginning of this section,
will now be used again to show that the symmetric outer join yields a quite
different result from that generated by the outer union, difference, and
intersection operators. The composite columns labeled A and E are used as
comparands:

U = S [A \ = / E] T .

U (A B E C)

a l b l ~

a l b2 ~

a2 b3 a2 c3

~ a3 c4

Once again consider the operands ACCOUNT and ACCT in the bank
example. Suppose that a user requests all the accounts information that is
common to the ACCOUNT relation and the ACCT relation. The DBMS
responds by extending each operand per the other, and then preserving
those rows in the extended ACCOUNT relation that have close counterparts
in the extended ACCT relation.

122 • The Advanced Operators

The result is defined by

INT ~-- ACCOUNT \ n / ACCT.

Its extension is as follows"

ANNUAL $
INT (ACCOUNT# NAME MATURITY__DATE INTEREST__RATE BALANCE)

302-888 Jones 96-07-31 8.0 18,000

5.6.3 The Relationship be tween t h e O u t e r Set Operators

It should now be clear that, for any pair of relations S and T, the following
identity holds"

S \ U / T = (S \ - / T) U (S \ N / T) U (T \ - / S) .

This outer identity is very similar to the relationship between the inner
set operators; the latter identity was defined at the end of Section 5.6.1.

This outer identity can be seen in action by applying it to the two cases
of outer union. The first case makes use of the sample relations S and T.

s \ u / T (A B C)

al bl - - 1
al b2 ~ S \ - / T

a2 b3 - - [
J a2 ~ c3 S \ n / T = T \ n / S

a3 - - c4 } T \ - / S

The second case makes use of the relations S and T""

S \ u / T " (A B C)

S \ - / T " empty

al bl - -
al b2
a2 b3
al ~ cl
al ~ c2
a2 = c3

S \ n / T " = T" \ n / S

a3 - - c4 t T " \ - / S

5.7 The Inner and Outer T-join • 123

5.7 m T h e I n n e r a n d O u t e r T - j o i n

The well-known inner joins are based on the 10 comparators:

1. EQUALITY

2. INEQUALITY

3. LESS THAN

4. LESS THAN OR EQUAL TO

5. GREATER THAN

6. GREATER THAN OR EQUAL TO

7. GREATEST LESS THAN

8. GREATEST LESS THAN OR EQUAL TO

9. LEAST GREATER THAN

10. LEAST GREATER THAN OR EQUAL TO

These inner joins, together with the corresponding outer joins, are readily
accepted today. The T-join operators about to be described are new kinds
of joins, principally based on the four ordering comparators (numbered 3-
6 in the preceding list). The inner T-join produces a subset of that produced
by the corresponding inner join; the outer T-join produces a subset of that
generated by the corresponding outer join. The T-joins should be regarded
as a proposed enrichment of the relational model, not a replacement for
any of the original inner joins or outer joins.

The topic of T-joins is a complicated one. The reader may wish to skip
to Section 5.8, which is much simpler.

5.7.1 I n t r o d u c t i o n to t h e T- jo in O p e r a t o r s

The four ordering comparators are as follows"

Strict: LESS THAN GREATER THAN

Non-strict: LESS THAN GREATER THAN
OR EQUAL TO OR EQUAL TO

Full joins based on these comparators frequently yield a result that is
not very informative because it includes too many concatenations of the
tuples of the operands. For example, consider the following relations S and
T:

s (P A) T (Q B)

kl 4 ml 3
k2 6 m2 5
k3 12 m3 9
k4 18 m4 11
k5 20 m5 13

m6 15

124 • The Advanced Operators

Suppose that A and B draw their values from the same domain, and
that the comparator LESS THAN (<) is applicable on this domain. One of
the full joins is

U = S [A < B] T .

Its extension is as follows:

U (P A B Q)

kl 4 5 m2
kl 4 9 m3
kl 4 11 m4
kl 4 13 m5
kl 4 15 m6
k2 6 9 m3
k2 6 11 m4
k2 6 13 m5
k2 6 15 m6
k3 12 13 m5
k3 12 15 m6

Of the items being compared (A and B), if both are calendar dates,
times of day, or combinations of dates and times, a join is often needed that
is "leaner" than this full join ("leaner" in the sense that it has fewer rows
or tuples). T-joins are intended to fill this role.

Each of the new joins is defined constructively~that is, in terms of an
algorithm that will generate the appropriate result. An implementation can
make use of this algorithm, but is not required to do so. All that is necessary
is that the implementation generate the same result as the defining algorithm.

An important first step in the defining algorithm is to order the rows in
each operand on the basis of the values in the comparand column of that
operand. If the comparand column in each of the operands is guaranteed
by a declaration in the catalog to contain no duplicate values, then precisely
the same ordering will be generated again if the command is re-executed
later, provided the data in the operand relations has not changed. If,
however, duplicate values are permitted in one or both of these columns,
the DBMS must be able to make use of values in other columns to resolve
ties in the comparand columns.

These other columns are called tie-breaking columns. The need for
resolving these ties stems from the need to make the operation precisely
repeatable, if it should be re-executed later with the operands in exactly the
same state at the relational level, but not necessarily in the same state at
the storage level. Precise re-executability of relational commands is required
by Fundamental Law 15 (see Chapter 29).

To be a good tie-breaker, a tie-breaking column should be of a highly
discriminating character: that is, the number of distinct values in such a
column divided by the number of rows in the operand must be as close as

5.7 The Inner and Outer T-join • 125

possible to one. Clearly, the best tie-breaking columns are the primary-key
column (or for certain kinds of views, the weak identifier) and any other
column for which there is a declaration in the catalog that each of its values
must be unique within that column.

Every datum in a computer-supported database is represented by a bit
string of some length. Now, every bit string of length L bits (say) can be
interpreted as a binary integer, whether that bit string represents a number,
a string of logical truth-values, or a string of characters. This integer can
therefore be arithmetically compared with every other bit string of length
L if this latter string is also interpreted as a binary integer.

Thus, it might be proposed that, whenever a tie is encountered in which
two equal values from the comparand columns are competing to qualify as
representatives of two candidate rows of one of the operands, the tie can
be broken by (1) descending to the bit level in other items of data and
(2) comparing the corresponding binary integers arithmetically. To achieve
precise repeatability of the operation, however, this approach assumes too
much~namely, that the representation of data by the DBMS in storage
remains constant. This approach departs from the principle that all actions
in the relational model should be explicable either within the model or, at
the very least, at the same level of abstraction as the model.

To avoid complexity, the approach taken in RM/V2 is to assume that
each of the operands includes a primary key, and that the DBMS has
information concerning which column of that operand, simple or composite,
constitutes that key. This assumption is consistent with the expected use of
T-joins for generating schedules. After all, when scheduling activities, it is
necessary to know precisely for each line in the schedule which activity is
involved.

In addition to discussing the repeatable generation of orderings, it is
necessary to classify the comparators as in the beginning of this section. The
comparators involving ordering are called the ordering comparators. The
two strict ordering comparators are LESS THAN and GREATER THAN,
and the two non-strict ordering comparators are LESS THAN OR EQUAL
TO and GREATER THAN OR EQUAL TO. The two non-ordering com-
parators are EQUAL TO and NOT EQUAL TO, but these two do not
participate in the proposed new joins.

These new joins are introduced step by step in Sections 5.7.2 and 5.7.3.
The sample relations S and T cited earlier are used to illustrate various
points.

5.7.2 T h e I n n e r T- jo in

RZ-22 through RZ-25 I n n e r T - j o i n s

The four new inner joins, called the inner T-joins, are each based
on one of the four ordering comparators: LESS THAN, LESS

126 • The Advanced Operators

THAN OR EQUAL TO, GREATER THAN, or GREATER
THAN OR EQUAL TO.

Suppose that the inner T-join is distinguished from the 10 full inner joins
by doubling the square brackets around the comparing expression. For
example,

V = S [[A < B I] T .

Let n = 22,23,24,25. Then the RZ feature with n as its number is a T-join
that makes use of the comparator numbered n + 19 in the list of comparators
cited in the first part of Section 5.7. An interesting property of V is that
each tuple of S contributes to either no tuple at all in V or else to exactly
one tuple in V. A similar remark can be made about contributions from
tuples of T.

Next, T-joins are examined using the strict-ordering comparators LESS
THAN and GREATER THAN, followed by an examination of T-joins using
the non-strict-ordering comparators LESS THAN OR EQUAL TO and
GREATER THAN OR EQUAL TO.

Strict Ordering in T-joins The result V is formed by the DBMS in two
major steps, which are described here to enable DBMS vendors and users
to understand T-joins. Because T-joins are expected to be built into DBMS
products, it should never be necessary for the user to program these steps.

,

Suppose that column P is the primary key of relation S, and thus its tie-
breaker, while column Q is the primary key and tie-breaker of relation
T. Suppose that relation S is ordered by increasing values of A; relation
T, by increasing values of B. Whenever repetitions of a value are
encountered in A, break the tie by selecting the corresponding rows
from S in an order determined by increasing values of P. Whenever
repetitions of a value are encountered in B, select the corresponding
rows from T in an order determined by increasing values of Q.

Take the first tuple from S. This is the tuple with the least value from
column A of relation S and, in case of ties, the least value of P. Note
that the DBMS applies the comparator LESS THAN (<) to P even if
there is a declaration in the catalog that < is not meaningfully applicable
to the domain of P. Concatenate it with the first available tuple from T
that satisfies A < B. This is the tuple with the least value from column
B of T, and in case of ties, the least value of Q. Assuming one such
tuple is found in T, mark that tuple in T as used and unavailable. To
complete this first minor part of Step 2, contribute the concatenated
tuple to V.

Now take the second tuple from S and concatenate it with the first
available tuple in T for which A < B. Assuming one such tuple is found

5.7 T h e I n n e r a n d O u t e r T- jo in • 127

in T, mark that tuple as used and unavailable. To complete this second
minor part of Step 2, contribute the concatenated tuple to V. These
minor steps are repeated until the whole of S is scanned. The availability
marks are then erased from the operands.

This explanation is constructive and is intended to define the inner
T-join based on the comparator <. Naturally, when the T-join operator is
implemented within a DBMS, it is not required that this particular algorithm
be used. All that is required is that, whatever operands are given, exactly
the same result must be generated by the implemented algorithm and by
this algorithm.

The extension of V resulting from this procedure is as follows:

V (P A B Q)

kl 4 5 m2

k2 6 9 m3
k3 12 13 m5

The full join U could be an intermediate product in the formation of V,
but U is not required to be an intermediate product. Although the T-join
V represents a feasible schedule (assuming that properties A and B are date-
or time-oriented), it is important to observe that some values of A and some
of B may be omitted altogether in the result.

B = 3 can be thought of as a non-participant because it is a value of B
less than every value of A. Similarly, A = 18 and A = 20 can be thought
of as non-participants because they are values of A that are greater than
every value of B.

The non-participants encountered so far are terminal. There may exist
one or more non-terminal non-participants. In the preceding example, B =
11 is a non-terminal non-participant.

Now, let us investigate

W = T [[B > A]] S .

One might expect that W would have the same information content as V
because the analagous full joins are equal to one another. However, this is
not the case with T-joins.

To construct W conceptually,

• relation S should be ordered by decreasing values of B;

• relation R should be ordered by decreasing values of A.

Now, the same general procedure is followed as used in forming V.
Relation S is ordered by decreasing values of A, and relation T is ordered
by decreasing values of B. Take the first tuple from T. This is the tuple with
the greatest value in column B of relation T and, in case of ties, the greatest

128 a The A d v a n c e d Operators

value of Q. Note that the DBMS applies the comparator > to Q even if
there is a declaration in the catalog that < is not meaningfully applicable to
the domain of P. Concatenate it with the first tuple from S that satisfies
B > A. This is the tuple with the greatest value of A. Assuming that one
such tuple is found in R, mark that tuple as used and no longer available.
Contribute the concatenated tuple to W. These steps are repeated until the
whole of T is scanned. The availability marks are then erased from the
operands.

The extension of W resulting from this procedure is as follows:

w (a B A P }

m6 15 12 k3
m5 13 6 k2
m4 11 4 kl

Suppose that column ordering is disregarded (this is quite normal in the
relational model), but that the column headings are noted. Clearly, W is
not identical to V in information content. In fact, every tuple of W is different
from every tuple of V (a strong contrast not encountered in some other
examples).

Moreover, the values that do not participate in W are

A = 18, A = 20, B = 3, B = 5, B = 9.

All of these non-participants are terminal. In contrast to V, in W there is
no non-terminal non-participant. It is therefore important to take care in
choosing the ordering of terms in an expression defining a T-join; otherwise,
the meaning of an intended query may not be conveyed accurately to the
DBMS.

Because the interesting case is that in which duplicate values actually
occur in A, in B, or in both, this part is based on slightly altered extensions
for S and T. The tuples marked with an asterisk ("*") have been added,
and the two occurrences of 6 as a value of A are distinguished by the primary
key values k2 and k6 in column P of relation S'.

s' (P A) T' (Q B}

kl 4 ml 3
k2 6 m2 5
k6 6* m7 7*
k3 12 m3 9
k4 18 m4 11
k5 20 rn5 13

m6 15

Suppose as before that A and B draw their values from the same domain.
One of the full joins is

U' = S ' [A K B] T ' .

5.7 The Inner and Outer T-join • 129

Its extension has 17 tuples (of course, more than U)"

Expository row number U' (P A B Q)

1 kl 4 5 m2
2 kl 4 9 m3
3 kl 4 11 m4
4 kl 4 13 m5
5 kl 4 15 m6
6 k2 6 7 m7
7 k2 6 9 m3
8 k2 6 11 m4
9 k2 6 13 m5
0 k2 6 15 m6
1 k7 6 7 m7
2 k7 6 9 m3
3 k7 6 11 m4
4 k7 6 13 m5
5 k7 6 15 m6
6 k3 12 13 m5
7 k3 12 15 m6

Of course, the row number at the extreme left appears for expository
purposes only.

Now consider

v ' = s ' [[A < a 11 T ' .

Its extension is as follows:

V' (P A B O)

kl 4 5 m2
k2 6 7 m7
k6 6 9 m3
k5 12 13 m5

Note that, in this example, A = 18, A = 20, B = 3 remain terminal non-
participants, while B = 11 remains a non-terminal non-participant. More-
over, if

W' = S' [[B > A l l R ' ,

then W' remains quite different from V'"

w' (Q B A P)

m6 15 12 k3
m5 13 6 k6
m4 11 6 k2
m3 9 4 kl

130 • The Advanced Operators

Clearly, W' is quite different from V' in information content. In fact,
in this case every tuple of W' is different from every tuple of V'.

Non-strict Ordering in T-joins Now, it is appropriate to consider the non-
strict comparators LESS THAN OR EQUAL TO (< =) and G R E A T E R
THAN OR EQUAL TO (> =). The introduction of equality as part of the
comparing brings with it a new problem: the possibility of cross-ties, in which
two or more comparand values from one comparand column are not only
equal to one another, but are also equal to two or more comparand values
from the other comparand column, These occurrences of equality both within
and between values in the comparand columns contribute at least four rows
to the result of a full join. The question arises: In what way are certain rows
selected to participate in a T,join result, while other rows are rejected?

In Chapter 17, "View updatability," the term quad is defined as a
contribution of several rows to a join arising from a specific value that occurs
at least twice in each comparand column, say m times in the first-cited
comparand column and n times in the other comparand column. Such a
contribution to any full join based on a comparator that involves equality
must consist of a number of rows that is the product of the two integers m
and n. Since each integer is at least 2, this product cannot be less than 4:
hence, the name "quad." Clearly, a quad contribution cannot consist of 3,
5, 7, 11, or any prime number of rows. When quads can occur in T-join
operands, the selection of cross-ties that survive in the result becomes an
issue that must be handled by the DBMS (not the user).

The following example illustrates a quad. Suppose that relations S and
T contain rows as indicated:

S (P A) T (B Q)

k7 13 13 m5
k5 13 13 m8

Then, the full LESS THAN OR E Q U A L TO join of S on A, with T
on B, includes the following four rows because of the cross-ties arising from
the multiple occurrences of the value 13 in both A and B:

R o w label

r o w t

r o w u

r o w v

r o w w

Other rows

U (P A B a)

k5 13 13 m5
k5 13 13 m8
k7 13 13 m5
k7 13 13 m8

Note that the row labels are purely expository.
In a T-join, each row of each operand may be used once only. This

5.7 The Inner and Outer T-join m 131

means that each of the rows < k5, 13 > and < k7, 13 > from S can be
used once only, not twice as indicated in the preceding full join. Thus, in
the T-join result for this example the DBMS must choose between row t
and row u. The DBMS must also choose between row v and row w.

The defining algorithm for T-joins resolves cross-ties by selecting those
two rows from any quad that contains in the primary key columns the
combination of values that are greatest within the quad that remain unused
in the result.

Remember that, in general, a quad contains m × n rows, where m and n
are at least two.

In the example, columns P and Q are the primary-key columns. Row t
contains the combination of least keys in the quad < k5, m5 >, while row
w contains the combination of the greatest keys in the quad < k7, m8 >.
Thus, row t and row w are selected to be the only participants in the LESS
THAN OR E Q U A L TO T-join of S on A with T on B.

This algorithm is designed to make execution of all T-joins repeatable
in the sense that, if the operands remain unchanged, so does the r e su l t~
even if access methods and representations of the operands have been
changed in storage.

If the examples of S and T were those illustrated in Section 5.7.1 and
the comparators were changed from strict to non-strict, the resulting relations
U, V, W would be unchanged, because there were no occurrences of equality
when comparing values from A with values from B. A similar remark applies
to S' and T' in the preceding discussion. Therefore, relations S" and T" are
introduced. Each of these relations has ties in the comparand columns; the
pair of relations also has cross-ties:

S" (P A) T" (Q B)

kl 4 ml 3
k2 6 m2 5
k6 6 m7 6
k3 8 m8 6
k4 9 m3 9
k5 10 m4 11

m5 13
m6 15

Consider the T-join V" of S" on A with T" on B using the comparator
LESS THAN OR E Q U A L TO (< =). The defining expression for this join
is

V " = S"[[A < = B l] T".

The extension of V" is as follows"

132 • The A d v a n c e d Operators

V" (P A B Q)

k1 4 5 m2
k2 6 6 m7
k6 6 6 m8
k3 8 9 m3
k4 9 13 m5

Note that, in resolving cross-ties, the DBMS did not select the rows < k2,
6, 6, m8 > and < k6, 6, 6, m7 > to be members of V".

The new problem that arises with the non-strict ordering comparators
is the need to resolve cross-ties between comparand values by use of columns
other than the comparand columns. The technique built into T-joins provides
a systematic resolution.

The following practical example exhibits some of the limitations in the
present version of the T-join operator. Suppose that students have registered
for certain classes that are scheduled to run concurrently in various rooms
and buildings. The relation ROOM identifies and describes each room that
is available for classes. The relation CLASS identifies and describes each

ROOM

CLASS

class.

R #

BLDG

SIZE

Room serial number

Building name

Number of seats for students

C#

STUDENTS

Class identifier

Number of students registered for a class

Assume the following extensions for these two relations"

ROOM (R# BLDG SIZE)

rl lab 70
r2 lab 40
r3 lab 50
r4 tower 85
r5 tower 30
r6 tower 65
r7 tower 55

CLASS (C# STUDENTS)

cl 80 75
c2 70 65
c3 65 60
c4 55 50
c5 50 45
c6 40 35

alternative column of data

To assign any class to a room, it is required that the room have a number
of seats in excess of the number of students in the class. The T-join operator
can be used to assign classes to rooms in two ways:

U1 ~ CLASS [[STUDENTS < SIZE 1] ROOM
U2 ~ ROOM [[SIZE > STUDENTS 11 CLASS.

5.7 The Inner and Outer T-join • 133

Let us illustrate these two approaches. First, the rows of the operand
CLASS are ordered by enrollment in each class, and the rows of ROOM
are ordered by room s ize~bo th in ascending order, in preparation for the
derivation of U1.

CLASS" (C# STUDENTS) ROOM" (R# BLDG SIZE)

c6 40 r5 tower 30

c5 50 r2 lab 40
c4 55 r3 lab 50
c3 65 r7 tower 55

c2 70 r6 tower 65
cl 80 rl lab 70

r4 tower 85

Ui ~--CLASS [[STUDENTS < SIZE]] ROOM

U1 (C# STUDENTS SIZE R# BLDG)

c6 40 50 r3 lab
c5 50 55 r7 tower

c4 55 65 r6 tower
c3 65 70 rl lab
c2 70 85 r4 tower

In the second attack on this problem, the rows of the operand ROOM
are ordered by room size, and the rows of the operand CLASS are ordered
by enrollment in each class, both in descending order, in preparation for the
derivation of U2.

ROOM" (R# BLDG SIZE) CLASS" (C# STUDENTS)

r4 tower 85 cl 80
rl lab 70 c2 70
r6 tower 65 c3 65
r7 tower 55 c4 55
r3 lab 50 c5 50
r2 lab 40 c6 40

r5 tower 30

U2 ~ ROOM [[SIZE > STUDENTS]] CLASS

U2 (R# BLDG SIZE STUDENTS C#)

r4 tower 85 80 cl
rl lab 70 65 c3
r6 tower 65 55 c4
r7 tower 55 50 c5
r3 lab 50 40 c6

134 • The Advanced Operators

In this example, the two results U1 and U2 are different from one
another. Neither of the T-joins using LESS THAN and GREATER THAN,
respectively, assigns all of the classes to rooms. Class cl is omitted from
assignment in the first T-join, and class c2 in the second. However, if the
comparators are changed to LESS THAN OR EQUAL TO and GREATER
THAN OR EQUAL TO each one of these T-joins assigns all of the classes
to rooms. In general, given any collection of classes and any collection of
rooms, and the requirement that distinct classes be assigned to distinct
rooms, there is no guarantee that each and every class can be assigned.

5.7.3 T h e O u t e r T - j o i n

The outer T-joins, like the inner T-joins defined in Section 5.7.2, are each
based on one of the four ordering comparators.

For each inner T-join, three kinds of outer T-joins are potentially useful:
the left outer T-join, the right outer T-join, and the symmetric T-join. These
outer T-joins are now defined in a constructive manner, but with no restric-
tion intended on how they are implemented.

R Z - 2 6 through RZ-37 O u t e r T - j o i n s

The outer T-join of relations S on A with T on B consists of the
inner T-join U of S on A with T on B, together with additional sets
of tuples, called the outer increments. The inner T-join of S on A
with T on B is denoted

v = s [[n @ B]] T,

where "@" stands for one of the four ordering comparators. S is
called the left operand; T, the right operand.

There are two distinctly defined outer increments. To construct
the left outer increment, collect those tuples of the left operand S
that do not happen to participate in the inner T-join; to each of
these, append a sufficient number of marked values to indicate that
the value of each component of a tuple from T is missing but
applicable. To construct the right outer increment, collect those tu-
ples of the right operand T that do not happen to participate in the
inner T-join; to each of these, append a sufficient number of marked
values to indicate that the value of each component of a tuple from
S is missing but applicable.

Each outer T-join is the union of the corresponding inner T-join,
together with the following:

the left outer increment for the 4 left outer T-joins RZ-26 through
RZ-29;

5.7 The Inner and Outer T-join • 135

l the right outer increment for the 4 right outer T-joins RZ-30
through RZ-33;

• both increments for the 4 symmetric outer T-joins RZ-34 through
RZ-37.

Suppose that the outer joins of S on A with T on B, using the comparator
@, are denoted as follows:

Left outer T-join

Right outer T-join

Symmetric outer T-join

VL = S [o [A @ B]] T

VR = S [[A @ B] o] T

VS = S [o [A @ B] o] T

Note that the lowercase letter "o" is inserted between the left square brackets
(for the left outer join), between the right square brackets (for the right
outer join), or between both pairs of square brackets (for the symmetric
outer join).

Taking the sample operands S, T presented in Section 5.2, the following
results are obtained for the outer T-joins based on the LESS THAN com-
parator (<). Missing information is represented by a hyphen (,,m,,) in these
examples, and tuples from the inner T-join based on < are marked with an
asterisk.

Lef tVL (P A B Q)

* kl 4 5 m2

* k2 6 9 m 3

* k3 12 13 m5

k4 18 m

k5 20 ~

Symmetr ic MS

Right VR (P A B Q)

~ 3 m l

* kl 4 5 m2

* k2 6 9 m3

~ 11 m4

* k3 12 13 m5

- - 15 m 6

(P A B Q)

m m 3 m l

kl 4 5 m2

k2 6 9 m3
m m 11 m4

k3 12 13 m5

- - 15 m 6

k4 18 m

k5 20 ~

5.7.4 S u m m a r y of T - jo ins

There are four simple inner T-joins corresponding to the following four
ordering comparators:

136 [] The Advanced Operators

RZ-22

RZ-23

RZ-24

RZ-25

LESS THAN

LESS THAN OR EQUAL TO

GREATER THAN

GREATER THAN OR EQUAL TO.

There are 12 simple outer T-joins, three for each of the four ordering
comparators. The three types are the left outer T-joins (Features RZ-26-
RZ-29), the right outer T-joins (Features RZ-30-RZ-33), and the symmetric
outer T-joins (Features RZ-34-RZ-37).

In Table 5.1, which summarizes the 16 simple T-joins, the following
notation is used"

I Inner

O Outer

L Left

R Right

S Symmetric

C Comparator

3 LESS THAN

4 LESS THAN OR EQUAL TO

5 GREATER THAN

6 GREATER THAN OR EQUAL TO

The inner and outer T-joins can be applied effectively when the values
being compared happen to be (1) date intervals, time intervals, or combi-
nations of both, or (2) loads and capacities. The 16 simple T-joins may also
be useful in some other situations. They are not useful, however, if the
comparator < is declared in the catalog to be meaningfully inapplicable to
the values being compared in the principal comparand columns.

The T-joins represent a step toward a relational operator that will
probably appear in the next version of the relational model (RM/V3). This
operator transforms two union-compatible relations involving a sequence of
non-contiguous time intervals needed on some machines into a result that
can be interpreted as a merged schedule for the two activities on those
machines.

Before leaving the subject of T-joins, it is interesting to consider a
counterpart to the semi-theta-join, namely the semi-T-join. It will be recalled
from Chapter 4 that, under certain conditions, semi-theta-join can be useful
in the efficient execution of inter-site theta-joins in a distributed database

Table 5.1 S u m m a r y of S imple T-joins

Feature RZ- 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

I o r O I I I I O O O O O O O O O O O O
L,R, orS L L L L R R R R S S S S
Comparator 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6

5.8 The User-defined Select Operator • 137

management system. In the same way, semi-T-joins can be useful in the
efficient execution of inter-site T-joins.

5 .8 m T h e U s e r - d e f i n e d S e l e c t O p e r a t o r

The main reason for this operator is to introduce a more powerful version
of the select operator than the built-in version described in Chapter 4. This
operator permits the selection of rows from a specified relation based on
any user-defined function that transforms one or more row-components into
a truth value.

The built-in operator select with operand relation S involves comparing
the values in a specified column of S (say A) with either

1. some specified constant or host variable (say x), or

2. values in a second specified column of S (say B).

In Case 2, each pair of values that are compared (an A-value and a
B-value) must be drawn from the same row of S. The distinction between
Cases 1 and 2 does not apply to the user-defined select operator.

R Z - 3 8 U s e r - d e f i n e d S e l e c t

This operator is denoted S [i; p(A); t], where i is an initializing
function (optional), p is a truth-valued function (required), and t is
a terminating function (optional). The argument A of the function
p denotes one or more simple columns of the relation S. However,
the truth value of p(A) must be computable for each row using only
the A-components of that row. If A is a collection of columns, more
than one component of each row is involved.

Note that the comparators in any user-defined select are hidden in the
function p. Therefore, there is only one Feature RZ-38.

Specifying i, t, or both can be omitted in any user-defined select com-
mand. If included in the command, the initializing function i is executed to
completion at the very beginning of the select, and delivers what is called
the temporary version of S. If included in the command, the terminating
function t is executed at the very end of the select, at which point all rows
that qualify to be selected from S or from its temporary version have been
selected. The operand of i is the relation S. The operand of t is the relation
resulting from all the rows of S (or its temporary version) that happen to
be selected.

The languages in which the functions may be expressed should include
one of the host languages supported by the DBMS, together with retrieval

138 • The Advanced Operators

operators and the qualifier ORDER BY of the principal relational language,
constrained to apply to the specified operand relation only.

The following example is intended to illustrate the practical use of the
user-defined select operator. Suppose that a company has sales teams in
various parts of the world. A database keeps track of sales by team in a
relation called TEAM. Each team has an identifier TID that is unique with
respect to teams. TID is the primary key of TEAM. The immediate prop-
erties of a team include year-to-date sales (all expressed in a single currency),
total sales for each of the preceding five years, and number of members on
that team.

Once each month, the company makes a statistical analysis of the year-
to-date sales in relation to the sales of previous years. The function F is
applied to measure long-term and short-term growth. F combines these two
growths in some simple way to arrive at a performance rating. The function
yields as its result the truth-value TRUE for about 10% of the sales teams,
those that have achieved the best performance rating.

Let the relation describing each sales team be called TEAM. Suppose
that TID denotes the team identifier (the primary key of TEAM). It is
possible to use the function F to select the sales teams that have performed
the best on a year-to-date basis:

WINNERS ~-- TEAM [;F(TID);].

Note that no initiating or terminating function is involved. Note also that F
probably has several arguments (this fact is not shown).

5 .9 1 T h e U s e r - d e f i n e d J o i n O p e r a t o r

This join operator is to a large extent user-defined, but not completely so.
There are two main reasons for this:

1. the objective of continued support for optimization by the DBMS using
techniques similar to those applicable to the built-in joins;

2. the objective of reducing, if not eliminating, the need for users to
construct iterative programming loops.

R Z - 3 9 U s e r - d e f i n e d J o i n

The user-defined join is more powerful than the built-in joins. It
concatenates a row from one relation with a row from another
whenever a user-defined function p transforms specified components
of these rows into the truth value TRUE. If included in the com-
mand, the initializing function i is executed to completion at the
very beginning of the join, before any rows of the first operand are

5.9 The User-defined Join Operator • 139

concatenated with any rows of the second operand. Temporary
versions of the operands are delivered as the result of executing i.
If included in the command, the terminating function t is executed
at the very end of the join, at which point all rows that are to be
concatenated have been concatenated.

A user-defined join of relations S on A with T on B using functions i,
p, t may be specified by means of the following expression:

S [i ; p(A,B) ; t l T.

The operands for the initializing function i are S and T. One practical
use of i is to generate temporary relations from S and T ordered by the
values in their respective comparand columns A and B. The operand for
the terminating function t is the result of the join up to that point. Inciden-
tally, function p will rarely have an inverse, and an inverse is not required.

The languages in which the functions may be expressed should include
one of the host languages supported by the DBMS, together with retrieval
operators and the qualifier O R D E R BY of the principal relational language,
constrained to apply to the specified pair of operand relations only.

The following example extends the sales-analysis example cited in Sec-
tion 5.8 for user-defined select. This extended example illustrates the practical
use of the user-defined join operator.

Suppose that the previously described database also contains a relation
CUST describing its large customers. One of the columns of CUST is the
customer identifier CID--natural ly, the primary key of CUST. Another
property of each customer is the identifier TID of the sales team assigned
to the customer. In this case TID is a foreign key. Other columns of CUST
contain sales information similar to that in the TEAM relation, except that
in each row the information applies to one customer only.

Suppose that another, different monthly analysis is required by the
company for its large customers. The intent is to find contra-flow situationsn
that is, situations in which regional sales are increasing, while sales to one
or more large customers in the region are decreasing. Let G be a function
that is applied to customer sales data and team-oriented regional sales data.
G yields the truth-value TRUE when growth of sales is positive for the
region, but negative for a large customer. Team information such as team
identifier TID and team manager TMGR, along with the customer name
CNAME and customer location CLOC, is requested. This request can be
expressed in terms of a user-defined join between the relations TEAM and
CUST, followed by a projection:

CONTRA ~- (TEAM [; G ;l CUST) [TID, TMGR, CNAME, CLOC].

140 • The Advanced Operators

The function G probably has several arguments (these are not shown in the
request).

5.10 • R e c u r s i v e J o i n

It has been asserted in a public forum that "the relational algebra is incapable
of recursive join." In fact, such an assertion is astonishingly erroneous. The
recursive join was introduced 10 years ago in one of my technical papers
[Codd 1979].

R Z - 4 0 R e c u r s i v e J o i n

The recursive join is an operator with one operand. This operand is
a relation that represents a directed graph. One of the columns of
this relation plays a subordinate (SUB) role, while another plays a
superior (SUP) role. Each tuple represents an edge of a directed
graph, and by convention this edge is directed from the node iden-
tified by the SUP component down to the node identified by the
SUB component. Because joins are normally applied to pairs of
relations, it is convenient to think of the single operand as two
identical relations. The recursive join acts on this pair of identical
relations by matching each SUB value in one operand to a SUP
value in the second operand. It yields all of the pairs of identifiers
for nodes that are connected by paths in the acyclic graph, no matter
what the path lengths are.

It is useful to compare the regular equi-join with this recursive join.
Note that a regular equi-join of such a relation matching each SUB value
in one operand to the SUP in the second operand yields all of the paths
that are precisely two edges in length. The distinction between regular equi-
join and recursive join should therefore be clear: regular join is terminated
by completion of a simple scan of one of the two relations, whether real or
virtual; on the other hand, recursive join with respect to a path of the
underlying acyclic graph is terminated only when a node is encountered
which has no node that is subordinate to it. An equivalent way of expressing
this termination with respect to a path is that it occurs when the path ends.

There are several versions of this recursive join and they differ principally
in the information content of the result that is delivered. The simple version
described above was presented in RM/T [Codd 1979, page 427] as the
CLOSE operator. A more powerful version suitable for the bill-of-materials
type of application and not yet published is likely to be included in the next
version (RM/V3) of the relational model.

Some relations represent directed graphs. Relation S is a directed graph
relation if it is of degree at least two and has the following properties:

5.10 Recursive Join • 141

• two of its columns are defined on a common domain;

• one of these columns has a superior role, termed SUP;

• the other column has a subordinate role, termed SUB;

• no other columns have the SUP or SUB role.

An interpretation of such a relation is that there is an edge of the graph
that connects from the SUP component of any row down to the SUB
component of that same row. Two edges are connected if the SUB value of
one (the higher of the two edges) is the SUP value of the other (the lower
of the two edges).

Suppose that a directed graph includes a sequence of edges, each con-
nected to its successor and with the property that, if the successive edges
are traversed according to the directedness of the graph, the traversal returns
to the same node at which it started. Then, such a graph is cyclic, and the
sample sequence of edges just described is called a cyclic path. An acyclic
graph has no cyclic paths whatsoever.

An example of an acyclic graph is discussed briefly here and in Section
28.4. Figure 5.1 is a diagram of an acyclic directed graph.

An acyclic path in a directed graph consists of a sequence of edges, each
of which is connected to one edge lower (except the lowest edge in the path)

Figure 5.1
Structure

A n Acyc l i c D i r e c t e d Graph G I R e p r e s e n t i n g P r o d u c t

A product B product

c
/ \

D E product

F

G H

J bas N /

\
× base

M base

142 • The A d v a n c e d Operators

and each of which is connected to one edge higher (except the highest edge
in the path). All of the paths that exist in an acyclic directed graph are
acyclic. Any traversal of a path in compliance with its direction is called
downward. Any traversal in the opposite direction is called upward.

Note that nothing in the definition of the acyclic directed graph concept
prevents a single SUB value from being associated with more than one SUP
value. In other words, nothing prevents two or more nodes from acting as
superiors to a single subordinate node. A hierarchy is a special case of an
acyclic graph in which each node may have at most one immediate superior
node.

In the connectivity part of the bill-of-materials type of problem, an
example of this type is the product structure graph G1, shown in Figure 5.1.
In this relation, single letters are used as part serial numbers to identify
parts. To save space, the acyclic graph relation AG is listed "on its side"
and the immediate properties of each edge are represented by a lowercase
letter:

AG SUP

SUB

P

A B C C D E F G G B F H H H K L N

D C D E F F G J N H H K L M N N X

a b c d e f g h i j k 1 m n o p q

The graph corresponding to the relation AG appears in Figure 5.1.
Whenever product structure for two or more products is represented by

a directed graph, each node represents a component and each edge repre-
sents the fact that one component is an immediate component of another.
The graph in Figure 5.1 is clearly acyclic and nonhierarchic. Even if the
graph of product structure begins its existence as a pure hierarchy, it is
unlikely to remain that way. Thus, a general solution to the bill-of-materials
problem should not assume the hierarchic structure.

There is a comprehensive solution to the general bill-of-materials prob-
lem based on the relational model. The solution is very concise, protects
the user from iterative and recursive programming, and provides pertinent
integrity constraints as well as manipulative capability. The recursive join
now being described, however, is not a complete solution to this problem.
(The more complete solution will be published later.)

The recursive join of RM/V2 has four arguments'

1. a single relation that represents an acyclic directed graph;

2. one column of node identifiers with the SUP role;

3. one column of node identifiers with the SUB role;

4. an identifier for a node from which all downward paths are to be
traversed.

The result of recursive join, a relation that identifies every one of these
downward paths, is therefore of degree three, with the columns SUB, SUP,

Exercises • 143

and PI (path identifier). In each row the SUB and SUP components together
uniquely identify an edge on one of the downward paths, while PI uniquely
identifies that path by means of an integer generated by the DBMS. If the
acyclic graph includes a total of N distinct paths downward from the specified
node, the integers assigned to each of these paths is from the set 1, 2 , . . . , N.

Some paths are likely to be composed of several edges. However, a
particular edge may be part of two distinct paths, and may therefore occur
with two distinct path identifiers. Remember that the graph is not necessarily
hierarchical. The particular integer assigned to identify a path is meaningful
only in the sense that it is distinct from all the other path identifiers.

A reasonable notation for recursive join is exhibited in the following
example:

T ~- S [SUB ! SUP ;P I 1.

Note that, if this operator is to be applied to graphs that may include cycles,
it must have a minor extension in its definition to avoid the peril of unending
looping around the cycles. As execution proceeds, whenever the operator
traverses an edge of the graph, it should temporarily mark that edge as
traversed, and avoid traversing it again. RM/V2 includes only one version
of recursive join. It works on relations that represent directed acyclic graphs.
RM/V2 does not include an extended version that works on relations rep-
resenting directed graphs that can have cycles in them. This extended version
is a clear candidate for inclusion in RM/V3.

One interesting application of this cyclic version is that of recording
contacts between criminals and suspects in a database for use by the police.
In this case, contact between Person X and Person Y implies contact between
Person Y and Person X, whereas the fact that Part p is an immediate
component of Part q implies that Part q is n o t an immediate component of
Part p.

5.11 • C o n c l u d i n g R e m a r k s

There is no claim that the operators discussed in Chapters 4 and 5 represent
all the operators that users will ever need. In fact, four more operators are
introduced in Chapter 17, "View Updatability." When introducing any new
operator, the reader is advised to remain within the discipline of the rela-
tional model (see Chapter 28).

Exercises

5.1 What is the framing operator? What are its operands and results?
What is it used for? Supply an example.

14.4 • The A d v a n c e d Operators

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

What is the extend operator and what is it used for? If the description
of S extended per T is the same as the description of S, what is true
of the relations S and T?

Describe an example that illustrates outer union, and state how this
operator is likely to be used in practice.

What are the three kinds of outer join? Supply an example for each
kind.

Define outer T-join and supply an example. How is outer T-join likely
to be used in practice?

How does inner T-join differ from outer T-join? How is inner T-join
likely to be used in practice?

The definitions of theta-join, semi-theta-join, and T-join can be found
in Chapters 4 and 5. Supply a definition of semi-T-join.

A need arises for an equi-join involving two currency columns as
comparand columns. However, the values in one of the comparand
columns happen to be expressed in dollars, whereas the values in the
other comparand column happen to be expressed in British sterling.
Explain how you would apply a user-defined join to solve this problem.

Describe an example that illustrates recursive join, and state how it
is likely to be used in practice. (See also Chapter 28.)

Develop two operand relations S and T with the following properties:

• they are joinable by both theta join and T-join;

• when S and T are combined by theta join using the comparator
GREATEST LESS THAN, the result is U, say;

• when S and T are combined by T-join using the comparator LESS
THAN, the result is V, say;

• the relations U and V are not identical.

• C H A P T E R 6 •

Naming

In this chapter, the topic of naming is discussed with respect to the man-
agement of non-distributed databases. Naming is taken up again in Chapters
24 and 25 with respect to the management of distributed databases.

When initially establishing a database, much of the naming is concerned
with the database description, and hence belongs in the catalog. This naming
is determined by the DBA staff who are designing the database. Later,
during the interrogation and manipulation stage, much of the naming is
concerned with the columns of intermediate and final results. This naming
is initiated by the DBMS according to rules described in this chapter. Users
must know these rules when combining several operators into one or more
commands, whether these commands are executed interactively or from an
application program.

In establishing or expanding a relational database, names must be as-
signed to domains, R-tables, columns, and functions. The features listed in
the naming class (class N) make this activity reasonably systematic and in
accordance with other features of the relational model--for example, pro-
tection of users from having to be aware of positioning within the database
and "nextness" applied to rows and columns.

When a user attempts to insert names into the catalog, the DBMS must
check whether the names are compatible with the features of class N.
Because the user may be Unaware of these features, the DBMS must be
prepared to catch simple errors. All of the naming features discussed in this
chapter apply to any single relational database, and are intended to make
the database easy to understand and the interactions unambiguous.

145

146 • Naming

One of the principles underlying these naming features is that, when
deciding which names should be selected by the DBMS for the columns of
every relation that is an intermediate or final result, interchangeability of
the operands must not be reduced or in any way damaged. For example,
union is an operator for which

S U T = T U S .

This commutativity could easily be damaged if the automatic naming of
columns in the result were dependent upon which operand is cited first.

6.1 • Basic N a m i n g Features

R N - 1 N a m i n g of D o m a i n s and Data Types

All domains (extended data types)~whether simple or composite,
whether built-in or user-definedmmust be assigned names that are
distinct from one another, and distinct from the names of relations
and functions.

The description of each domain must be stored in the catalog before any
use is made of that domain.

R N - 2 N a m i n g of R e l a t i o n s a n d F u n c t i o n s

All relations, whether base or derived, and all functions, whether
built-in or user-defined, must be assigned names that are distinct
from one another, as well as distinct from all of the names of
domains, data types, and columns.

The description of each relation and each function must be stored in the
catalog before any use is made of either object.

R N - 3 N a m i n g of C o l u m n s

All columns, whether simple or composite, within any single relation
must be assigned names that are distinct from one another, and
distinct from the names of relations and functions.

6.1 Bas ic N a m i n g F e a t u r e s • 147

Note that this feature does not require that all column names in the entire
database be distinct from one another. Such a rule is not only unnecessary,
but may also be counter-productive.

A guideline for naming that tends to make programs easier to read and
understand is that the DBA and users abide by two simple rules:

,

1. If one considers the names of all domains, all relations, and all functions
as a single collection of names, then in that collection every name is
distinct from every other name.

2. Every column name is a combination of a role name and a domain
name, where the role name designates in brief the purpose of the
column's use of the specified domain.

For example, if the domain is QUANTITY OF PARTS (abbreviated
Q) and a particular column designates the quantity-on-hand of parts, it
would be appropriate to select Q as the domain name, OH as the role name,
and OH__Q as the column name. Similarly, the quantity on order would
be named O O _ Q , and the quantity shipped would be named SHIP__Q. A
DBMS that supports these guidelines should be regarded as supporting the
somewhat less stringent features RN-1-RN-3.

The DBA may wish to impose the additional constraint that names of
different kinds of objects should begin with a letter that designates the kind
of object. For example,

Relations R

Domains D

Columns C

Role prefix P

Functions F

While this additional constraint is not a requirement, compliance with this
convention would make programs--and perhaps the database--easier to
understand.

An important consequence of Features RN-2-RN-3 is that any combi-
nation of relation name and column name denotes precisely one column in
the entire database, provided the column name is the name of a column
within that relation. This fact is ignored in the design of the language SQL,
which includes the clause S E L E C T . . . F R O M . . . WHERE. One result
is that joins are awkward to express in that language.

A simple syntax for such a composite name is a relation name, followed
by a period, followed by the name of a column within that relation.

148 • Naming

R N - 4 S e l e c t i n g C o l u m n s w i t h i n

R e l a t i o n a l C o m m a n d s

The combination of relation name and column name is an unam-
biguous way to select a particular column in a relational database.
The syntax of RL must avoid separating column names from relation
names, which causes (1) difficulty in extending the language and (2)
either ambiguity or needless difficulty for users in understanding
relational commands.

The end user or programmer must have the option of specifying the order
in which columns are to be presented in a report.

R N - 5 N a m i n g F r e e d o m

Success of the DBMS in executing any R L command (e.g., a join)
that involves comparing database values from distinct columns must
not depend on those columns having identical column names.

At the time of this writing, the NOMAD product includes the undesir-
able and unnecessary constraint on joins cited at the end of Feature RN-5.
It must be remembered that in some joins, both comparand columns may
belong to a single relation. No pair of columns in a single relation are
permitted to have the same name (Feature RN-3). Thus, a DBMS that
supports this undesirable naming constraint may be unable to execute joins
of a relation with itself using two distinct columns as comparands.

In contrast, the constraint on joins (see Chapter 4) that is part of the
relational model~namely, that the comparand columns must draw their
values from a common domain~guards against user errors in conceiving
join commands without the adverse consequences just outlined.

6.2 • N a m i n g C o l u m n s i n I n t e r m e d i a t e a n d
F i n a l R e s u l t s

R N - 6 N a m e s o f C o l u m n s I n v o l v e d i n t h e U n i o n

C l a s s o f O p e r a t o r s

In RL, when the user requests the operation R UNION S, he or she
need not specify which columns of R are aligned with which columns

6.2 Naming Columns in Intermediate and Final Results • 149

of S, except for those columns of R and S where two or more
columns of R (or two or more columns of S) draw their values from
a common domain. The same applies to intersection, difference, and
the three outer counterparts: outer union, outer intersection, and
outer difference.

Of course, the language RL does permit the user to specify which columns
of R are to be associated with which columns of S whenever two or more
columns of R or of S draw their values from a common domain (see Chapter
3).

One reason for using domains to determine associativity of columns in
the union-type of operator is that this reduces the burden on the user and
also reduces the occurrence of errors. If the degree of either operand is N,
the user would be burdened with specifying N associations. Each association
is a pair of columns, one column from one operand, one column from the
other operand. A second reason for using domains in this way is that they
ensure that the command is meaningful.

In supporting union, most existing relational DBMS products check no
more than basic data types. This check is inadequate to ensure meaningful-
ness of the union operation, and can easily result in incorrect data in the
database.

Consider the example of two relations A1 and A2 that identify and
describe customer accounts pertaining to two different services provided by
a company. Suppose that A1 and A2 have identical descriptions (see Table
6.1).

Note that there are five domains (extended data types) and six columns.
The two currency columns and the days-of-service column all have the same
basic data type, namely, non-negative integers.

Table 6.1 D e s c r i p t i o n of Re la t ions AI and A2

Columns Domains

A# Account number Account numbers A#
CNAME Customer name Company names NAME
PDATE Date of last payment Calendar dates DATE
PD1 Year-to-date paid type 1 U.S. currency U
PD2 Year-to-date paid type 2 U.S. currency U
SERV Days of service Days D

150 • Naming

As shown in the following R-table, the five domains are

A# NAME DATE U
A (A# CNAME PD PD1 PD2

DAYS
SERV)

cl Smith 88-12 500 300 60
c2 J o n es 89-01 800 0 105
c3 Blake 88-07 400 200 55
c4 Adams 88-10 1200 0 200
c5 Brook 88-08 150 150 35
c6 Field 87-12 120 200 30
c7 Wild 88-06 200 50 45

For successful action by the union operator, present versions of relational
DBMS products merely require those columns that are paired off to have
the same basic data type. This means that these DBMS would accept the
following pairing of columns:

A1 (A # CNAME PDATE PD1 PD2 SERV)
A 2 (A # CNAME PDATE SERV PD2 PD1).

The relational model, however, requires those columns that are paired off
to have the same extended data type. Thus, it would not allow the SERV
column of A1 to be paired with either PD1 or PD2 of A2. The model would
allow PD1 of A1 to be paired with either PD1 or PD2 of A2. This safety
feature is one of several in the model that carry some of the meaning of the
data; such features are said to be semantic. I avoid applying the term
"semantic" to the whole model, however, because this would be making a
very extravagant claim.

R N - 7 Non-impairment of Commutativity

Given any one of the relational operators that happens to have two
operands and to be commutative, the rule built into the DBMS for
naming the columns of the result must not impair this commutativity.
Similarly, this naming rule must not impair any other simple iden-
tities that apply to the operators.

An example of a commutative operator is union, since (as just pointed
out), for any pair of relations R, S,

R U S = S U R .

Thus, in this case, a rule that names the columns of the result in a way that
depends on whether R or S is cited first in a relational command is
unacceptable.

6.2 Naming Columns in Intermediate and Final Results • 151

Outer join is an example of an operator to which a simple, but different,
identity applies. For any pair of relations R, S, the left outer join of R on
A with S on B yields the same result as the right outer join of S on B with
R on A. One simple way to ensure that the DBMS supports Feature RN-7
is to design it to choose, from any two alternative names for a column, the
name that comes first alphabetically using a standard collating sequence.
This choice, however, would be troublesome for users who are unaccustomed
to the Roman alphabet.

R N - 8 N a m e s o f C o l u m n s o f R e s u l t o f t h e J o i n
a n d D i v i s i o n O p e r a t o r s

When the user requests in R L a join (inner or outer) or a relational
division, if (1) any one name of any pair of column names in the
result is inherited from one operand of the command, (2) the other
name is inherited from the second operand of the command, and
(3) the two column names happen to be identical, then that name
is in each case prefixed by the name of the relation that is the source
of the column.

A feature of this kind is necessitated by the fact that no two columns of the
result can have the same name.

R N - 9 N a m e s o f C o l u m n s o f R e s u l t o f a

P r o j e c t O p e r a t o r

The column names and sequencing of such names in the result of a
project operator are precisely those specified in the pertinent
command.

R N - I O N a m i n g t h e C o l u m n s w h o s e V a l u e s are
F u n c t i o n - g e n e r a t e d

A column whose values are computed using a function acquires a
name composed of the name of the function followed by a period
followed by the name of its first argument.

If the function has only one argument, that one is treated as its first
argument. If two or more columns have values that are generated by the
same function, and could be assigned the same name as a result, the DBMS
resolves the potential ambiguity in names by assigning in each case a suffi-

152 • Naming

ciently large substring of the function-invoking expression that ambiguity is
resolved. Columns whose values are computed using an arithmetic expression
(not an explicitly named function) are treated similarly.

Such a substring must exist; otherwise, the pertinent columns would be
identical in content.

R N - 1 1 I n h e r i t a n c e o f C o l u m n N a m e s

Every intermediate result and every final result of an RL command
for interrogation or manipulation inherits column names from its
operands (the join class of operators and the union class of opera-
tors), except for those columns covered by Feature RN-10. Such
results also inherit column sequencing, except in the case of the
project operator.

Rules for the naming by the DBMS of all columns in intermediate and
final results are needed partly because of the rejection of positioning and
nextness concepts in the relational model (see Chapter 1). It is worth
remembering the following example" a single relational command may form
the union of several joins. The user needs to know how the DBMS assigns
names to columns of the joins (which are intermediate results) in order to
be able to determine the desired alignment of columns when the union is
executed.

6 .3 • N a m i n g O t h e r K i n d s o f O b j e c t s

Data from a database can be archived, but only as one or more relations.
Each of these relations can be base or derived. Most often, relations that
are archived are derived relations. In either case, the archived relation has
an associated source relation~that is, the relation whose name is alphabet-
ically first of the one or more relations from which the archived relation is
copied or derived.

R N - 1 2 N a m i n g A r c h i v e d R e l a t i o n s

When archiving a relation, the user, normally the DBA, may choose
to assign a name to it himself or herself; if not, the DBMS assigns
a name. The name assigned by the DBMS is the name of the
associated source relation concatenated with the eight-digit date of
archiving (four-digit year first, then two-digit month, then two-digit
day), followed by an integer n identifying the archived data as the
nth version that day.

6.3 Naming Other Kinds of Objects • 153

R N - 1 3 Naming of Integrity Constraints

Each and every integrity constraint, regardless of its type, must be
declared in the catalog and must be assigned a unique name.

This feature is necessary for the support of DBA-initiated integrity
checks (see Feature RI-21 in Chapter 13). It is recommended that the naming
of integrity checks be clearly distinguishable from the naming of domains,
relations, functions, and columns. Note that, for a given primary key, there
are likely to be many integrity constraints of the referential type. Each of
these constraints must be given a distinct name.

The DBMS can make good use of these distinct names for integrity
constraints when reporting on the failure of one of them. It should be
remembered that a single row may contain two or more foreign keys. Thus,
in the case of failure of referential integrity, it is insufficient to identify the
row containing the foreign key that is giving trouble.

Frequently, a user begins his or her interaction with a database not
knowing precisely what information he or she must retrieve from it. The
user begins by posing some simple queries, and basing subsequent queries
on information obtained from preceding ones. From time to time, it is
necessary to treat results from preceding queries as operands in subsequent
queries. This kind of querying is called the detective mode because detectives
seeking information about criminal acts normally question witnesses and
suspects in this way.

R N - 1 4 Naming for the Detect ive Mode

A user's request for a query must include an option for the user to
supply a name to be attached to the result of this query. If such a
name is supplied, the DBMS checks that it does not conflict with
any other names in its catalog, and, if so, stores the result of the
query under the name supplied.

Exercises

6.1 Must the name of each column in the entire database be distinct from
the name of every other column in the entire database? If yes, discuss
why. If no, discuss why not.

6.2 Must any two columns that are to act as ¢omparands in a relational
operation be identically named? Explain your answer.

6.3 Consider an equi-join of S with T. Assume that one of the columns of

154 • N a m i n g

6.4

6.5

6.6

6.7

6.8

S has the same name as one of the columns of T. What are the implied
names of columns of the result? Use a simple example to explain your
answer.

Why is it useful to include the domain name as a distinctive part of a
column name?

How is the domain concept used in the union operator (1) to make the
request more meaningful and (2) to reduce the column-pairing burden
on the user?

What does naming have to do with possible impairment of
commutativity?

When a relation S is archived and no name is supplied for this version
by the user, how is that version named by the relational model? How
does this feature relate to version support (where "version" means
version of the data)?

Why should each integrity constraint be distinctly named?

• C H A P T E R 7 •

C o m m a n d s for t h e D B A

The main purpose of the commands discussed in this chapter is to support
certain tasks that are often the responsibility of the database administrator.
Examples of such tasks are finding all occurrences of values in a specified
domain (see Chapter 3); introducing new kinds of information into the
database; loading and unloading R-tables from various sources (e.g., virtual
storage access method files); archiving and re-activating R-tables; and cre-
ating, renaming, and dropping various parts of the database description.
The features presented here do not specify the syntax that might be adopted;
they are intended to convey the semantics.

Use of the commands described here requires special authorization, and
is normally restricted to the DBA and his or her staff. These commands are
not intended to support all of the tasks that are normally within the DBA's
responsibility. Among such tasks not supported by these commands, and
not supported in RM/V2, are changes in storage representation and in access
paths to gain improved performance on the current traffic. Such changes
are likely to depend heavily upon the design of the particular DBMS product
involved. It is appropriate that these differences between DBMS products
exist: different vendors may use quite different storage and access techniques
in attaining good performance in the execution of high-level relational
commands. The relational model remains unaffected due to its high level of
abstraction.

Another typical task for a DBA or a security officer is assigning appro-
priate authorization to users so that they may access parts of the database

155

156 • Commands for the DBA

and possibly engage in data insertion, updating, and deletion. Support for
this kind of task is included in RM/V2 (see Chapter 18, "Authorization").

Two of the commands for the DBA were introduced in Section 3.4 at
the end of Chapter 3. These were the FIND commands (Features RE-1 and
RE-2) for locating all occurrences of all active values drawn from any
specified domain (FAOmAV) and locating all occurrences of just those
values that occur both in a specified list and in a specified domain (F A O _
LIST).

Of course, the term "locating" is used here in a sense that is meaningful
to users of relational systems (see Chapter 3), and therefore has nothing to
do with disk addresses as far as the user is concerned.

7.1 m C o m m a n d s f o r D o m a i n s , R e l a t i o n s , a n d C o l u m n s

When dealing with domains and columns, it is useful to keep in mind the
kinds of information declared for each one. Consider domain D; let col(D)
denote the collection of all of the columns that draw their values from this
domain. One aim is to include in the declaration of D every property that
is shared by all of the columns in col(D). Then, the declaration of each
column in col(D) need not repeat any of these common properties. It must,
however, include the properties that are peculiar to that column, and these
properties only.

Thus, a domain declaration normally includes the following:

• the basic data type;

• the range of values that spans the ranges permitted in all of the columns
drawing their values from this domain;

• whether the comparator LESS THAN (<) is meaningfully applicable to
such values.

A column declaration normally includes the following:

• an additional range constraint (if relevant) that provides a narrower
range than that declared in the underlying domain;

• whether values are permitted to be missing from the column;

• whether the values in the column are all required to be distinct from
one another.

For details, see Chapter 15, "The Catalog."

R E - 3 T h e C R E A T E D O M A I N C o m m a n d

This command establishes a new domain as an extended data type.
(For more information on this topic, see Chapters 3 and 15.) The

7.1 Commands for Domains, Relations, and Columns • 157

information supplied as part of the command includes the name
(selected by the DBA), the basic data type (as in programming
languages such as COBOL, FORTRAN, and PL/1), a range of values,
and whether it is meaningful to apply the comparator < to these
values.

For example, it is often the case that applying the comparator < to part
serial numbers is meaningless. Note that, if < is applicable, then so are all
of the other comparators. That is the reason why only the comparator < is
cited in Feature RE-1. Note also that the basic data type indicates whether
arithmetic operators are applicable.

R E - 4 T h e R E N A M E D O M A I N C o m m a n d

This command re-names an already existing domain without chang-
ing any of its characteristics. The old name and the new name are
supplied as part of the command. In addition, the DBMS finds every
occurrence in the catalog of a column that draws its values from the
specified domain (identified by its old name), and updates the name
of that domain in the column description.

Since large parts of the catalog may have to be locked during the latter
process, the DBA would be well advised to make this kind of request only
during periods of low activity.

References by application programs to the cited domain by its old name
are not automatically updated in RM/V2, but may be in RM/V3. There
should be little impairment of application programs because normally these
programs do not make direct reference to any domain.

R E - 5 T h e A L T E R D O M A I N C o m m a n d

A suitably authorized user can employ this command to alter an
already declared domain (extended data type) in various ways. An
alteration of this kind is likely to impair application programs logi-
cally. Thus, such action must be undertaken with great care, and
only when absolutely necessary. The items that might be changed
are the basic data type, the range of values, and the applicability
of <.

158 • Commands for the DBA

RE-6 T h e D R O P D O M A I N C o m m a n d

This command drops an existing domain, provided no columns still
exist that draw their values from this domain. If such a column still
exists, an indicator is turned on to indicate that this is the case, and
that the command has been aborted (see Feature RJ-7 in Chapter
11). If there is an index based on the specified domain (see Feature
RE-15) and if that domain is dropped, then the index is dropped.

R E - 7 T h e C R E A T E R - T A B L E C o m m a n d

This command stores the declaration for a base R-table or a view
in the catalog. All domains cited in such a command must be already
declared. Otherwise, the command is aborted and the domain-not-
declared indicator is turned on (see Feature RJ-5 in Chapter 11).

The following information is supplied as part of this command.

• The name of the R-table.

If it is a view, its definition in terms of base R-tables and other
views.

• For each column, its name.

• For each column, the name of the domain from which it draws
its values.

• Which combination of columns constitutes the primary key or
weak identifier. (The weak identifier pertains to certain kinds
of views only; see the discussion of outer equi-join in Chapter
5.)

• For each foreign key, which combination of columns constitute
that key and which primary keys (usually only one) are the
target. This item is vital for base R-tables, but less critical for
views.

It would be helpful for a DBMS that uses indexes to establish a domain-
based index on the domain of the primary key of the R-table being created,
if such an index does not already exist. Remember that another R-table
may already have a primary key on the same domain, and an index based
on this domain. If the DBMS does not yet support domain-based indexes,
but does support the more common type of indexes, then it would be helpful
if the system created an index on the primary key. Automatic creation of
indexes on the foreign keys, or corresponding expansion of existing domain-
based indexes, should also be considered.

'7.1 Commands for Domains, Relations, and Columns • 159

RE-8 T h e R E N A M E R - T A B L E C o m m a n d

This command renames an existing base R-table or a view. The
DBMS then examines all view definitions and authorizations re-
corded in the catalog without deleting any of them. The purpose is
to make changes from the old name to the new name wherever that
relation is cited. The old name and the new name are supplied as
part of the command.

References by application programs to the cited R-table by its old name
are not automatically updated in RM/V2, although they may be in RM/V3.
Of course, the catalog would have to be expanded to become more like
what is usually called a dictionary.

The DBA would be well advised to use this command only during
periods of low activity.

RE-9 T h e D R O P R - T A B L E C o m m a n d

When a base R-table or a view, say S, is dropped, several parts of
the database description may be affected: integrity constraints, views,
and authorization constraints. It should be remembered that an
integrity constraint may straddle two or more R-tables. Thus, such
a constraint may involve not only the R-table S, but also one or
more other R-tables. The definition of a view may also cite several
R-tables, of which S is only one. It may also be necessary to drop
a bundle of authorization constraints based on the R-table.

The total effect of a normal drop of a specified R-table, say S, is abandon-
ment of three types of specifications.

1. All of the integrity constraints citing S.

2. All of the views whose definitions cite S.

3. All of the authorization constraints citing S.

Collectively, the dropping of these specifications is called the cascading
action that is expected from the DROP request, if such action is not explicitly
postponed or avoided altogether. Type 1 applies principally to base R-tables,
while Types 2 and 3 apply to both base R-tables and views.

160 • Commands for the D B A

Taking all of these factors into account, dropping such a table can cause
a significant impact on users of that database. This action therefore requires
special authorization (see Features RA-5 and RA-6 in Chapter 18). Nor-
mally, only the DBA and his or her staff are so authorized.

Sometimes the aim of the user is to replace the dropped R-table by
other tables, preserving the integrity constraints, views, and authorization
constraints. The sheer bulk of these items makes them worth preserving,
even if they need minor editing. For this purpose, RM/V2 provides the
catalog block (Feature RM-7 in Chapter 12) to postpone the cascading
actions. The catalog block is a sequence of commands, each of which
operates on the catalog only. Certain ones of these commands may normally
have a cascading effect. This cascading action is postponed. It is the catalog
that is allowed to leave a state of integrity during execution of the catalog
block. The postponed cascading is re-examined by the DBMS at commit
time to see whether any of it must be re-executed immediately prior to the
execution of the commit that terminates this catalog block.

For safety reasons, the DROP R-TABLE command is executed in three
steps. However, only Step 1 is applied if the R-table is not a base relation.

In the first step, the DBMS checks that the table name is recorded in
the catalog as either a base relation or a view. If the specified R-table
happens to be only a temporary R-table, it is immediately and uncondition-
ally dropped.

If the relation being dropped is a base R-table or a view, the DBMS
checks to see whether the catalog block indicator (Feature RJ-11 in Chapter
11) is on. If it is, the DBMS drops the relation and omits any cascading
action.

If RJ-11 is off, the DBMS checks to see whether there is any potential
cascading action. If not, the DBMS again drops the relation. If there is
potential cascading action, the user is warned of the type of such action,
and notified that the cascading action can be postponed by requesting a
catalog block. If the user responds "go ahead anyway," the DBMS not only
drops the relation, but also takes all of the necessary cascading action. On
the other hand, if the user requests that the command be aborted, the
DBMS cancels its attempt to drop the specified R-table. This ends Step 1.

In the second step, applicable to base R-tables only, if the DBMS has
decided to initiate the drop procedure, it archives the specified R-table for
either a specified or a default period. This period is at least seven days (the
default value). See Features RA-5 and RA-6 in Chapter 18 for the author-
ization aspects.

Upon expiration of the archiving period, the DBMS takes the third and
final step, applicable only to base R-tables by deleting all rows of the data
in the specified R-table. It then drops the description of that R-table from
the catalog. At any time during the archiving period, the DBA can restore
the R-table to its state immediately before the execution of the DROP
request.

7.1 Commands for Domains, Relations, and Columns • 161

R E - I O T h e A P P E N D C O L U M N C o m m a n d

This command specifies the name of an existing base R-table. The
DBMS appends to the description of that table in the catalog the
name supplied for a new column that draws its values from an
already declared domain; the name of this domain is also supplied
as part of the command. Each row of that table is extended to
include a value for the named column. For the time being, however,
each such value is A-marked as missing, unless the VALUE qualifier
RQ-13 (see Chapter 10) is specified in the command.

The VALUE qualifier is one way of handling the case in which missing
values are prohibited. Another way is by utilizing Feature RI-19 (see Chapter
13).

The domain cited in the command imposes certain constraints upon the
values permitted in the new column. Additional constraints for the new
column may be imposed by means of column-integrity assertions. Both
domain integrity and column integrity are defined and discussed in Chapter
13.

R E - I I T h e R E N A M E C O L U M N C o m m a n d

This command renames an existing column of some existing R-table.
The name of the pertinent R-table, the old name of the column,
and the new name of this column must be supplied. If an index has
been created on this column, any reference within the DBMS to
this column by its old name is updated.

References by application programs to the cited column by its old name are
not automatically updated in RM/V2, but may be in RM/V3.

R E - 1 2 T h e A L T E R C O L U M N C o m m a n d

Occasionally, it may be necessary to make changes in the properties
assigned to a column. For example, for a specific column, the DBA
may decide to change from one domain to another or to alter the
range of values permitted in the column.

R E - 1 3 T h e D R O P C O L U M N C o m m a n d

This command makes those component values in each row that fall
in the specified column inaccessible to all users. These component

162 • Commands for the DBA

values are actually removed, but at a reorganization time that is
convenient for the DBMS.

Except for the special cases discussed next, this command then drops from
the description of the pertinent R-table both (1) the column name and
(2) the column description, including any reference therein to its domain.

If it happens that the column being dropped is part of the primary key
of that R-table, the DBMS requests that a new primary key be declared.
Since that and other R-tables may include numerous foreign keys drawn
from the same domain as the primary key being dropped, the possibility of
cascading action exists. Use of the catalog block may be appropriate in
order to postpone any cascading action and to update these foreign keys.

If the column being dropped is part of a foreign key, the foreign-key
declaration is dropped. If the column is simply indexed, the corresponding
index is dropped. In the case of a domain-based index, only the contribution
from this column is dropped.

References by application programs to the dropped column are not
automatically found and reported by RM/V2, but may be by RM/V3.

7.2 • C o m m a n d s f o r I n d e x e s

Features RE-14-RE-16 apply only to relational DBMS that exploit indexes
to attain good performance. The DBMS designer should remember that
indexes in the relational context are tools for obtaining improved perfor-
mance, and they should be used for that purpose only. In early releases of
some relational DBMS products, uniqueness of values within a column could
be accomplished, only if that column was indexed. Consequently, if the
DBA dropped that index, the control over uniqueness of values was lost.
Therefore, for these releases performance could not be the sole criterion
for choosing whether a column is indexed. In the context of the relational
model this coupling with the DBMS of semantic properties of the data with
performance in making index decisions is an abuse of the index concept and
a DBMS design error.

Uniqueness of values within any column should be specified as one of
the properties of that column, not as a property of an index. Similarly, the
kinds of marks permitted or prohibited in any column should be specified
as a property of the column, not as a property of an index.

DBMS products with other kinds of performance-oriented access paths
should have DBA commands similar to Features RE-14-RE-16.

R E - 1 4 T h e C R E A T E I N D E X C o m m a n d

This command is intended to be designed into a relational DBMS
that exploits indexes. It creates the description of an index and

7.3 Commands for Other Purposes • 163

stores this description in the catalog. It also creates the index,
although not necessarily immediately. If the DBMS receives several
successive requests for indexes to be created on a single relation, it
attempts to process them all in a single pass over the data. The
purpose is improved performance.

R E - 1 5 T h e C R E A T E D O M A I N - B A S E D I N D E X

C o m m a n d

This command is also intended to be designed into a relational
DBMS that exploits indexes. It creates an index based on the
specified domain. It provides the DBMS with the storage location
of each active value drawn from this domain, Such an index refers
to all of the columns in the database that draw their values from
the specified domain or a subset of these columns, provided such a
subset can be specified conveniently by the DBA. An index of this
kind may therefore straddle two or more base R-tables.

When such an index is applied to a primary domain, it yields improved
performance not only on retrieval of data, including the evaluation of joins,
but also on referential integrity. When the database is distributed and a
domain-based index is created on a primary domain, that index should exist
at the site or sites where the primary keys are located.

R E - 1 6 T h e D R O P I N D E X C o m m a n d

This command is also intended to be designed into a relational
DBMS that exploits indexes, It drops an existing index, whose name
is supplied, or reports the non-existence of an index with that name.

7.3 • C o m m a n d s f o r O t h e r Purposes

R E - 1 7 T h e C R E A T E S N A P S H O T C o m m a n d

A query is embedded in this command. The query part yields a
derived R-table, whose name is supplied as part of the command.
The DBMS stores this derived R-table in the database, and stores
its description (including the date and time of creation) in the
catalog.

164 • Commands for the DBA

Suppose that a snapshot is created from a base relation S. Unlike a
view, a snapshot of S does not reflect the insertions, updates, and deletions
applied to S after the snapshot was created.

This command is likely to be used heavily in the management of dis-
tributed databases. For example, if a bank has branches in several cities and
a computer-managed database in each city, the planning staff at headquarters
might require a weekly snapshot of the accounts data in each city. These
snapshots contain data that could be as much as a week out-of-date, whereas
a view would reflect all of the transactions at the branches as they occur,
and therefore be much more up-to-date. Snapshots, however, are much
cheaper than views, and place a much smaller load on the communications
network.

R E - 1 8 T h e L O A D A N R - T A B L E C o m m a n d

This command invokes a user-defined loading program in accordance
with a name specified in the command. The function may, and very
likely will, convert the data from a non-relational form into a relation.

R E - 1 9 T h e E X T R A C T A N R - T A B L E C o m m a n d

This command can unload a copy of a relation (base or derived) in
whatever form the DBMS delivers the relation. Alternatively, it can
invoke a user-defined unloading program by including its name. This
program may (and very likely will) convert the unloaded data from
a relation into some non-relational form.

If no ordering of columns is explicitly specified, it may be useful to
order the columns alphabetically by column name. This procedure will
improve communications between two or more DBMS, possibly at different
sites, and between a relational DBMS and non-relational recipients.

The following two features would be good options on the load utility.
If supported in such a utility, they need not be supported in the DBMS
itself.

R E - 2 0 T h e C O N T R O L D U P L I C A T E R O W S

C o m m a n d

This command has as its single operand a table that may have
duplicate rows in it. In other words, the operand need not be a true
relation. It generates a true relation (an R-table) that contains only
those rows of the operand that are distinct with respect to each

7.3 Commands for Other Purposes • 165

other, and appended to each such row is the number of occurrences
of that row in the operand. The column that contains these counts
is named by the DBMS as column ZZZ or given some equally
unlikely name.

Its principal use is on tables loaded from non-relational sources.
Such tables are likely to contain duplicate rows.

An example of the usefulness of the CONTROL DUPLICATE ROWS
command can be found in supermarkets. The customer selects a wide variety
of items from the supermarket shelves and places them in a shopping cart.
Then he or she pushes the cart-to a check-out line to enable a cashier to
accumulate the bill and complete the transaction.

The cashier takes each item one by one and draws it across a device
that electronically reads the bar code on the item. For speed of execution
of check-out, it is important that it be unnecessary for either the cashier or
customer to have to arrange items in any specific sequence. Thus, if the
customer happens to have five cans of tuna fish randomly scattered in his
or her shopping cart, it is highly unlikely that these cans are drawn across
the bar code reader consecutively. Thus, it requires more than a bar code
reader to add up the cans of tuna fish.

Suppose the bar code readings are automatically entered into and re-
corded in a computer system, partly for the purpose of adding up the bill
for the complete transaction, and partly to insert this new information into
a database that keeps track of inventory and, from time to time, places
orders with one or more wholesale suppliers of food and housewares.
Suppose also that, as the bar code for each item is entered into the computer,
the computer converts it into a digital code, searches a table for descriptive
properties of the item (including its price), and records the digitized bar
code and properties as one more row in a table.

Such a table is bound to contain duplicate rows from time to time. For
example, there are likely to be five separate rows for the five cans of tuna,
but these rows are duplicates of one another and therefore not distinguish-
able rows. The question arises: how can duplicate rows be avoided if the
database is relational?

Resolution of this question depends on what distinctions and identifi-
cations the supermarket manager deems to be useful for his or her business.
One possibility is that the manager wants to keep track of what purchases
are frequently coupled together in customers' habits. This requirement sug-
gests that the collection of items purchased by one customer in one trans-
action be kept separate from those purchased by another customer in another
transaction.

Does this mean that each customer should be required to provide his
or her social security number to the cashier? Certainly not: such a require-
ment would be unacceptable to most customers. In addition, the manager
is not likely to be interested in identifying each customer uniquely. Thus,

166 • C o m m a n d s for t h e D B A

the social security approach represents a serious confusion between distinc-
tiveness and identification.

The following is one solution to this problem, and I am not claiming
that it is the best. However, it does avoid corrupting a relation by storing
duplicate rows within it.

What has to be maintained as a distinct collection of records or rows is
the collection of items purchased in a single customer transaction. To main-
tain this distinctiveness does not require unique identification of each cus-
tomer. Instead of placing any burden on the customer to identify himself or
herself uniquely, it is the system that should bear an equivalent burden,
namely that of attaching the cash register identification and time of day to
each transaction.

If the system initially records each and every item of a customer's
transaction in a table, then duplicate rows should be removed from this
table before it is planted in the database. Of course, this removal of duplicate
rows must avoid loss of information.

The transformation needed is one that counts the number of occurrences
of each distinct row and develops a revised table in which each row is distinct
from every other row, and each row contains the number of occurrences of
its counterpart in the initially generated table. This means that the trans-
formation needed is precisely that provided by the CONTROL DUPLI-
CATE ROWS command.

7 .4 m A r c h i v i n g a n d R e l a t e d A c t i v i t i e s

From time to time data must be removed from disk storage, because it has
become inactive in the database (either completely or almost completely
inactive). The main reason for this is to avoid the expense of having the
entire database consume too much disk storage. However, either for gov-
ernment reasons (e.g., tax audit) or for business reasons (e.g., internal
audit), the data thus removed must normally be saved in inactive status for
a certain period in an archive. Such an archive is usually supported in a
storage medium with very large capacity and relatively slow accessmfor
example, by recording the data on magnetic tape. Sometimes it is required
that archived data be reactivated in a separate database for use by analysts,
planners, or accident investigators.

The DBA needs to plan this archiving and reactivating of data so that
it becomes a routine activity handled by the DBMS: an activity that is
repeated at various intervals specified by the DBA. Some data in the
database may have a very short period of activity, while other data may
have a very long period of activity. For simplicity and adequate generality,
RM/V2 permits any derived relation to be archived. Note the emphasis on
any derived relation. In a relational database a derived relation may consist
of any combination of rows, providing they are all of the same extended
data type.

7.4 Archiving and Related Activities • 167

An archived relation may later be reactivated in the same database from
which it came or in some other database. Alternatively, an archived relation
may be dropped altogether. Reactivation in a different database is quite
likely whenever a company-related accident occurs in which employees or
members of the public are injured. Reactivation in a different database is
also quite likely if the data reflects operations that the company requires to
be regularly analyzed "off-line" for planning purposes.

In RM/V2 actions such as archiving, reactivating, and dropping may be
triggered by a calendar event, by a non-calendar event, or by the expiration
of a specified period of calendar days after the occurrence of some specified
event. The actions and their triggering conditions are specified by the DBA
as relational commands. Since these requests concern the community of
users, it is inappropriate to incorporate them in an application program.
Instead, the DBMS stores these commands in the catalog. Further exami-
nation of these requests and their triggering conditions must be postponed
until user-defined integrity constraints are considered (see Chapter 14).

As a general rule, relational requests such as retrievals, insertions,
updates, and deletions, do not touch the archived data, and are therefore
unaffected by it. The following two requests, however, do involve the
archived data in a very explicit way.

RE-21 T h e A R C H I V E C o m m a n d

This command stores a specified R-table in the archive storage, and
attaches to it either the specified name or, if such a name is not
supplied, the name of source R-table with the present date appended
(see feature RN-12 in Chapter 6). It also attaches the name or
identification of the source database from which it was archived.

This command is normally applied to a derived R-table. If an R-table with
the same name already exists in archive storage, it is over-written by the
new version.

R E - 2 2 T h e R E A C T I V A T E C o m m a n d

This command, invoked for an R-table that was previously archived,
copies the specified R-table from archive storage into storage that
is more readily accessible. The reactivated copy becomes part of
the database specified in the REACTIVATE command. Alterna-
tively, if the database name is omitted, it once again becomes part
of the source database. If in the process an R-table with the same
name (including archiving date where applicable) is encountered in
the receiving database, it is over-written.

168 • C o m m a n d s for the DBA

Additional commands for enabling the DBA to maintain better control
over the integrity of the database are discussed in Chapter 13 (Feature
RI-21) and Chapter 14 (Features RI-31, RI-32, RI-33).

Exercises
7.1 What relational objects can you create, rename, and drop using the

DBA commands?

7.2 Why are the following two properties considered to be columnar, rather
than domain-oriented?
1. Whether values are permitted to be missing from the pertinent

column.
2. Whether all the values in the column are required to be distinct

from one another.

Give examples of a type of domain, and two types of columns based
on it, to support your argument.

Consider the task of appending new columns to two of the base
relations. Is it necessary first to bring all the traffic to a halt? If not,
explain how RM/V2 handles this problem.

Are there any commands in RM/V2 for keeping indexes consistent
with whatever columns of data are indexed? Can semantic properties,
such as uniqueness of values or keyhood, be associated with indexes?
Explain your answer.

What is a domain-based index? How can it help improve the speed of
execution of joins and of referential-integrity checks? (See also Chapter
13.)

If the occurrence of duplicate rows within a relation is banned by the
relational model, why is the CONTROL DUPLICATE ROWS com-
mand needed (1) to check the existence of duplicate rows and (2) to
remove the redundant duplicate rows?

What is an important reason for requiring that a user-defined function
comes into effect during loading or unloading data? Does RM/V2
require such a function to be invoked when using the LOAD or
EXTRACT command (Features RE-18 and RE-19), or is this optional?

7.3

7.4

7.5

7.6

7.7

a C H A P T E R 8 •

Missing Information

The purpose of this chapter is to clarify and summarize the way missing
information is treated in Version 2 of the relational model. The clarification
places heavy emphasis on the semantic aspects of missing information. The
systematic approach of RM/V1 has been extended in RM/V2 to deal with
the inapplicability of certain properties to some objects. Once again, this
treatment is independent of the data type of the missing information. This
extension does not invalidate any part of RM/V1.

In RM/V2 the approach to manipulating information from which values
may be missing represents my current thinking about this problem. I do not
feel this part of the relational model rests on such a solid theoretical
foundation as the other parts. However, I do think that this approach
represents a considerable improvement over the prerelational methods that
amounted to leaving it up to application programmers to solve it in many
different and specialized ways (even within a single installation).

8.1 • I n t r o d u c t i o n to Mis s ing I n f o r m a t i o n

In Section 2 of my paper on the extended model RM/T [Codd 1979], I
included an account of how the basic relational model RM/V1 represents
and handles missing information, but gave very little emphasis to why that

169

170 • Miss ing I n f o r m a t i o n

approach was adopted. Included in that discussion of the manipulation of
missing information was an account of the three-valued logic proposed for
determining the possibilities if some of the missing information were con-
ceptually and temporarily replaced by known values.

Criticisms have been fired at the three-valued logic approach of RM/
V1. In its place, the critics propose, in effect, a return to the "good old
days" when, for each column permitted to have missing information, the
database administrator or some suitably authorized user is forced to select
a specific value from the particular domain on which the column is defined
to denote the fact that information in that column is missing.

The case for a logic having more than two truth-values is discussed in
Sections 8.9 and 8.10. Criticisms are answered in Chapter 9.

In this chapter, the representation and handling of missing information
are described according to the way such information is treated in RM/V2.
This approach provides a stronger semantic underpinning than any non-
relational approach. One of the relatively new extensions in RM/V2 is the
treatment of a property that is generally applicable to a class of objects, but
inapplicable to certain members of that class. One example of such a property
is the name of the spouse of each employee, when there may be a significant
number of employees who are not married, and therefore have no spouse.
Another example is the sales commission earned to-date in an EMPLOYEE
relation, which deals with both salespeople and non-salespeople.

It is the meaning of the data that determines whether a database value
is missing-but-applicable or missing-and-inapplicable. Thus, it is the database
designer who should establish for each column of each relation whether
missing values of each type are permitted or prohibited in that column.
Sometimes a missing and inapplicable status can be derived from data found
elsewhere in the database. For example, in the salesperson example, it is
quite likely that the EMPLOYEE relation contains as another column the
job type within the company or institution. From this datum, the DBMS
can determine whether an elementary database value (db-value for brevity)
is permitted or prohibited in the sales-commission column. This topic is
discussed further in Chapters 13 and 14, which deal with integrity constraints.

The two types of missing information that are defined in Section 8.2
and stressed in this chapter are missing but applicable (denoted A) a n d
missing and inapplicable (denoted I). Section 8.19 deals with operators that
generate marks, and briefly discusses the relationship between (1) A and I
applied to whole rows and (2) A and I applied to components of a row.

Figure 8.1 illustrates the kinds of information that can be missing. Later
in this chapter, a description of how RM/V2 handles these two types of
missing information, types A and I, is given.

The various technical criticisms of the RM/V1 approach to missing
information that have recently come to my attention are discussed in detail
in Chapter 9. That discussion includes some strong technical arguments
against one proposed alternative, the scheme of "default values."

8.2 D e f i n i t i o n s • 171

Figure 8.1 Classif ication of Missing Informat ion
in a Relat ional DBMS

I
WHOLE TUPLES

MISSING

l

I I I
non-events events not inapplicable applicable

known to the events (A-marked)
DBMS

I
DB-VALUES

inapplicable other
(I-marked)

8 .2 • D e f i n i t i o n s

In logic and in algebra, when the value or possible values of an item are
unknown, a named variable is assigned to the item and it is usually called
an u n k n o w n . Distinct items with unknown values are assigned variables with
distinct names. Thus, a formula in logic or in algebra may involve several
variables, and a common task in solving a problem is to find the values of
these variables using a collection of equations.

In database management, the same approach cou ld be followed. Thus,
if a database contained information about employees and projects, each

occurrence of an unknown birthdate of an employee and of an unknown
start-date for a project could be recorded as a distinctly named variable.

Under certain circumstances, the DBMS might be able to deduce equal-
ity or inequality between two distinctly named variables, or to deduce certain
other constraints on the variables. It would rarely be possible, however, for
the DBMS to deduce the actual values of these variables. Instead, most of
the unknown or missing-and-applicable items are eventually supplied by
users in the form of late-arriving input or not-yet-completed calculation. On
the other hand, those items marked missing-and-inapplicable behave more
like unknowable items than like unknowns.

Note that in the few cases where it is conceivably possible for the DBMS
to deduce actual values for missing information, the cost of such deduction
is likely to be too expensive relative to the actual benefit. In the present
version of the relational model, the potential complexities of using the
variables of algebra or logic for missing information are avoided. Moreover,
compared with pre-relational approaches, the RM/V2 approach continues
to place more burden on the system and less on the application programmers
and terminal users.

I have made no claim, now or in the past, that the relational approach
to missing information places no burden at all on users. Any attempt,
however, to put missing information on a systematic basis (i.e., an attempt

172 • Missing Informat ion

that is uniformly applied to data whatever its type) will necessarily entail a
learning burden. It is important that this learning burden should pay off in
terms of a safer and more reliable treatment of databases, one that will
strengthen the retention of database integrity.

As noted earlier, the term "elementary database value" is written as
db-value for brevity. This term means any value that a single column may
have in any relation. Except for certain special functions, a db-value is
atomic in the context of the relational model. The term "datum" would
have been preferred, but its plural, "data" has very broad use.

With regard to missing information, two questions seem dominant:

1. What kind of information is missing?

2. What is the main reason for its being missing?

In the relational approach, Question 1, regarding the kind of informa-
tion, can be interpreted as a question concerning structural context: is the
missing information a whole row, a component atomic value (a db-value)
of a row, or a combination of these atomic values? There appears to be no
need to consider the consequences of an entire relation being missing because
a database necessarily models just a micro-world.

Moreover, the "main reason" in Question 2 can be interpreted to mean,
"Is the information missing simply because its present value is unknown to
the users, but that value is applicable and can be entered whenever it happens
to be forthcoming? Or is it missing because it represents a property that is
inapplicable to the particular object represented by the row involved?"
Figure 8.1 summarizes the classification by kind (the structural context) and
by reason.

In a certain row of a relation that describes the capabilities of suppliers,
it may be recorded that supplier s3 is capable of supplying part p5, but the
current price for this part is missing. This is an example of a missing-but-
applicable value. In those rows of the EMPLOYEE relation that describe
employees who are not legally married, the name of the employee's spouse
is missing. This is an example of a missing-and-inapplicable value.

Note that, although there are many other ways to classify missing
information, only the missing-but-applicable and missing-and-inapplicable
types appear to justify general support by the DBMS at this time. In this
context, "general" means independent of the particular column and of its
domain or extended data type. Since DBMS users and even designers are
not yet accustomed to using techniques of this generality for handling missing
information, gradual introduction appears appropriate.

A basic principle of the relational approach to missing information is
that of recording the fact that a db-value is missing by means of a mark
(originally called a null or null value). There is nothing imprecise about a
mark: a db-value is either present or absent in a column of a relation in the
database.

8.2 D e f i n i t i o n s • 173

The semantics of the fact that a db-value is missing are not the same as
the semantics of the db-value itself. The former fact applies to any db-value,
no matter what its type. The latter fact has semantics depending heavily on
the domain (or extended data type) from which the column draws its values.

Like a variable, a mark is a placeholder. It does not, however, conform
to the other accepted property of a variable--namely, that semantically
distinct missing values are represented by distinctly named variables.

We begin with a definition of the missing-but-applicable value mark (for
brevity, an A-mark). This mark is treated neither as a value nor as a variable
by the DBMS, although it may be treated as a special kind of value by the
host language. Consider an immediate property P of objects of type Z in a
database. Normally P has a specific value in each and every row of that
relation that provides the immediate properties of type Z objects. Suppose
that, represented in the database, there is an object z of type Z and that,
at this time, the value of P for this object is unknown. Then, P would be
assigned an A-mark in the database, provided P is considered to be appli-
cable to the object z. In the example introduced previously, Z is the
capability of a supplier, z is the combination of supplier s3 and part p5, and
P is the price that s3 charges for p5.

On the other hand, suppose that property P is inapplicable to the
particular object z. Then P would be assigned an inapplicable-value mark
(for brevity, an I-mark) in the row representing z. Thus, in the P column,
each row contains a value for P or an A-mark or an I-mark. In the example
cited previously, Z describes employees, z is any unmarried employee, and
P is the name of the employee's spouse. Two more examples follow:

1. If an employee has a missing-but-applicable present salary, his or her
record would have an A-mark in the salary column.

2. If an employee has an inapplicable sales commission (such an employee
does not sell any products at this time), his or her record would have
an 1-mark in the commission column.

Sometimes the occurrence of an I-mark in one component of a row is based
on data that occurs in other components of that row. In Example 2, both
the job category and sales commission may be a component of each row of
the EMPLOYEE relation. In that case, it is quite likely that inapplicability
of the sales commission can be derived from the job category.

Why are these items now called "marks" rather than "values, null
values," or "nulls"? Four reasons follow:

1. The DBMS does not treat marks as if they were values.

2. There are now two kinds of marks, where there was previously just one
kind of null.

3. Some host languages deal with objects called "nulls" that are quite
different in meaning from database marks.

174 • Miss ing In format ion

. "Marked" and "unmarked" are better adjectives in English than are
"nulled," "un-nulled," and "nullified."

To pursue the first reason, a mark in a numeric column (a column that
normally has numeric values) cannot be arithmetically incremented or dec-
remented by the DBMS, whereas the numeric values that are present can
be subjected to such operators. To be more specific, if x denotes a db-value,
A denotes an A-mark, and I denotes an I-mark, this is the effect of the
arithmetic operator addition:

x + x = 2 x
A + A = A
I + I = I

x + A = A
A + I = I
x + I = I

A + x = A
I + A = I
I + x = I

A similar table holds for the three arithmetic operators minus, times,
and divide (except that when both arguments are db-values the result is what
one would expect from ordinary arithmetic). Similarly, a mark that appears
in a character-string column (one that normally has character-string values)
cannot have a second character-string concatenated with that mark by the
DBMS, in contrast to the character-string values that are present in the
database. A table similar to the one just given for addition also holds for
concatenation. These remarks can be summarized as follows"

If I-marks are placed in the top class, A-marks in the second class,
and all db-values in the third class, the combination (arithmetic or
otherwise) of any two items is an item of whichever class is the
higher of the two operands.

How, then, can these marks appear in a column that normally contains
values? Present hardware is of little help" it fails to support any special
treatment of marks as distinct from values. For the same reason, present
host languages, such as COBOL and PL/1, are also of little help.

In the relational approach, one way to support marks by software is to
assign a single extra byte to any column that is allowed to have applicable
or inapplicable marks. This approach, adopted for A-marks in the IBM
mainframe and mid-range relational DBMS products (DB2 and SQL/DS),
appears to be fundamentally sound, although in these products some of the
manipulative actions on marks should be cleaned up. Incidentally, criticisms
of the way missing information is handled by SQL should not be interpreted
or presented as criticisms of the relational model. Moreover, criticisms of
SQL'S treatment of missing information do not justify abandoning database
nulls or marks.

The principal feature of RM/V2 pertaining to the way missing infor-
mation is perceived by users is Feature RS-13 (see Chapter 2).

8.4 Rows Containing A-marks and/or I-marks • 175

8.3 • P r i m a r y K e y s a n d F o r e i g n K e y s
o f B a s e R e l a t i o n s

An important rule for relational databases is that, to maintain integrity,
information about an unidentified (or inadequately identified) object is never
recorded in these da tabases~a sharp contrast to non-relational databases.
Thus, the declaration of exactly one primary key for each base relation is
mandatory; it is not an optional feature. Moreover, the primary-key attribute
is not permitted to include marks of either type (see Section 8.6). The
pertinent RM/V2 feature is called entity integrity (Feature RI-3 in Chapter
13).

As an aside, the mere fact that such marks are prohibited from appearing
in a column does not of itself make that column the primary-key attribute
of a base relation. It is required that the catalog include an explicit decla-
ration of the primary key of each base relation (see Feature RC-3 in Chapter
15).

A foreign key consists of one or more columns drawing its values from
the domain (simple or composite), upon which at least one primary key is
defined. In the case of composite foreign keys, it is possible that some,
perhaps all, of the component values of a foreign key value are allowed to
be A-marked (missing-but-applicable). This case needs special attention.
Those components of such a foreign key value that are unmarked should
adhere to the referential-integrity constraint. This detail is not supported in
many of today's DBMS products, even when the vendors claim that their
products support referential integrity.

I strongly recommend that database administrators or users consider
very carefully the question of whether to permit or prohibit A-marks in
foreign-key columns, and also that they document how and why that decision
was made. Sometimes there will be a strong business case for prohibiting
missing information altogether in foreign-key columns. However, reasons
are presented in some detail in Section 4.3 for choosing to permit A-marks
in these columns (see Features RB-33 and RB-34, the primary-key update
operators). On the other hand, I-marks must be prohibited in all foreign-
key columns in the entire database, because such a mark contradicts the
foreign-key concept.

8 .4 • R o w s C o n t a i n i n g A - m a r k s a n d / o r I - m a r k s

According to Feature RI-12 in Chapter 13, any row containing nothing but
A-marks and/or I-marks can and should be discarded by the DBMS from
the relation in which it appears, no matter what the type of the relation.
Such a row would be illegal in a base relation, because of the entity-integrity
rule (see Section 8.6). Such a row does not bear information in any derived
relation, whether it be a view, a query, a snapshot, or even an updated
relation.

176 • Missing Information

An external symbol is needed for the marks in several cases. Whenever
such a symbol is needed, the following are suggested:

Type of Mark A-mark I-mark

External symbol m or ?? !!

8 .5 • M a n i p u l a t i o n o f M i s s i n g I n f o r m a t i o n

Feature RM-10 in Chapter 12 is the RM/V2 feature of most importance with
regard to manipulation of missing information. It calls for an approach that
is uniform and systematic across the entire database. In particular, the
approach is applicable to missing database values only, and must be inde-
pendent of the data type of the missing information.

Features RM-11 and RM-12 in Chapter 12 specify the actions of arith-
metic operators and concatenation on A-marked and I-marked values, re-
spectively. Feature RJ-3 in Chapter 11 is an indicator that is turned on
whenever a relational command encounters a missing db-value.

8.6 • I n t e g r i t y R u l e s

There are two integrity rules that apply to every relational database"

1. Type E, entity integrity. No component of a primary key is allowed to
have a missing value of any type. No component of a foreign key is
allowed to have an I-marked value (missing-and-inapplicable).

2. Type R, referential integrity. For each distinct, unmarked foreign-key
value in a relational database, there must exist in the database an equal
value of a primary key from the same domain. If the foreign key is
composite, those components that are themselves foreign keys and un-
marked must exist in the database as components of at least one primary-
key value drawn from the same domain.

A single instance of referential integrity is an example of an inclusion
dependency. In the case of referential integrity, the set of distinct values in
a foreign key must be a subset of the set of primary-key values drawn from
the same domain. Casanova, Fagin, and Papadimitriou (1984) report in-
teresting relationships between inclusion dependencies and functional
dependencies.

It is important to observe that the entity-integrity and referential-integ-
rity rules specify a state of integrity, not what action is to be taken by the
system if an attempt is made to violate either rule. In the case of referential
integrity, the DBMS should support at least three options:

8.7 Updating A-marks and I-marks n 177

1. refuse the command;

2. cascade the updates or deletes on the primary key values to all foreign
keys defined on the same domain; or

3. replace each corresponding foreign-key value with an A-mark.

The DBMS rejects any attempts by users to replace each corresponding
foreign-key value by an I-mark, since that would violate the second part of
entity integrity.

This required choice of violation responses is the reason that the refer-
ential-integrity constraint should be supported in a general manner similar
to that for user-defined integrity constraints (see Chapter 14), where a
general choice of actions is also needed.

Finally, it should be possible for the DBA or any suitably authorized
user to define additional special-purpose integrity constraints and the action
to be taken if there is an attempted violation. These constraints are specific
to the particular database involved.

If, as is usual, several columns take their values from a common domain,
marks may occur in some of these columns and not in others. For example,
a primary-key column is not permitted to contain any occurrences of either
kind of mark, whereas (at the DBA's discretion) corresponding foreign-key
columns (on the same domain) may be permitted to contain occurrences of
the A-mark. Thus, declarations concerning whether a mark is permitted in
or prohibited from a column should normally be associated with that column,
not with the corresponding domain from which it draws its values.

8 .7 n U p d a t i n g A - m a r k s a n d I - m a r k s

A-marks and I-marks are treated differently from one another with regard
to updating. This difference stems from the fact that an A-mark indicates
that a value is at present unknown, whereas an I-mark indicates that a value
is in some sense unknowable, given the present state of the micro-world
being modeled.

An A-mark in column C may be replaced by any db-value that complies
with the domain constraints and column constraints declared for column C;
this replacement may be carried out by any user authorized to make updates
in column C. Similarly, any db-value in a column for which marks are
permitted can be replaced by an A-mark.

An I-mark in column C may be replaced by an A-mark or by any actual
value, provided that:

• the DBMS finds that the user has the necessary extra authorization; and

• pertinent integrity constraints are satisfied.

See Section 14.3 for more details.

178 l Missing Information

In Figure 8.2, "*" means that extra authorization is needed as required
by Feature RA-9 (see Chapter 18). The authorization mechanism requires
that the user who replaces any database value or A-mark by the I-mark
must have special authorization for this action. Such authorization is also
required for any change from an I-mark in the reverse direction.

The 1-mark is strictly stronger than the A-mark. Any user who is
authorized to Update values in a column is thereby permitted to change any
active value into an A-marked value, or vice versa. However, changing any
non-missing value directly into an 1-marked value or vice versa, requires
special authorization (enforced by the DBMS), because that would be a
direct attempt to violate the meaning of an I-mark.

In the examples already cited, changing a price from missing-and-appli-
cable to a specified value is no threat to the integrity of the database. On
the other hand, changing an employee's sales commission from missing-but-
inapplicable to a specified value could damage database integrity. Thus, an
I-mark is treated as if it were an integrity constraint of a special k ind- -
namely, one applied to selected objects rather than selected object types.

8.8 • A p p l i c a t i o n Of Equal i ty

What does it mean to assert that one missing-but-applicable value equals
another? Is it appropriate to speak of the equality of two inapplicable values?
In other words, under what circumstances does equality make sense? The
RM/V2 position is that there a re two kinds of equality of marks to be
considered: (1) semantic equality, in which the meaning participates heavily,
and (2) symbolic (or formal) equality, in which the meaning is ignored.

With regard to semantic equality, a factor that must be taken into
account is how applicable and inapplicable values are expected to be used.
Their uses are quite different in nature. In fact, the truth-value of

A-mark = I-mark

is FALSE with respect to both types of equality.
How about equality between any two occurrences of the same type of

mark? Since the symbol is the same in both cases, the two occurrences are
symbolically equal. The question of semantic equality, however, needs more
detailed investigation, and is discussed in the next section.

Figure 8.2 State Diagram Specifying Permitted Updates

A-mark db-value I-mark

8.8 Application of Equality • 179

8.8.1 M i s s i n g - b u t - A p p l i c a b l e I n f o r m a t i o n

Missing-but-applicable information presents the opportunity to ask what
might be true if one or more missing values were to be temporarily replaced
by actual values. Frequently, "what-if" databases must be developed and
manipulated separately from the so-ca!led operational databases. This occurs
because the former represent what might be the case if certain events were
to take place in the future (in the business or in its environment), while the
latter represent reality. Accordingly, updates in the "what-if" databases
must be regarded as representing conceptual actions (analytical, planning,
or projecting into the future). An important advantage of the A-marks is
that some of the analysis can be carried out directly on the operational data
without making any conceptual updates.

Suppose a database includes information about employees, including
each employee's birthdate. Suppose also that birthdate is one of the im-
mediate, single-valued properties of an employee that is allowed to be
temporarily missing for one or more employees. It is quite possible that
when an employee's birthdate is unknown, the actual value of this date may
(eventually) prove to be any date that lies within the range of employee
ages permitted by law and by company policy. Such a range of dates would
be specified as a formula based on a variable representing the date of the
current day. This formula would be included in the catalog declarations for
the specific column (quite likely) or in the catalog declarations for the domain
from which this column draws its values (less likely).

In this case, the set of possible values is quite large. In general, however,
whether the set of possible values for a property is large or small, there must
be at least two possibilities~otherwise, the property's value would be
known. It would therefore be a mistake to expect the value TRUE when
evaluating a logical condition that involves semantically comparing either
one missing-but-applicable value with another or one such missing value
with a known or specified value. For example, what is the truth value of
the inequality

BIRTHDATE > 66-1-1

for a missing birthdate? It is clearly neither TRUE nor FALSE. Instead, it
can be said to be MAYBE (meaning maybe true and maybe false; the
DBMS does not know which holds). When focusing on the domain of truth-
values, the logical truth-value MAYBE can be thought of as a value-oriented
counterpart for the A-mark.

When represented by A-marks, two missing values possess marks that
match one another symbolically, but not necessarily semantically. As time
advances, the database is subjected to commands that modify the data.
Thus, users and/or programs may eventually replace these two marks by
different values.

180 • Missing Information

8.8.2 Inappl icable In format ion

A natural subsequent question is, "Must the systematic treatment of in-
applicable values cause an additional extension of the underlying three-
valued logic to a four-valued logic?" Such an extension is logically necessary,
and it now seems appropriate to introduce it as part of the relational model.

At first glance, it appears to make sense to handle equality between
two inapplicable-value marks just like equality between two actual values.
Note, however, that I-marks are neither values nor placeholders for values.
They mean unknowable rather than unknown. Thus, within the condition
part of a relational-language statement, whenever an I-mark is equated to
an actual value, an A-mark, or an I-mark, the truth-value of such a condition
is always taken to be MAYBE of type INAPPLICABLE.

8 .9 • T h e T h r e e - V a l u e d L o g i c o f R M / V 1

A database retrieval may, of course, include several conditions like BIRTH-
DATE > 66-1-1, and the conditions may be combined in many different
logical combinations, including the logical connectives AND, OR, NOT and
the quantifiers UNIVERSAL and EXISTENTIAL. (See the explanation at
the end of Section 4.2, dealing with relational division, and the works listed
in the predicate logic part of the Reference section.)

Suppose, as an example, that a second immediate property recorded for
each employee is the present salary of that employee. Suppose also that this
column is allowed to have missing db-values. How does the DBMS deal
with a query involving the combination of conditions

(BIRTHDATE > 66-1-1) V (SALARY < 20,000),

where either the birthdate condition or the salary condition or both may
evaluate to MAYBE? Clearly, the DBMS must know the truth-value of
MAYBE or TRUE, TRUE or MAYBE, and MAYBE or MAYBE.

From this it can be seen that there is a clear need in any systematic
treatment of missing values to extend the underlying two-valued predicate logic
to at least three-valued predicate logic.

In the following truth-tables for the three-valued logic of RM/V1, P and
Q denote propositions, each of which may have any one of the following
truth-values:

t for true or m for maybe or f for false.

The truth values t, m, f are actual values, and should not be confused with
marked values or the MAYBE qualifiers (see Table 8.1).

In the relational model, the universal and existential quantifiers are
applied over finite sets only. Thus, the universal quantifier behaves like the
logic operator AND, and the existential quantifier behaves like OR. Both

8.9 The T h r e e - V a l u e d Logic of RM/VI • 181

Table 8.1

P not P

T h e T r u t h T a b l e s o f T h r e e - V a l u e d Logic

Q

P V Q t m f P A Q

t f t

m m m

f t f

Q

t m f

t t t t

t m m P m

t m f f

t rn f
m rn f

f f f

operators are extended to apply the specified condition to each and every
member of the pertinent set.

When an entire condition based on three-valued, first-order predicate
logic is evaluated, the result can be any one of the three possibilities TRUE,
M~kYBE, or FALSE. If such a condition is part of a query that does not
include the MAYBE option, the result consists of all the cases in which this
condition evaluates to TRUE, and no others.

If in this query the keyword MAYBE is applied to the whole condition,
then the result consists of all the cases in which this condition evaluates to
MAYBE, and no others. This qualifier is used only for exploring possibilities;
special authorization would be necessary for a user to incorporate it in one
of his or her programs or in a terminal interaction.

One problem of which DBMS designers and users should be aware is
that in rare instances the condition part of a query may be a tautology. In
other words, it may have the value T R U E no matter what data is in the
pertinent columns and no matter what data is missing. An example is the
following condition pertaining to employees (where B denotes
BIRTHDATE) :

(B < 66-1-1) V (B = 66-1-1) V (B > 66-1-1).

However, if the DBMS were to apply three-valued logic to each term
and it encountered a marked value in the birthdate column, each of the
terms in this query condition would receive the truth-value MAYBE. MAYBE
OR MAYBE yields the truth-value MAYBE. Thus, the condition as a whole
evaluates to MAYBE, which is incorrect, but not traumatically incorrect.

There are two options:

1. warn users not to use tautologies as conditions in their relational-lan-
guage statements (tautologies waste the computer 's resources);

2. develop a DBMS that examines all conditions not in excess of some
clearly specified complexity, and determines whether each condition is
a tautology or not.

182 • M i s s i n g I n f o r m a t i o n

Naturally, in this latter case, it would be necessary to place some limitation
on the complexity of each and every query, because with predicate logic the
general problem is unsolvable. In my opinion, option 1 is good enough for
now because this is not a burning issue.

8 . 1 0 • T h e F o u r - V a l u e d L o g i c o f R M / V 2

Consider an example of a combination (either by AND, or by OR) of two
logical conditions used in selecting employees"

(birthdate > 50-1-1) AND/OR (commission > 1000).

Suppose that, for a particular employee, the first condition evaluates to
the truth-value missing-and-applicable and the second to missing-and-in-
applicable. What is the truth-value of the whole condition?

Clearly, the truth tables of four-valued logic must be examined. In the
following tables (Table 8.2), t stands for true, f for false, i for missing-and-
inapplicable, and a for missing-and-applicable. Note that t, a, i, f are actual
values, and should not be confused with marked values.

Note that we obtain the truth tables of the three-valued logic by replacing
i by m and a by m (where m simply stands for missing, and the reason for
anything being missing is ignored). It should be clear that four-valued logic
is more precise but more complicated than three-valued logic. Four-valued
logic is selected as an integral part of RM/V2 (see Feature RM-10 in Chapter
12).

If a DBMS vendor feels that the extra complexity of four-valued logic
is not justifiable at this time, the external specifications of its DBMS product
should permit expansion at a later time from three-valued to four-valued
logic support without affecting users' investment in application programming,
or with only a minimal impact. If four-valued logic is built into a DBMS
product initially or as an extension, either it should agree with the four-
valued logic just described, or its departures should be defended in writing
from a technical and practical standpoint.

Table 8.2

P not P

t f

a a

i i

f t

The T r u t h Tables of F o u r - V a l u e d L o g i c

P V Q t a i f P A Q

t t t t t
t a a a P a

t a i f i
t a f f f

t a i f

t a i f

a a i f

i i i f

f f f f

8.12 Ordering of Values and Marks n 183

A repetition of the warning about multi-valued logics that I included in
[Codd 1986a, 1987a] may be appropriate here. Such logics can yield the
truth-value MAYBE for an expression that happens to be TRUE because
it happens to be a tautology. For example, find the employees whose birth
year is 1940 or prior to 1940 or after 1940. Every employee should be
assigned the value TRUE for this condition, even if his or her birth year
happens to be missing! This warning applies to other multi-valued logics. It
may be necessary in the future for DBMS products to be equipped with
detection algorithms for simple tautologies of this kind.

8.11 a S e l e c t s , E q u i - j o i n s , I n e q u a l i t y J o i n s ,
a n d R e l a t i o n a l D i v i s i o n

The manner in which algebraic selects, equi-joins, inequality joins, and re-
lational division treat A-marks and I-marks is determined by the semantic
treatment of equality described in Section 8.8. An inequality join is a special
kind of join using the inequality comparator NOT EQUAL TO.

Thus, whenever an equi-join involves comparing two items for equality,
and either just one of them is a mark or both of them are marks of the
same type (both A or both I), the pertinent rows are glued together if and
only if the MAYBE qualifier has been specified.

Suppose that a query Q does not include the MAYBE qualifier. Then,
executing Q delivers only those cases in which the condition part of Q
evaluates to TRUE. To obtain a result from this query that includes all the
TRUE cases and all the MAYBE cases, it is necessary to apply the union
operator: Q union (Q MAYBE).

8.12 • O r d e r i n g o f V a l u e s a n d M a r k s

Ordering should be handled in a manner similar to that described for
equality. There are two kinds of ordering to be considered: semantic ordering
and symbolic ordering. The semantic version applies when using a less-than
condition or a greater-than condition in a statement of a relational data
sublanguage. The symbolic version applies when using the ORDER BY
clause (e.g., to determine how a report is to be ordered). Let us consider
symbolic ordering first.

The present ordering as implemented in DB2 in the ORDER BY clause
of SOL involves nulls (i.e., A-marks) representing missing-and-applicable
values. (The case of inapplicable values is not yet handled at all by the
language SOL or by the DB2 system.) DB2 places nulls at the high end of
the value-ordering scale. In order to be compatible with this ordering,
A-marks are placed at the high end, immediately after values. On top of
A-marks are the new I-marks. This is the symbolic (or formal) ordering.

184 • Miss ing I n f o r m a t i o n

Note that inapplicable information in a particular column could be
supported in extended SQL by requiring the DBA or a suitably authorized
user to declare a value from the pertinent domain as the one to represent
such inapplicability for a given column. I definitely advocate, however, that
this approach not be taken. For one thing, this approach would implicitly
and potentially define as many different orderings for the missing db-values
relative to the existing db-values as there are columns that are allowed to
have missing db-values. Instead, I believe it is more systematic and more
uniform across different data types to use a special mark (the I-mark) because
these marks are not database values.

Now let us consider the semantic ordering. The truth-value of each of
the following expressions is MAYBE (not TRUE)

(db-value < mark) , (mark < db-value) , (mark < mark)

for any type of mark and any db-value. The same applies to these expressions
if the symbol " < " is replaced by the symbol ">" . If such an expression
involves either one or two occurrences of marks, the truth-value of the
expression is MAYBE.

There has been some criticism that the symbolic ordering of marks
relative to values runs counter to the semantic ordering and the application
of three- or four-valued logic. I fail to see any problem, however, because
the use of truth-valued conditions involving ordering when applying a rela-
tional data sublanguage is at a higher level of abstraction than the use of
the ordering of marks relative to values in the ORDER BY clause of a
relational command (see Feature RQ-7 in Chapter 10).

8 . 13 • J o i n s I n v o l v i n g V a l u e - o r d e r i n g

Joins involving the comparators

LESS THAN OR E Q U A L TO

LESS THAN

G R E A T E R THAN OR E Q U A L TO

G R E A T E R THAN

treat applicable and inapplicable marks as determined by the usual orderings
of db-values and the semantic ordering of marks defined in the immediately
preceding section. If the MAYBE qualifier does not accompany the request
for a join, then (as usual) only those items are generated for each of which
the entire pertinent condition has the truth-value TRUE. On the other hand,
if the MAYBE qualifier is applied to the entire condition part in the
command, only those items are generated for each of which the entire
pertinent condition has the truth-value MAYBE.

8.14 Scalar Functions Applied to Marked Arguments a 185

Consider a database that includes two relations T1 and T2 that describe
events of type 1 and type 2, respectively; the description includes the date
of occurrence of each event. Suppose that a request is made that involves
pairing off events of type 1 with events of type 2, provided the type 1 event
occurs before the type 2 event. Such a pairing activity can be expressed in
terms of a join of T1 on the date of the type 1 event with T2 on the date
of the type 2 event using the comparator <.

For the sake of simplicity, suppose that the extensions of T1 and T2 are
as follows:

T1 (E# EDATE . . .) T2 (V# VDATE . . .)

el 88-02-14 vl 86-03-13
e2 86-03-22 v2 89-01-27
e3 m (A-marked) v3 87-08-19

e4 88-12-27

Also suppose that two requests are as follows"

T ~ T1 [EDATE < VDATE] T2
T" ~- T1 [EDATE < VDATE] T2 MAYBE.

Then, the derived relations T and T" are as follows:

T (E# EDATE V # VDATE) T" (E#

el 88-02-14 v2 89-01-27 e3
e2 86-03-22 v2 89-01-27 e3
e2 86-03-22 v3 87-08-19 e3

e4 88-12-27 v2 89-01-27

EDATE V # VDATE)

v l 86 -03 -13

v2 89-01-27
v3 87-08-19

8 . 1 4 • S c a l a r F u n c t i o n s A p p l i e d t o M a r k e d A r g u m e n t s

In this context, a scalar function is a function that transforms scalar argu-
ments into a scalar result. Consider the effect of such a function when one
or more of its arguments is marked.

In general, if the strongest mark on one of its arguments is I, then the
scalar result is I-marked. If, on the other hand, the strongest mark is A,
then the scalar result is A-marked.

For example, let @ denote any one of the arithmetic operators + , - , × ,
/, and let z denote an unmarked scalar argument. Then:

z @ a = a z @ i = i a @ z = a i @ z = i
a @ a = a a @ i = i i @ a = i i @ i = i

The functions N E G A T I O N , OR, and AND are not exceptions to this general
rule because of the distinction (noted in Section 8.9) between the truth
values a and i, on the one hand, and marked truth values (A-marked and
1-marked), on the other.

186 • Miss ing I n f o r m a t i o n

8 .15 t C r i t i c i s m s o f A r i t h m e t i c o n M a r k e d V a l u e s

Occasionally one must be careful when asking a computer to carry out
ordinary arithmetic: One should not request it to divide any number by
zero. For example, if each customer can make several partial payments
instead of one lump sum, one might ask a question such as "What is the
average payment made by each customer?" This seemingly innocent question
can cause the machine to complain every time a customer is encountered
who has made no payments at all, because it is then being asked to divide
zero by zero.

The same kind of remark holds for arithmetic operations upon values
from columns in which the value-inapplicable mark may occur. Suppose the
employee relation contains two columns:

1. the total salary earned to date;

2. the commission earned to date.

Suppose also that for some employees the commission is marked in-
applicable. Consider the request "What is the total income earned to date
for each employee?", where total income is equal to salary (always appli-
cable) plus commission (if applicable). If this is carelessly expressed as salary
plus commission, the answer for any employee who has an inapplicable
commission is inapplicable, using the table for addition shown on page 174.
What is needed in this case is that the amount added for commission should
be zero when the commission is applicable.

The first reaction often heard is that, instead of the commission being
marked inapplicable, it should be set to zero. One problem this action would
cause is that the DBMS might not (and very probably would not) be able
to distinguish between a case in which commission was inapplicable and a
case in which it was applicable but the employee had actually earned zero
commission to date. Moreover, in this case virtually every integrity constraint
that involved the inapplicable state for a value in the commission column
could not be expressed.

A second claim often heard is that the addition table is incorrect, and
the entry x + I = I should be replaced by x + I = x. While this might be
appropriate for this example, consider a second example. Suppose one
requested Q1, the average commission earned by employees, when one
really intended to request Q2, the average commission earned by those
employees entitled to earn commissions. If there do exist some employees
who are entitled to earn commission, and if the cases of commission being
inapplicable are each represented by the value zero, execution of Q1 delivers
an incorrect result without any alarm from the computer. If, however, the
cases of inapplicability are represented by I-marks, then execution of Q1
delivers an 1-mark and that will alert the user to his or her folly.

8.16 Application of Statistical Functions • 187

8 . 1 6 • A p p l i c a t i o n o f S t a t i s t i c a l F u n c t i o n s

In applying a statistical function to the db-values in one or more columns
of a relation, it is desirable to be able to specify how A-marks and I-marks
are to be treated by this function, if it should encounter either type of mark.
A practical approach is to support two temporary replacements: one for the
A-mark occurrences and another for the I-mark occurrences.

A convenient way of expressing the replacement action is by means of
two separate, single-argument functions" AR (which stands for A-mark
replacement) and IR (I-mark replacement). In each case, the single argument
is a scalar constant or a scalar function that operates upon other component
values in the row being examined and delivers a scalar value. The pertinent
features of RM/V2 are RQ-4 and RQ-5 (see Chapter 10).

The function or qualifier specifying the replacement is called the sub-
stitution qualifier. This qualifier is applicable to every kind of statistical
function. However, if the statistical function has two or more arguments
and these are applied to two or more columns, the specified replacement
action must apply to all of these attributes.

An example of practical use of this qualifier is the calculation of a salary
budget for each department based on the present salary of each member of
a department. If a few salaries are missing (and therefore A-marked), one
may wish to compute the total for each department by requesting that each
A-mark occurrence be replaced temporarily by the maximum salary of those
persons known by the DBMS to be members of that department.

In certain special cases, the two replacements may be values equal to
one another. In certain other special cases, one or both of the replacements
may be a mark identical to the mark being replaced. The need for this case
is determined by the default action for omitted substitution qualifiers being
specified as "ignore marks of the corresponding type."

Note that the state of the database is not changed by the execution of
any one of these statistical functions alone. In other words, the substitutions
replacing marks by values or by marks are in effect during, and only during,
the execution of the pertinent statistical function. One advantage of making
these substitutions temporary is that certain kinds of possibilities can be
investigated without setting up a separate "what-if" database.

If the substitution qualifier is omitted altogether from a statistical func-
tion request, the DBMS would assume that only the unmarked values should
contribute to the result. On the other hand, if the existence of any occurrence
of a mark of type q in the operand is to yield an A-mark as the result, there
must be a qualifier in the command requesting that marks of type q be
detected, but not modified in the temporary substitution sense (i.e., a mark
of type q should be replaced by itself).

Notice that any replacement action specified in this way is a replacement
of a marked argument of the function, not of any result the function might
deliver. Moreover, the specified scalar replacement(s) must be values be-

188 • Missinglnformation

longing to the domain from which that column draws its values, and must
comply with any additional constraints that have been declared for that
specific column.

Finally, any specific replacement action applies to just one of the columns
cited in the retrieval or update command. Of course, several of the columns
cited may be subject to replacement actions. In general, if N columns
are cited in a relational command, there may be as many as 2N replacement
actions specified in that command, two for each distinct citation.

Thus, a single pair of occurrences of replacement qualifiers (one for
I-marked values, one for A-marked values) for each command is generally
inadequate. It should be replaced by a pair of replacement qualifiers for
each column cited in any pertinent command. The syntax must allow one
pair to be specified for each statistical function cited, and unambiguously
associate that pair with the pertinent function.

Little has been said about the results generated by the scalar and
aggregate functions discussed in this section and Section 8.17. Feature
RF-8 in Chapter 19 specifies that marked values are not generated by scalar
and aggregate functions when acting upon unmarked arguments.

8.17 • A p p l i c a t i o n o f S t a t i s t i c a l F u n c t i o n s
to E m p t y Se t s

This issue, raised by critics, is not directly related to the subject of missing
values. Nevertheless, I touched upon it in Section 2.5 of [Codd 1986a]
because SOL happens to generate null as the result of applying certain
statistical functions (such as AVERAGE) to an empty set. Since the null of
SOL was introduced to denote the fact that a db-value is unknown, it is an
unwise choice now to mean something entirely different~namely, that an
arithmetic result is undefined. This topic is clarified in more detail here, but
only with respect to the relational model, not SOL.

Section 9.5 deals with the case of applying a statistical function to a
collection of sets, some of which are empty and some non-empty. We must
treat the extreme case where all the sets are empty (even if there is only
one set in the collection of sets), and in such a way that all these cases
behave in a consistent way. As a first step, an initial value of zero must be
established immediately before the evaluation of the pertinent function
against the specified sets.

If the empty-set qualifier is omitted from a command, each occurrence
of an empty set is ignored. In addition to the value returned, however, there
must be a trigger (known as the empty trigger) that is turned on whenever
at least one set encountered in the execution of this command is empty.

Suppose that the value returned, whenever a statistical function is applied
to a single empty set, is the initial value just cited, that is, zero. A special
case needs careful attention to avoid misinterpretation of the value returned.
Whenever (1) a statistical function is cited in a command, (2) this function

8.18 R e m o v a l of D u p l i c a t e R o w s • 189

(for example, AVERAGE) happens to require dividing by the number of
elements in the pertinent set, and (3) the value returned by the function is
zero for one or more of the sets, then it is normally necessary to examine
each of these sets for its possible emptiness. Such an examination would
distinguish the empty-set case from the case in which the statistical function
happened to generate zero from elements actually encountered in the set.
The reader should remember that the burden of this extra examination arises
from ordinary integer arithmetic, in which dividing by zero is unacceptable.
The burden of this extra examination is therefore not a consequence of the
relational model.

Moreover, the relational model is consistent with elementary arithmetic.
Every DBMS based on that model should also be consistent with elementary
arithmetic.

Marks in the relational model are intended to represent the fact that
information (more precisely, a db-value) is missing, and should be sharply
distinguished from the case in which the value of a function (such as
arithmetic division) is undefined.

8 . 1 8 m R e m o v a l o f D u p l i c a t e R o w s

Unfortunately, in many present releases of relational DBMS products, de-
rived relations (often loosely called tables) are corrupted by leaving duplicate
rows in them unless the user appends an explicit qualifier requesting that
these duplicate rows be removed. A common example of this problem occurs
in a corrupted projection that does not happen to include the primary key
of the operand relation.

Although it is possible in SQL for the user to specify explicitly that all
but one occurrence of any duplicate rows be removed, the user can choose
to retain duplicate rows because he or she is unaware of the consequences.
Users should not be burdened with this choice, and the DBMS optimizer
should not be impaired by permitting duplicate rows under any circumstances.

If two or more rows happen to contain the same actual values and no
marks (applicable or inapplicable), the removal of duplicate rows is obvious.
The interesting case for this chapter is that in which some of the values are
missing.

In this case, suppose that a typical pair of row components for which
equality is to be tested is < x,y >. Then, it seems reasonable to assert that
two rows are duplicates of one another, if one of the following conditions
is satisfied by every pair tested:

1. x and y are actual values and x = y, or

2. one of the pair is marked and the other is not, or

3. both x and y are marked, and the marks are symbolically equal (i.e.,
both values are A-marked or both are I-marked),

190 • Miss ing I n f o r m a t i o n

and if condition 1 is satisfied by at least one tested pair of components.
When duplicate rows are discovered by the DBMS, it should remove all but
one occurrence of the duplicate rows.

As an example, consider a relation EMP that identifies and describes
employees:

EMP (EMP# ENAME DEPT# SALARY H~CITY)

E107 Rook D12 10,000 W i m b o r n e

E912 Knight - - A 12,000 Poole

E239 Knight - - A 12,000 Poole

E575 Pawn D12 - - A Poole

E123 King D01 15,000 Port land

E224 Bishop - - A ~ A W e y m o u t h

, ,m A" denotes a missing-and-applicable value. Suppose the relation E is
derived from EMP by true projection (not the corrupted variety) onto
D E P T # and SALARY:

E ~-- EMP [DEPT#, SALARY].

Before and after the removal of duplicate rows and empty rows, the
following information is derived (the user sees only the AFTER version):

BEFORE ~ A F T E R

E' (DEPT# SALARY) E (DEPT# SALARY)

D 12 10,000 D 12 10,000

* - - A 12,000 - - A 12,000 #

* * - - A 12,000 D12 - - A # #

D 12 - - A DO 1 15,000

D01 15,000

* * * m A m A

The rows labeled "*" and "**" are treated as duplicates of one another
because the corresponding components in these rows constitute the following:

• pairs of equal db-values, and there exists at least one pair of this type;

• pairs in which a db-value is accompanied by a missing value.

The row labeled "***" is removed because it consists of nothing but missing
values. Note that the rows marked " # " and " # # " are not treated as
duplicates because of the lack of at least one pair of corresponding com-
ponents that have equal values.

There has been some criticism of the fact that this scheme for removal
of duplicate rows does not conform to the semantic notions of equality
described in Section 8.8. I fail to see any problem, however, because the

8.20 Some Necessary Language Changes • 191

semantic notions of equality are applicable at a higher level of abstraction
than the symbolic equality involved in removal of duplicate rows.

8 . 1 9 m O p e r a t o r - g e n e r a t e d Marks

The introduction of a new column C for a selected base relation R is achieved
by appending to the catalog a description of this column. This causes the
DBMS to record in R itself an A-mark in column C for each row in R. It
does not make sense to record the I-mark because it is senseless to assert
that every value in a column is unknowablemin that case, why have the
column at all?

The operators outer join and outer union are capable of generating
derived relations in which some of the columns have one or more missing
db-values. Which type of mark should the DBMS generate? It seems rea-
sonable to generate A-marks only. If a suitably authorized user believes
that I-marks are needed instead, he or she will have to replace some A-
marks by 1-marks.

Note that A-marks are weaker than 1-marks in that a user requires no
special authorization beyond the usual update authorization if he or she
wishes to update an A-mark into a db-value (see Section 8.7).

Moreover, it is easier for the user to delve into "what-if" kinds of
interactions on the relation wherever A-marks occur, since in these cases
he or she need not get special authorization beyond that for querying.

The question has been raised of why those operators that are capable
of generating new marks in the result create only A-marks, never I-marks.
(In this context, "new marks" mean marks not simply copied into the result
from one or other of the operands.) The answer is that A-marks are preferred
because they are the weaker and more flexible of the two types. Hence,
they are more readily changed by users, without needing any special mark-
type-change authorization.

8.20 • S o m e N e c e s s a r y L a n g u a g e C h a n g e s

Here several minor language aspects are covered together, even though
most are discussed elsewhere in this book. An example is the use of the
M A Y B E qualifier on a condition, whenever only those items are needed
for which this condition evaluates to MAYBE. Note that, in order to support
this qualifier, the DBMS must be able to handle either three-valued or four-
valued logic (including the truth tables).

Moreover, if the items X are needed for which the condition K evaluates
to either T R U E or MAYBE, then a command such as

(X where K) U (X where K M A Y B E)

192 • Missing Information

should be used. Further, if the DBMS supports four-valued logic, then two
additional qualifiers, MAYBE__A and M A Y B E u I , are needed to specify
for a given truth-valued expression which of the truth-values a and i are to
replace the truth-value t as the truth-value that qualifies values to be re-
trieved. MAYBE__A means maybe true, maybe false, but certainly appli-
cable, while MAYBE__I means neither true nor false, but inapplicable.

Also note that, because the MAYBE qualifiers apply to conditions that
may involve negation, OR, AND, the existential quantifier, and the universal
quantifier, they require that the DBMS handle four-valued logic internally,
and not put that burden on users, as does the present version of SOL. The
MAYBE qualifiers are described in Features RQ-1-RQ-3 in Chapter 10.

In the following discussion, changes in language are expressed as changes
to SOL. It should be a simple matter to adapt them to any other reasonably
complete, relational data sublanguage.

It is necessary to be able to refer to marks that are similar to the way
SOL presently refers to nulls, except that the user should be allowed to
distinguish between the two types of marks when he or she wishes to do so.

One user-friendly solution that is not being advocated is to introduce
the clauses shown in Table 8.3 to refer to the presence and absence of an
A-mark, an I-mark, or either type of mark (in case the user does not care
which type of mark is involved). These clauses are not part of RM/V2
because the MAYBE___A, M A Y B E _ I , and MAYBE qualifiers of Features
RQ-1-RQ-3 are more powerful. The SOL clauses IS NULL and IS NOT
NULL should be abandoned swiftly.

Here is an example using the clauses listed in Table 8.3"

1. find the employees who are eligible to receive sales commissions; and
2. find the employees who are ineligible to receive sales commissions.

In many companies, query 1 is much more likely than query 2, because
usually only a minority of employees are eligible for such commissions. In
pseudo-sQL, appropriate statements for these queries would be as follows:

° SELECT serial__number FROM employees
WHERE commission IS NOT I-MARKED

. SELECT serial__number FROM employees
WHERE commission IS I-MARKED

T a b l e 8.3

Type

A-mark
I-mark
Either

Poss ib l e Clauses for S i m p l e C o n d i t i o n s

Presence of Mark Absence of Mark

Is A-marked Is not A-marked
Is-I-marked Is not I-marked
Is missing Is not missing

8.21 N o r m a l i z a t i o n • 193

Additional needs are the substitution qualifiers AR and IR, when ap-
plying a statistical function to any column in which marks may occur (see
Section 8.16), and the empty set qualifier ESR, when applying a statistical
function to a collection of sets, some of which may be empty (see Section
9.5).

8 .2 1 [] N o r m a l i z a t i o n

The concepts and rules of functional dependence, multi-valued dependence,
and join dependence were developed without considering missing db-values.
Early papers on functional dependence were [Codd 1971b and 1971c]. A
comparatively recent paper on these dependencies is [Beeri, Fagin, and
Howard 1977].

All the normal forms based on these dependencies were also developed
without considering missing db-values. Does the possible presence of marks
in some columns (each mark indicating the fact that a db-value is missing)
undermine all these concepts, and theorems based on them? Fortunately,
the answer is no" a mark is not itself a db-value. More specifically, a mark
in column C is semantically different from the db-values in C. Thus, the
normalization concepts do not apply and should not be applied globally to
those combinations of columns and rows containing marks. Instead, they
should be applied as follows:

• the normalization concepts should be applied to a conceptual version of
the database in which rows containing missing-but-applicable informa-
tion in the pertinent columns have been removed;

• these concepts should also be applied when any attempt is made to
replace a mark by a db-value.

When an attempt is made to insert a new row into a relation and a
certain component db-value is missing, it is pointless for the system to base
acceptance or rejection of this row on whether the missing db-value does
meet or might meet or fails to meet certain integrity constraints based on a
dependence in which the pertinent column is involved. The proper time for
the system to make this determination is when an attempt is made to replace
the pertinent mark by an actual db-value.

One might be tempted to treat I-marks differently from A-marks. One
or more users, however, may be authorized to replace an I-mark by a db-
value. Thus, all marks should be treated alike, regardless of type, in the
matter of testing any dependence constraint, whether it be functional, multi-
valued, join, or inclusion. For every row that contains a mark in the column
or columns being tested, the DBMS should wait until an attempt is made
to replace the marked item(s) by an actual db-value.

A fully relational DBMS should have the capability of storing (in its
catalog) statements defining the various kinds of dependencies~including

194 • Missing In format ion

the functional, multi-valued, join, and inclusion types of dependencies--as
they apply to the particular database being managed.

A program should also be available to deduce all the dependencies that
are a consequence of those supplied by the DBA or other suitably authorized
users, so that, when attempting to change a mark into a db-value, no
dependence that is logically implied by others is overlooked by the DBMS.
Further, such a DBMS should be able to check the database against one or
more of these integrity constraints whenever necessary, and without explicit
invocation by an application program. In general, such checking is likely to
be necessary whenever a mark is replaced by a db-value.

Exercises

8.1 Does the relational model use a specially reserved numeric value to
represent the fact that a numeric database value is missing? Does it
use a specially reserved character-string to represent the fact that a
character-string database value is missing? Give reasons for your
answers.

In RM/V2, what are the two main reasons for values being missing
from a database? Is the NULL term in SOL capable of distinguishing
between these reasons? If your answer is yes, explain how this would
be accomplished by means of two examples.

The comment is frequently made that "nulls are a headache; who
needs them?" Take a position on nulls (marked values) and three- or
four-valued logic versus special values reserved by users to mean that
a value is missing. Now defend that position from the viewpoints of
technical soundness and usability by the community of users.

Do the three-valued logic in RM/V1 and the four-valued logic in RM/
V2 preserve the commutativity of AND and OR?

Supply the truth table for four-valued logic.

The MAYBE qualifiers apply to (1) the whole condition part of a
query, (2) a truth-valued expression, and (3) part of a query that
refers to jus ta single column. Which of these represents the generality
of scope most accurately? Give one example of the use of the MAY-
BE__A qualifier, and one example of the use of the MAYBE__I
qualifier.

Which of the three alternatives in Exercise 8.6 represents the gener-
ality of scope of the IS NULL phrase in present versions of the
language SOL?

You are applying a statistical function to a column that is allowed to
contain missing values. You want each missing value to be ignored.
How is that accomplished?

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Exercises • 195

8.9

8.10

You are applying a statistical function to a numeric column that is
allowed to contain missing values. You want each A-marked value to
be temporarily replaced by 399, and each I-marked value by 0. How
is that accomplished?

The function AVERAGE is being applied to a numeric column in
relation S. S happens to be empty. What kind of result is delivered
by the relational model? By SOL?

• C H A P T E R 9 •

Response to Technical

Criticisms Regarding

Missing Information

There has been some justified technical criticism of the treatment of missing
information in the data sublanguage SOL. Some of this criticism has been
directed by mistake at the relational model [Codd 1986a, 1987c].

As explained in Chapter 1, it is important to distinguish between tech-
nical criticisms of the model, on the one hand, and of the implementations
and products based on that model, on the other. With respect to the
treatment of missing information, technical criticisms have strayed across
the boundary without proper justification. I shall discuss criticisms that have
appeared in recent technical articles, along with a counter-proposal called
the default value scheme (for brevity, DV). I devote an entire chapter to
dealing with these criticisms for two main reasons. First, the way the rela-
tional model deals with missing data appears to be one of its least understood
parts. Second, discussion of these criticisms may help readers understand
the approach and why it was adopted.

9.1 • T h e V a l u e - o r i e n t e d M i s i n t e r p r e t a t i o n

The representation in IBM relational DBMS products of missing database
values in any column by means of an extra byte seems correct. In the IBM
manuals, the corresponding marks are sometimes called nulls and sometimes
called null values. Few of the ways in which these products process missing
information, however, conform to Version 1 of the relational model. There
are numerous cases in which the processing of nulls (more specifically,

197

198 • Response to Technical Criticisms Regarding Missing Information

A-marks) in the IBM product DB2 is non-systematic. These cases, however,
should not be construed as criticisms of the relational model itself.

Any approach to the treatment of missing information should consider
what it means for a db-value to be missing, including how such occurrences
should be processed. A basic principle in the relational model is that the
treatment of all aspects of shared data in databases is not just a represen-
tation issue. There are always other considerations which the DBMS must
handle, especially the approach to manipulating the data and the preserva-
tion of database integrity.

It is quite inappropriate to leave these considerations to be handled by
users in a variety of ways, and buried in a variety of application programs.
This principle applies just as forcefully to missing information. Thus, missing
information is not just a representation issue.

9.2 • T h e A l l e g e d C o u n t e r - i n t u i t i v e N a t u r e

Consider the following examples: (1) suppliers in London and (2) suppliers
not in London, where the CITY column for suppliers is allowed to have
missing-but-applicable indicators (A-marks). One criticism of the relational
model is that it requires the user to make the distinction between (1) "suppliers
known to the system not to be in London" and (2) "suppliers not in London."

It has been asserted that this distinction is subtle and likely to mystify
the user. Subtlety, however (like beauty), is in the eyes of the beholder.
What is more important is that a user, in failing to make this very distinction,
may cause serious errors, errors that could have serious consequences for
the user's business.

In order to comment on the default value scheme (DV) [Date, 1986] for
representing missing information, it is necessary to describe that approach
first. In this scheme, if items of data are allowed to be missing in a column
C, it is left to one or more users to declare that a particular value in C
denotes the fact that a datum is missing in C. There is no constraint that all
columns, in which missing values are permitted, must use the same repre-
sentation of the fact that a value is missing. Moreover, the user who declares
the "default value" for column C is expected to embody in his or her
application program the method by which any missing values in column C
are to be handled.

To return to the discussion of "suppliers known to the system not to be
in London" and "suppliers not in London," this distinction may well be
judged subtle by some users. However, even if the default value scheme
were adopted, this would not prevent or help prevent the occurrence of the
type of error in which the user fails to make this distinction.

Let us look at the example in more detail, demonstrating how the DV
scheme constitutes a non-solution to the problem. Consider a relation S
identifying suppliers and describing their immediate, single-valued proper-
ties. Let one of these properties be the city in which the supplier is based.
A sample snapshot follows:

9.2 The A l l e g e d C o u n t e r - i n t u i t i v e N a t u r e • 199

(S # S N A M E C I T Y . . .)

s l J O N E S L O N D O N . . .

s 2 S M I T H B R I S T O L . . .

s 3 D U P O N T v . . .

s 4 E I F F E L P A R I S . . .

s 5 G R I D v . . .

"v" denotes a character string, declared in the catalog to be the "default
value" for the column CITY in the relation S, which in the D V scheme
means "unknown" or "missing" for this column only. Note that v may be
any character string that does not represent the actual name of any existing
city (e.g., "???" or "XXX").

Now consider these two queries:

Q1.

Q2.

Find the suppliers in London

Find the suppliers NOT in London

If these queries are represented in a relational language (such as ALPHA
[Codd 1971a], SOL [IBM 1988], or QUEL [Relational Technology 1988]),
ignoring the occurrences of v, and therefore ignoring the occurrences of
missing db-values, the answer to Q1 would be sl. This answer is correct
only if interpreted as those suppliers known by the system to be in London,
since at any later time an occurrence of v may be updated to "LONDON."
Q2 would similarly yield the set (s2, s3, s4, s5), which is definitely incorrect
when interpreted as the suppliers known by the system not to be in London,
and potentially incorrect when interpreted as the suppliers actually not in
London.

Thus, the user of a DBMS equipped with the DV scheme must take
into account whether a column is allowed to contain missing values, shaping
the query accordingly, and differentiating in his or her thinking among (1)
what is known to the system, (2) what is actually a fact, and (3) what could
be the case. This requirement of the DV approach to missing information
forces the user to make the very same distinctions for which the relational
approach to missing information has been criticized.

The burden on the user of having to make these distinctions is not
removed by having him or her formulate the query as "find the suppliers
not based in London and not based in '???'. " In fact, the burden arises
because the problem of dealing with missing information correctly is just
not a simple problem.

The claim that the DV approach "avoids all the difficulties associated
with the null value scheme" [Date, 1986] is clearly incorrect. I would
characterize the DV scheme as an approach that is likely to entice the naive
user and whose claimed simplicity is quite likely to trap the unwary and give
rise to serious mistakes.

200 m R e s p o n s e to Technical Criticisms Regarding Missing Information

Finally, consider the idea that a notion should be rejected because it is
"counter-intuitive." This is a type of criticism that I cannot accept as tech-
nical in nature, precisely because it is too subjective with respect to a person
and the culture and era in which he or she lives. One example should suffice,
although there are many.

At least 10 centuries ago, very few people were concerned with making
long voyages, whether over land or sea. Most people therefore had no cause
to consider that the earth might not be fiat, and that the shortest distance
from A to B on the surface of the earth is not a straight line, but instead
an arc of a great circle. Thus, when the scientific proposal was made that
the earth is spherical, most people considered the proposal extremely counter-
intuitive. Today, however, it would be quite difficult to find anybody who
considers this idea to be counter-intuitive. Thus, if an idea appears to be
counter-intuitive, it is not necessarily wrong. Similarly, if an idea is appeal-
ingly intuitive, it is not necessarily right.

9.3 m The A l l e g e d B r e a k d o w n of N o r m a l i z a t i o n in the
Re la t iona l M o d e l

In attempting to show that the relational model runs into difficulties with
normalization, the critics cite an example of a base relation R (A , B , C)
satisfying the functional dependence A---~B, for which it is not assumed that
A is the primary key, so that A can be permitted to have missing db-values.
The critics assert that serious problems are bound to arise if R contains a
row (?,bl ,cl) and an attempt is made to insert another row (?,b2,c2),
where b l and b2 are not equal, and ? denotes an A-mark. They assert that
either the two nulls must be considered distinct from one another or the
second row must be rejected because "it might violate the dependency"
[Date, 1986] when the null is replaced by an actual value.

The critics seem to have rejected without supplying a reason a third
option, which is the one adopted in the relational model. That is, whenever
the A component of a row is missing (or becomes missing), the functional
dependence A ~ B is not enforced by the DBMS for this row until an
attempt is made to replace the mark (null) in column A by an actual db-
value. In fact, if the proposed DV scheme were adopted, this third option
would not be available, because a null or missing value is treated in the DV
scheme as just another database value. Hence, in the DV scheme the
functional-dependence constraint must be enforced upon first entry of the
row, and this gives rise to the possibility that a row might be erroneously
rejected by the DBMS.

The critics also assert that, if the second row is not rejected upon
attempted entry, "we are forced to admit that we do not have a functional
dependency" [Date, 1986] of B on A. This is clearly one more instance of
a value-oriented misinterpretation.

The claim that the normalization procedure breaks down is false. It
should be clear that, because nullsmor, as they are now called, marksm

9.3 The Alleged Breakdown of Normalizat ion • 201

are n o t database values, the rules of functional and multi-valued dependence
do not apply to them. Instead, they apply to all unmarked db-values.

With the DV scheme, the normalization procedure does break down,
precisely because missing information is treated as database values. This is
one more reason why I contend that the DV scheme is not an acceptable
solution to the problem of handling missing information in databases.

The following example, more practical and less symbolic, is intended to
illustrate the absence of any effect of missing values on normalization. The
example is a slightly modified version of one presented in [Codd 1971b].

The relation EMP identifies and describes employees. Three of its
columns are shown:

E #
D #
CT

Employee serial number (the primary key)
Department serial number
Contract type

In this company, a department is assigned to exactly one type of contract.
It will be convenient to refer to this as Rule 1. One consequence of Rule 1
is that the EMP relation is not in third-normal form. The following functional
dependencies are applicable:

E# ~ D # ~ CT.

Note that the department D# to which an employee E # is assigned is
an immediate property of an employee, while the contract type CT is an
immediate property of the department. In the column CT. the values g and
n appear. They denote two types of contracts, government and non-govern-
ment, respectively.

E M P (E # . . . D # C T)

e l . . . d 5 g

e 2 . . . ? ? g

e 3 . . . d 2 n

e 4 . . . d 3 n

e 5 . . . d 2 n

e 6 . . . ? ? n

e 7 . . . d 8 g

In this example, the two department numbers that are missing must be
distinct, because of Rule 1 and the fact that the contract types in column
CT of these two rows are distinct. The problems associated with checking
functional dependency where there are missing values can be avoided com-
pletely by postponing the checking of compliance of each row with the
functional dependence D # ~ CT until the attempted update of the missing
department serial number (if any) to a non-missing value.

202 • R e s p o n s e t o T e c h n i c a l C r i t i c i s m s Regarding Missing Information

9.4 • i m p l e m e n t a t i o n Anomal ies

In general, the present state of relational DBMS products in regard to the
representation and handling of missing information is far from satisfactory.
For IBM products based on the language SQL, the main problem is the way
missing information is handled, rather than its representation. In non-IBM
products, even the representation aspects have gone astray. In several of
these products, the DBMS designer has misinterpreted nulls as db-values
(see Section 9.1).

In at least one well-known (and otherwise sound) DBMS product [Re-
lational Technology 1988], zero was chosen as the value to indicate missing
information in all numeric columns. I consider the number zero to be far
too valuable in its normal role in all kinds of business activities~for example,
as a real number representing the actual quantity of a part in stock or the
actual quantity of currency owed by one or more customers. Therefore, I
do not consider zero to be an acceptable value to be reserved by a DBMS
for denoting a missing numeric db-value. In fact, in the context of computer-
supported database management, it is unacceptable to reserve any specific
numeric value or character-string value to denote the fact that a db-value is
missing.

9 .5 • Appl icat ion of Statistical Functions

An example involving the sum of an empty set of numbers is sometimes
used to show that SQL encounters difficulties by unconditionally yielding the
SQL null as the result. While I agree with this example when interpreted
solely as an SQL blunder, I do not agree with the use of it as an example
that justifies outright rejection of the relational approach to missing
information.

If the sum were to yield zero unconditionally as the result, there would
be the problem that the average of an empty set of numbers would not be
the sum divided by the count (the number of elements in the set). This
problem arises, however, because 0/0 is normally taken to be undefined in
elementary mathematics; this difficulty does not stem from the relational
approach to missing information. When taking averages, it is necessary for
programmers and users to provide special treatment for the case in which
the divisor (i.e., the number of elements in the set) is zero, because zero
exhibits a unique behavior when it is used as a divisor. Incidentally, I fail
to see how the DV scheme provides any solution or simplification for this
problem.

I consider this problem to be quite separable from the question of how
to deal with missing information. Nevertheless, the approach taken to this
problem in the relational model can be illustrated by taking the example of
generating the total salaries earned by each department, where each total
is computed as the sum of the salaries earned by each employee assigned

9.7 Problems Encountered in the Default-Value Approach • 203

to the pertinent department. Let us assume that a few departments exist
that have zero employees assigned to them at this time.

In applying statistical functions, there are two important alternative
methods of handling occurrences of empty sets.

1. Each occurrence of an empty set is ignored (i.e., passed over).

2. A value, specified by the user, is taken as the result for each occurrence
of an empty set.

Note the difference between these two actions if the statistical function
happens to be the AVERAGE, and if the value selected in the second
approach is zero. The first action omits the departments that have zero
members, while the second generates zero for each such department.

The empty set qualifier, a function ESR with a single argument, say x,
causes each occurrence of an empty set to yield the result x and does not
affect the result obtained from each non-empty set. Omission of this qualifier
altogether causes each occurrence of an empty set to be ignored.

9.6 m I n t e r f a c e to H o s t L a n g u a g e s

Host languages do not include support specifically aimed at the semantics
of the fact that information in databases may be missing. This means there
is bound to be an interface problem, whatever approach is taken in the data
sublanguage. If the approach taken on the database side of the interface is
uniform and systematic (independent of data type), the interface is likely to
be simpler than an approach like the DV scheme, which requires database
users to keep inventing, column by column, their own techniques for dealing
with this problem~not to mention the burden of communicating their
inventions to other users of the database.

The relational approach therefore has a strong advantage in this area
over the DV scheme. In this chapter and in the relational model itself, one
major concession has been made to reduce user confusion about the host--
language interface~namely, a change from the terms "null" and "null
value" to the term "mark" for the indicator that designates the fact that a
db-value is missing.

9.7 • P r o b l e m s E n c o u n t e r e d in t h e
D e f a u l t - V a l u e A p p r o a c h

There are six main problems with the DV approach:

The DV approach does not appear to provide any tools for the handling
of missing information, but merely provides a means for representing
the fact that something is missing.

204 • Response to Technical Criticisms Regarding Missing Information

2. The representation proposed is by means of a db-value, which forces
the testing of functional dependencies and other kinds of dependencies
at the time data is enteredmthe wrong time if a missing value is involved.

3. The representation of the fact that a db-value is missing is not only
dependent on the data type of each pertinent column, but can even vary
across colUmns having a common data type. All of this presents a severe
burden in thinking and in inter-personal communication for the DBA,
end users, and programmers.

4. The numerous and varied techniques for handling missing data will be
buried in the application programs, and it is highly doubtful that they
will be uniform or systematic, or even documented adequately.

5. Each missing db-value is treated as if it were just another db-value (i.e.,
the DV approach ignores the semantics and suffers from the value-
oriented misinterpretation).

6. The DV approach is a step backward from the relational model to an
ad hoc, unsystematic approach frequently adopted in the pre-relational
era.

In the case of item 5, numerous specific consequences were cited earlier in
this chapter, along with the ensuing penalties.

It is also important to realize that, whatever the approach, the DBA,
application programmers, and end users must cope with the semantics of the
fact that some db-values for some columns may bemissing. Because the DV
scheme offers no tools for handling missing information in a uniform, sys-
tematic way, users are forced to invent a variety of ad hoc, unsystematic
ways, over which the DBMS cannot exert any real integrity control. Finally,
research in this area is still being pursued, and I make no claim that the
relational model, as it now stands, treats missing information in a way that
is unsurpassable. Any replacement, however, must be shown to be techni-
cally superior.

9 .8 • A L e g i t i m a t e U s e o f D e f a u l t V a l u e s

Suppose that a bank has a central database that includes information on all
of its customer accounts. When a branch of the bank enters a new account,
the information is inserted into the database from a terminal located in that
branch. If the person making the entry omits the branch code (which
identifies the branch), the system could assume with reasonable safety that
the branch is identified by the particular terminal used for the entry.

In this example, a default value is being used for the branch code, and,
during the entry of a new account, it is the system that computes an
appropriate value for this code, and then inserts that code into the database
along with the rest of the account information from the terminal. It is
important to realize that at no time is the branch code actually missing from

9.9 C o n c l u d i n g Remarks • 205

its database context: a record that describes a customer account in detail.
Therefore, this example is clearly distinguishable from a case of information
missing in the database.

Use of the word "system" in the last two paragraphs is intentionally
vague. It should not be interpreted as meaning the DBMS. No specific
feature of RM/V2 supports this kind of use of default values, which can be
handled adequately by terminal support that is programmed by use r s~
provided, of course, that the system, of which the DBMS is part, can make
the identification of a requesting terminal available along with each request.

9 .9 • C o n c l u d i n g R e m a r k s

In the past, I have intentionally included in the relational model a systematic
treatment of missing-but-applicable information (information that is tem-
porarily unknown). In RM/V2, I am now adding similar treatment for
missing-and-inapplicable information (information that is unknowable). The
whole treatment of missing information is intended to remove from database
administrators and users the burden of solving this problem in highly spe-
cialized, and often inadequate, ways.

I make no claim that this systematic treatment is either intuitive or
counter-intuitive. Neither do I claim that users who have used the old style
with non-relational DBMS will be able to avoid the burden of learning the
new approach. I also do not claim that missing-but-applicable information,
inapplicable information, and the derivation of deductions therefrom are
thoroughly understood yet.

Finally, I do not claim that RM/V2 handles the "half-missing" case, in
which a specific and precise value is unknown, but either a small range of
possible values is known, or else there is a high probability that the missing
value is one of a very few values. This case may not be ignored in RM/V3,
but it is now more urgent for DBMS products to handle the cases for which
RM/V2 provides support. In any event, it will be necessary to show that the
extra machinery (hardware and/or software) needed to support the "half-
missing" case is going to pay its way.

The old-style approach used values that were specially earmarked by
users to represent missing information (and misrepresent the semantics).
The earmarking and the invention of manipulation techniques were likely
to be different for each different column and were a significant burden on
database administrators and users. The reader will undoubtedly agree that
the present scheme in the relational model is far more systematic than the
old-style approach, and moves more of the burden of handling missing
information from the users to the DBMS.

Version 1 of the relational model was defined precisely in [Codd 1968-
1979]. One of the great advantages of the relational approach is the unpar-
alleled power of its treatment of integrity. It is high time for vendors and
users to place more emphasis on the introduction and retention of database

206 • Response to Technical Criticisms Regarding Missing Information

integrity, and consequently invest more effort in learning the systematic
treatment of missing information as described in this book.

Exercises

9.1

9.2

9.3

9.4

9.5

What is the default-value approach, and in what ways is it unsatisfactory
for representing and handling the treatment of missing values? State
five undesirable properties.

In what circumstances is it appropriate to store default values in a
relational database? Has this anything to do with values that are missing
from the database? If so, what is the connection?

Suppose that functional dependencies and multi-valued dependencies
that are applicable to a certain database are stored in the catalog as
DBA-defined integrity constraints. How does the relational model cope
with these constraints when numerous columns are allowed to have
missing values?

How does RM/V2 cope with the application of an aggregate function
to an empty set? What does SQL deliver as the result? Which of these
actions makes sense? Explain your answer.

Provide a legitimate case in which a default value (one not supplied
by the user) should be stored in a database? Does the DV scheme
support this type of default value? How is this case related to the
representation and handling of missing information?

• C H A P T E R 1 0 •

Qualifiers

A qualifier is an expression that can be used in a command to alter some
aspect of the execution of that command. In the context of this book, the
commands of interest are relational commands; during execution of these
commands, the focus of interest is the effect of the qualifiers on database
management. Features RQ-1-RQ-13 (the 13 qualifiers) are discussed in this
section.

Normally, when a truth-valued condition in a relational command is
evaluated, the specified combination of target values is extracted from the
database, if and only if the complete condition evaluates to TRUE (abbre-
viated t). The first three features, RQ-1-RQ-3, are used to change the
qualifying truth-value from t to one of the MAYBE truth values (a or i) for
whatever scope of the condition is embraced by the MAYBE qualifier. Table
10.1 exhibits for each pertinent feature which truth-value becomes the
qualifying truth-value in place of t.

Table 10.1

RQ-1

RQ-2

RQ-3

Qualifiers and Truth Values

Q

T R U E

A - M A Y B E

I - M A Y B E

M A Y B E

t
a

i

both a and i

207

208 I Qualifiers

Table lO.2 Qualif iers

Feature Qualifier

RQ-1 A-MAYBE
RQ-2 I-MAYBE
RQ-3 MAYBE
RQ-4 AR(x)
RQ-5 IR(x)
RO-6 ESR(x)
RQ-7 ORDER BY
RQ-8 ONCE ONLY
RQ-9 DOMAIN CHECK

OVERRIDE
RQ-10 EXCLUDE SIBLINGS
RQ-11 DEGREE OF

DUPLICATION
RQ-12 SAVE
RQ-13 VALUE

Pertinent Context

Condition part of any operator

Any column in any request

Any command
Any retrieval command
Any inner join
Any operator involving inter-
column comparisons
Operators involving PKs
Any retrieval operator

Any relational assignment
Any command that can generate
marked values ~

The absence of a TRUE or MAYBE qualifier indicates the TRUE case
by default.

Features RQ-4 and RQ-5 deal with the temporary replacement of missing
occurrences of values by specified values, where "temporary" means during
execution of the pertinent command only. Feature RQ-4 provides for tem-
porary replacement of A-marked values, while RQ-5 provides for temporary
replacement of I-marked values. The need for these features is explained in
Chapter 8.

Feature RQ-6 deals with the handling of empty sets. Feature RQ-7
imposes ordering upon the rows of the resulting relation, while RQ-8 forces
each tuple from each operand to be used once if possible, or else not at all,
in executing a join. Feature RQ-9 is the qualifier that suppresses the checking
of domains when a relational command involves using one or more pairs of
columns as comparands.

Feature RQ-10 pertains to controlling the propagation of certain oper-
ators (such as update and delete) to the sibling values of a given primary-
key value. RQ-11 requests the DBMS to append to each row a count of the
degree of potential duplication of that row in the result of a projection or
union, if duplicate rows had not been prohibited in the relational model.
RQ-12 requests the DBMS to save the relation formed as a result of
executing a command. Table 10.2 provides a list of all the qualifiers and the
context in which they are applicable.

10.1 The 13 Qualifiers • 209

10.1 • T h e 13 Qualifiers

In the context of a command that can generate marked values, RQ-13 causes
a specified value to be inserted instead of these marked values. The three
qualifiers in Features RQ-1-RQ-3, all based on four-valued logic, are con-
cerned with extracting values when the condition part of a query has a truth-
value other than TRUE or FALSE. A relation EMP that identifies and
describes employees is used to illustrate the effect of these qualifiers:

EMP (EMP# ENAME DEPT# SALARY BONUS)

1 E107 Rook D12 10,000 - - i
2 E912 Knight D05 - - A 2,000
3 E239 Knight D03 12,000 1,800
4 E575 Pawn D12 - - A - - I
5 E123 King D01 15,000 R A
6 E224 Bishop D03 - - I 2,500

"A" denotes an A-mark, and the corresponding value is missing and appli-
cable. "I" denotes an I-mark, and the corresponding value is missing and
inapplicable. The row numbers are purely expository.

The query to be applied in each case is as follows: retrieve the employees
whose salary exceeds 11,000 and whose bonus is less than 4,000. This query
can be expressed using the Boolean extension of the select operator:

Q <- EMP [(SALARY > 11,000)/k (BONUS < 4,000)].

Without any qualifier, query Q selects row 3 of the EMP relation.

RQ-I T h e M A Y B E _ _ A Qualifier

This qualifier, based on four-valued logic, can be applied to any
truth-valued expression in an RL command. The DBMS focuses on
those items for which this expression has the truth-value a (which
denotes MAYBE-AND-APPLICABLE). For example, if the
M A Y B E m A qualifier is applied to the whole condition, then the
DBMS yields as the final result just those items for which the whole
condition has the truth-value a.

Do not confuse the M A Y B E m A qualifier with the truth-value a or with an
A-marked value. The query Q qualified by M A Y B E m A selects rows 2 and
5 of the EMP relation.

2 lO • Qualifiers

RQ-2 T h e M A Y B E _ _ I Qualif ier

This qualifier, based on four-value logic, can be applied to any truth-
valued expression in an RL command. The DBMS focuses on those
items for which this expression has the truth-value i (which denotes
maybe and inapplicable). For example, if the M A Y B E ~ I qualifier
is applied to the whole condition, then the DBMS yields as the final
result just those items for which the whole condition has the truth-
value i.

Do not confuse the qualifier MAYBEmI with the truth value i or with an
I-marked value. The query Q qualified by MAYBEmI selects rows 4 and
6 of the EMP relation. It does not select row 1, since the non-missing salary
is less than 11,000.

RQ-3 The MAYBE Qualif ier

This qualifier, based on four-valued logic, can be applied to any
truth-valued expression in an RL command. The DBMS focuses on
those items for which this expression has the truth-value a or i
(either applicable or inapplicable). For example, if the MAYBE
qualifier is applied to the whole condition, then the DBMS yields
as the final result just those items for which the whole condition has
the truth-value a or i.

Do not confuse the qualifier MAYBE with the truth-values a or i, or with
marked values (an A-marked value or an I-marked value). The query Q
qualified by MAYBE selects rows 2, 4, 5, and 6 of the EMP relation.

If the DBMS supports features RQ-1-RQ-3 fully, it must support four-
valued logic under the covers. For more details on four-valued logic, see
Chapter 8.

RQ-4, RQ-5 TempOrary R e p l a c e m e n t of Miss ing
Database Values

In applying statistical functions to database values in one or more
columns of an R-table, missing occurrences of such values can be
temporarily replaced (during the execution of the function only) by
applying the qualifier AR(x), which replaces A-marked values by x
(in the case of Feature RQ-4) or the qualifier IR(x), which replaces
I-marked values by x (in the case of Feature RQ-5).

10.1 T h e 13 Qua l i f i e r s I 211

RQ-6 Temporary Replacement of E m p t y

Relation(s)

The qualifier ESR(x) appended to an RL expression causes each
empty relation encountered as an argument during the execution of
that expression to be replaced by the set whose only element is x,
provided x is type-compatible with the pertinent relation (normally,
of course, x is a tuple).

10.1.1 O r d e r i n g I m p o s e d o n Retrieved Data

The ability of a DBMS to deliver derived data in any specified order that
is based on values within the result should be understood from two points
of view: (1) the terminal users, and (2) the application programmers.

Frequently, a terminal user must see the data retrieved from a relational
database in some specific sequence. Moreover, an application programmer
may be faced with the task of taking the retrieved data, an entire derived
relation, and interfacing that data to a host language that, for computing
reasons, is able to process no more than a single record at a time. Such a
programmer is likely to require that the retrieved data be ordered in some
specific sequence.

The relational model does not permit the programmer to take advantage
of the sequence in which the data in the database happens to be stored.
Two important reasons for this are as follows:

1. the DBA may alter the way data in the database is stored at any time
to improve performance and to cope with changes in traffic on the
database;

2. the program should work correctly on a system of different design (even
if it is supplied by another vendor), and a different design may not
support precisely the same representations of data in storage;

R Q - 7 T h e O R D E R B Y Q u a l i f i e r

An O R D E R BY clause consists of the following:

• the O R D E R BY qualifier;

• names for those columns of the operands whose values are to
act as the ordering basis;

• a symbol ASC or DESC indicating whether the ordering is to
be by ascending values or descending values.

An ORDER BY clause can be appended to a relational command
that retrieves data. The DBMS then delivers the data in the order
specified.

212 • Qualifiers

One option available to the user is to base the ordering on the values
occurring in a simple or composite column of one of the operands or of the
resulting relation. If the ordering in the result is not represented (redun-
dantly) by values in one or more columns of the result, the DBMS must
warn the user of that fact (see Feature RJ-10 in Chapter 11).

If the ordering is based on character strings, a collating sequence is used
that is declared by name only, if standard, or by name and extension, if
non-standard.

If the comparator < is inapplicable to the extended data type of any of
the columns upon which the ordering is based, the DBMS applies the
comparator to the corresponding basic data type. (See Chapter 3 for the
distinction between basic data type and extended data type.)

As just noted, the DBMS must warn the user when the ordering in the
result is not represented (redundantly) by values in one or more columns
of the result. This warning is required because a user might expect to be
able to use all of the information in the result for further interrogation. It
is important to remember that the relational operators are incapable of
exploiting any information that is not represented by values in R-tables.
This incapability is neither an accident nor an oversight. It is intended to
keep the relational operators from becoming overly complicated in handling
simple tasks.

Consider the example of the relation C, which identifies and describes
the capabilities of suppliers. This relation is intended to provide information
concerning which suppliers can supply which kinds of parts. Examples of
properties that are applicable to capabilities are as follows: speed of delivery
of parts ordered, the minimum package size adopted by the supplier as the
unit of delivery, and the price of this unit delivered.

S#

P#

Supplier serial number

Part serial number

SPEED

QP

UNIT QP

MONEY

PRICE

Number of business days to deliver

Quantity of parts

Minimum package

U.S. currency

Price in U.S dollars of minimum package.

There are five domains: S#, P#, TIME, QP, and MONEY.

c (S# P# S P E E D UNIT_QP PRICE)

sl pl 5 100 10
. .

sl p2 7 100 20
sl p6 12 10 600
s2 p3 5 50 37
s2 p5 8 100 15
s3 p6 15 10 700

10.1 The 13Qualifiers • 213

s4 p2 10 100 15
s4 p5 15 5 300
s5 p6 10 5 350

Suppose there is an urgent need for fast delivery of certain parts. The
following request tabulates triples consisting of the serial numbers of sup-
pliers, the serial numbers of parts, and the speed of delivery; all the triples
are ordered by part serial number (major participant) and speed (minor
participant):

C[S#, P#, SPEED] ORDER BY (P#, SPEED).

Upon receipt of this request, the DBMS delivers the following result'

c (s# P# SPEED)
sl pl 5 pl
sl p2 7 } p2
s4 p2 10 ~ p3
s2 p3 5

s2 p5 8 t
s4 p5 15 ~ p5
s5 p6 10]
sl p6 12 I p6
s3 p6 15

Note that the option of requesting the ordering to be based on values
in a column of the result allows the values computed according to a specified
function to be used as the ordering basis. For example, suppose that a
relation EMP containing information about employees is being interrogated,
and that EMP has:

• a column containing the present salary of each employee; and

• a column containing the department number of each employee.

Consider this query" find the department number together with the total
salary earned by all employees assigned to that department. It must be
possible to display the result ordered by these total salaries.

10.1.2 The ONCE Qua l i f i e r a n d Its Effec t u p o n T h e t a - j o i n s

The inner and outer T-joins were introduced in Section 5.7. An interesting
property of the T-joins is that each tuple of the operands participates at
most once in the result. It is entirely possible that some of the operands'
tuples do not participate at all in mid-sequence--neither at the early end
nor at the late end.

214 • Qualifiers

RQ-8 T h e O N C E O N L Y Q u a l i f i e r

(a b b r e v i a t e d O N C E)

When attached to a request for an inner T-join, the qualifier ONCE
converts this request into a special inner T-join, in which every tuple
of the operands participates exactly once with few exceptions. The
exceptions can occur at the early end, the late end, or both ends of
the sequence, where early and late are based on values of date and/
or time in the comparand columns. Similarly, the qualifier ONCE
converts an outer T-join into a special outer T-join, in which every
tuple of the operands participates exactly once without exception.

How is this full participation realized? Consider the example that was
introduced in Section 5.7. The sample operands are relations S and T:

S (P A) T (Q B)

kl 4 ml 3
k2 6 m2 5
k3 12 m3 9
k4 18 m4 11
k5 20 m5 13

m6 15

The result of taking the inner T-join based on < of S on A with T on B
(omitting the qualifier ONCE) is the relation V, assuming that

v s [[A < B]] T.

V (P A B Q)

kl 4 5 m2
k2 6 9 m3
k3 12 13 m5

Notice that tuples < k4, 18 > and < k5, 20 > of relation S and tuples
< ml, 3 >, < m4, 11 >, and < m6, 15 > of relation T did not participate
at all in the result.

If the qualifier ONCE is attached, however, the result is generated by
first sorting each relation by increasing time (S is sorted by A, T is sorted
by B). The next step is to start at the tuple in S with the earliest time,
namely < kl, 4 >. This tuple is coupled with the earliest tuple in T, namely
< ml, 3 >. To do this and still comply with the comparand <, the time
component of the tuple < ml, 3 > from T is incremented by the least
integer amount (i.e., 2) to make it satisfy the LESS THAN condition. When
coupled, the resulting tuple is < kl, 4, 5, ml >. Note that I have reversed
the last two components for expository reasons.

10.1 The 13 Qualifiers • 215

The next step is to couple < k2, 6 > from S with < m2, 5 > from T
by incrementing the time component of the row from T by the least amount
(again, 2) to make it comply with the LESS THAN condition. The resulting
tuple is < k2, 6, 7, m2 >. These steps are repeated and yield first < k3,
12, 13, m3 >, then < k4, 18, 19, m4 >, then < k5, 20, 21, m5 >, and
finally the tuple < m6, 15 > from T is left as a non-participant. Notice that
the necessary increments are not constant. The resulting relation is

W (P A B Q)

kl 4 5 ml
k2 6 7 m2
k3 12 13 m3
k4 18 19 m4
k5 20 21 m5

If, instead of the inner T-join, the symmetric outer T-join had been used
with the ONCE qualifier, the result would have been

w (p A B Q)

kl 4 5 ml
k2 6 7 m2
k3 12 13 m3
k4 18 19 m4
k5 20 21 m5
- - - - 22 m 6

Note that the time component of the last tuple < m6, 15 > from T has
been incremented by the least integer amount (i.e., 7) that will make it
greater than the largest time component in the rest of the result.

Note that the operands S and T remain in the database unchanged.
Thus, it would be incorrect to regard this operation as an update of either
S or T. The user may need to bear in mind, however, that the values in the
result are not necessarily drawn from the database without change. Whatever
changes take place are certainly not the result of applying a simple trans-
formation uniformly across all the values in a column.

RQ-9 The D O M A I N C H E C K O V E R R I D E (D C O)

Q u a l i f i e r

If specifically authorized, use of the qualifier DCO in a command
permits values to be compared during the execution of the command
that are drawn from any pair of distinct domains in the entire
database. The qualifier may, however, be accompanied by the name
of a unary relation containing a specific list of the names of domains.
The effect of this list is to request the DBMS to permit comparing

216 • Qual i f iers

activity that involves pairs of distinct domains, only when the names
of those domains appear in the list.

A user who is authorized to use qualifier RQ-9 across the entire database
is endowed with tremendous power for doing good or evil. This is why I
would recommend that the authorization for domain check override normally
be confined to a short, specified list of domains only, and even then only
for a short time and specific trouble analysis.

For more detail, see Features RJ-6 in Chapter 11, RM-14 in Chapter
12, and RA-9 in Chapter 18. Use of this qualifier would seldom be author-
ized, and then for only a short time. The principal use is for detective work
in trying to determine how a portion of the database lost its integrity. For
example, if the domains for a particular database happen to include a part
serial number domain and a supplier serial number domain, and they happen
to have identical basic data types (both character strings of length 12, say),
one might wish to ask which of these semantically distinct serial numbers
happens to be identical to one another when viewed simply as character
strings.

RQ-IO T h e E X C L U D E S I B L I N G S Q u a l i f i e r

In some of the manipulative operators (Features RB-33-RB-34,
RB-36-RB-37), the primary key of some base relation is either
specified directly or is indirectly involved, and certain action is to
be taken on the siblings of this primary key. This action on the
siblings is thwarted if the EXCLUDE SIBLINGS qualifier is at-
tached to the command.

See Section 4.3 for definitions and details.

RQ-11 T h e A p p e n d e d D E G R E E O F

D U P L I C A T I O N (D O D) Q u a l i f i e r

Assume that the DOD qualifier is appended to the projection of a
single relation or to the union of two union-compatible relations.
For each row in the result, the DBMS calculates the number of
occurrences of that row if duplicate rows had been permitted in the
result. This count is appended to each row in the actual result as
an extra component. Thus, the result is a relation with an extra
column, which is called the DOD column here.

This qualifier enables the DBA to grant a user access to enough information
from the database for him or her to make correct statistical analysis, without

10.1 The 13 Qualifiers B 217

granting access to some primary keys that happen to be sensitive. See
Chapter 18 for further information on this topic, as well as an alternative
approach that can be taken by the DBA and DBMS.

Examples of projection with the DOD qualifier appear next. The op-
erand is as follows"

R (K A B C D . . .)

kl a l b l c l d l . . .

k2 a l b l c l d2 . . .

k3 a l b l c l d2 . . .

k4 a l b l c2 d3 . . .

k5 a2 b l c l d3 . . .

k6 a2 b2 c2 d4 . . .

The results are as follows"

R [A B C] DOD

al b l c l

a l b l c2

a2 b l c l

a2 b2 c2

R [A B] DOD

al bl 4

a2 b l 1

a2 b2 1

R [A] DOD R [B] DOD R [C] DOD

al 4 b l 5 c l 4

a2 2 b2 1 c2 2

R [B C] DOD

b l c l 4

b l c2 1

b2 c2 1

R [O] DOD

d l 1

d2 2

d3 2

d4 1

Clearly, any DOD projection of R that includes the primary key K of
R will have as many rows as R does, and in each row the DOD component
will be exactly one. Note also that if relation R happens to be empty, every
projection of R is empty, whether or not the pertinent projection is DOD-
qualified.

An example of union with the DOD qualifier appears next. The operands
are as follows:

S (A B C) T (A B C)

al b l c l a2 b2 c2

a2 b2 c2 a3 b2 c2

The result is as follows"

s UNION T (A B C DOD)

al b l c l 1

a2 b2 c2 2

a3 b2 c2 1

218 • Qual i f iers

Note that 1 and 2 are the only two possible values for the DOD component
of the DOD-qualified union of any two union-compatible relations. Note
also that, if both operands happen to be empty, the result is empty whether
the union is DOD-qualified or not.

Implementation of Feature RQ-11 in an index-based DBMS is quite
easy and cheap~most of the code needed for RQ-11 must be developed to
support the CREATE INDEX command in any case (see Feature RE-14 in
Chapter 7).

Each of the statistical functions built into the DBMS should have two
flavors" one that treats each row as it occurs (just once, ignoring any DOD
component, if such exists); the other that treats each row as if it occurred
n times, where n is the DOD component of that row (see Chapter 19 for
details).

RQ-12 T h e S A V E Q u a l i f i e r

The SAVE qualifier may be attached to any relational assignment
(see Feature RB-30 in Chapter 4). Let T be the relation formed by
this assignment. The SAVE qualifier requests the DBMS to store
the description of T in the catalog, and to save T as if it were part
of the database.

If the SAVE qualifier is omitted, and if T still exists at the end of the
interactive session or after the pertinent application program is executed,
then the DBMS drops T. Thus, the SAVE qualifier causes a relation to be
saved for shared use. Omitting the SAVE qualifier restricts the pertinent
relation to private and temporary u s e ~ a s far as the DBMS is concerned.
A user must have the necessary authorization to make a copy of a base or
derived relation to be saved for private use (outside the control of the
DBMS). He or she may then issue an EXTRACT command (see Feature
RE-19 in Chapter 7).

RQ-13 T h e V A L U E Q u a l i f i e r

When this qualifier is attached along with a value v to a command
or expression that (1) creates a new column in a relation (base or
derived) and (2) would normally fill this column with marked values,
it causes v to be inserted in this column instead of each of the
marked values.

This qualifier can be used with the advanced operator RZ-2 to extend
a relation per another relation or with the DBA command RE-10 to append
a named column to the description and to the extension of a base relation.

Exercises • 219

Exercises

10.1 Which qualifiers in RM/V2 support the extraction of data for which
the truth value of the whole condition is
1. a = unknown due to a missing-but-applicable datum?
2. i = unknown due to a missing-and-inapplicable datum, and
3. either a or i.

10.2 Describe the effect of appending the AR qualifier with 912 as its
argument to a statistical function applied to a numeric column.

10.3 Describe the effect of appending the IR qualifier with the character
string "??" as its argument to a statistical function applied to a
character-string column.

10.4 What is the DBMS required to do if the user includes the O R D E R
BY qualifier in his or her request, and the ordering is not represented
redundantly by values in the result?

10.5 With what kind of operators can the O N C E qualifier be attached to
one or both of the operands? What is the effect of this qualifier?

10.6 How is a regular join on < with the ONCE qualifier related to a
T-join on <?

10.7 Describe the domain checking that is inhibited by the domain check
override.

10.8 What action is excluded on what primary keys when the E X C L U D E
SIBLINGS qualifier is used?

• C H A P T E R 11 •

Indicators

An indicator is a side effect of executing a relational command. If turned
on during the execution of a relational command, it indicates the occurrence
of an exceptional condition pertaining to the relational result, an interme-
diate result, or one of the arguments. Note that indicators are best imple-
mented as return codes, preferably with explanatory comments. There is
likely to be a need for more indicators than the 14 listed in Table 11.1.

Each of the 14 indicators cited in Features RJ-1-RJ-14 is turned off at
the beginning of the execution of each type of RE command that is capable
of turning such an indicator on, so that its state at any time reflects the
outcome of the most recently executed command of this type.

Of course, the language RE must permit use of these indicators as part
or all of a condition expressed within an immediately following RE command.
To support this, each of the 14 indicators (except RJ-11-RJ-14) comes in
pairs, say u and v, because it is necessary to distinguish between the use of
an indicator as an argument in a command and its use as a result of that
command.

During execution of an R E command, the indicator u is used to remember
the indication from the immediately previous RE command, and the indicator
v is prepared to accept the indication from execution of the current RE

command. During execution of the immediately following RE command, the
roles of u and v are reversed. All a user must know is that, when an indicator
(no matter what its type) is tested in the condition part of an R L request, it
reflects the execution of the immediately preceding R E command.

221

222 • Indicators

Table 11.1 I n d i c a t o r s

Feature Type Indicator

RJ-1 Result Empty relation
RJ-2 Argument Empty divisor
RJ-3 Result Missing

information
RJ-4 Argument Non-existing

argument
RJ-5 Argument Domain not

declared
RJ-6 Argument Domain check

error
RJ-7 Argument Column still

exists
RJ-8 Argument Duplicate row
RJ-9 Argument Duplicate primary

key
RJ-10 Result Non-redundant

ordering
RJ-11 Result Catalog block

RJ-12 Result View not tuple-
insertible

RJ-13 Result Tuple-component
not updatable

RJ-14 Result View not tuple-
deletable

Pertinent Features

All operators
Relational division (RB-27)
All operators

RE-2, RE-3, RE-5, RE-6, RE-8,
RE-9, RE-12
Drop domain (RE-4)

Selects, joins, relational division
(RB-27)
Alter domain (RE-3)

Loading
Loading

ORDER BY qualifier (RQ-7)

Blocks to alter database description
(RM-7)
Create view

Create view

Create view

The term "immediately preceding RL command" means the RL command
that the DBMS encountered as the immediately preceding one from the
particular terminal or program, whichever is pertinent. The terms "preced-
ing" and "following" apply in this case to RE commands only, not to any
host-language commands in between the RE commands.

As can be seen from Table 11.1, most of the indicators are argument
indicators. This means that, when turned on, they reflect an exceptional
condition that applies to one of the arguments of a command.

Two of the six result indicators (Features RJ-1 and RJ-2) are intended
to relieve users of the burden of detailed (and possibly programmed) ex-
amination for emptiness in one or more relations, and for the possibility
that one or more cases of missing information were encountered during the
execution of the command.

11.1 Indicators Other than the View-Defining Indicators • 223

11.1 m Indicators Other than the
View-Defining Indicators

R J - I Empty-relation Indicator
(Result Indicator)

When the result of any retrieval or manipulative command expressed
in RL is generated, an empty-relation indicator is turned on whenever
the final result happens to be (or to include) an empty relation.

R J -2 E m p t y D i v i s o r I n d i c a t o r

(Argument Indicator)

If (1) a command in RE is about to be executed, (2) it involves
relational division, and (3) the divisor relation happens to be empty,
then an empty-divisor indicator is turned on, and the result generated
by the DBMS from the division is the dividend with the divisor
columns removed.

The empty-divisor indicator is set to zero at the beginning of the execution
of each RL command. The indicator is set to one (and remains set to one)
whenever within any command a relational division is encountered for which
the divisor is empty. Therefore, upon completion of the execution of a single
command of RE, if the empty-divisor indicator is in state one, this indicates
that an empty divisor was encountered in one or more of the relational
divisions within that command. This indicator is most helpful when the
divisor happens to be an intermediate result, one that exists for only a short
time during the execution of a more comprehensive command.

The relation that results from a relational division by an empty set is
just what one would expect from the corresponding expression in predicate
logic involving the universal quantifier. For example, suppose the database
includes an R-table indicating in each row that supplier S# can supply part
P#. If the user is finding the suppliers, each of whom can supply every one
of a list of parts, and if that list happens to be empty, then every supplier
recorded in the C A N ~ S U P P L Y relation qualifies.

R J-3 Missing-information Indicator
(Result Indicator)

Whenever, during the execution of any retrieval or manipulative
command expressed in RE, the DBMS encounters a database value
declared to be missing, the missing-information indicator is turned
o n .

224 • Indicators

RJo4 Non-existing Argument Indicator
(Argument Indicator)

The DBMS is unable to find an argument in accordance with the
name specified in the command being executed. Execution of the
command is aborted.

R J -5 Domain-not-declared Indicator
(Argument Indicator)

An attempt has been made to execute a CREATE R-TABLE
command in which a column draws its values from domain D, and
the DBMS finds that domain D has not been declared. Execution
of the command is aborted.

R J-6 D o m a i n - c h e c k - e r r o r I n d i c a t o r
(A r g u m e n t I n d i c a t o r)

An operator has been requested that involves comparing values
from two columns. The DBMS discovers that (1) the columns cited
do not draw their values from a common domain, and (2) the user
has not specified DOMAIN-CHECK-OVERRIDE in his or her
command. The domain-check-error indicator is turned on, and ex-
ecution of the command is aborted.

This feature protects the database from damage by those users who happen
to make errors in formulating selects, joins, and divides. Such errors are
quite likely when a naive or tired user is trying to exploit a powerful relational
language. For more detail, see Feature RQ-9 in Chapter 10, Feature RM-
14 in Chapter 12, and Feature RA-9 in Chapter 18.

The following feature is effective when the DBA or some other suitably
authorized user attempts to drop a domain from the catalog without making
sure that there no longer exists in the database a column that draws its
values from that domain.

R J - 7 Domain Not Droppable, Column Still
Exists Indicator (Argument Indicator)

An attempt has been made to execute a DROP DOMAIN com-
mand, but a column still exists that draws its values from that

11.1 Indicators Other than the View-Defining Indicators • 225

domain. When this indicator is turned on, the DBMS aborts the
DROP DOMAIN command.

See Features RE-3 and RE-6 in Chapter 7 for more detail.

R J -8 D u p l i c a t e - r o w I n d i c a t o r

(A r g u m e n t I n d i c a t o r)

When loading data from a non-relational source into the base
R-tables of a relational database, the DBMS examines the data to
see whether duplicate rows occur. If so, the duplidate-row indicator
is turned on.

For both Feature RJ-8 and Feature RJ-9, it is assumed that the descrip-
tion of each base R-table is in the catalog before the loading is started. This
applies even if the base R-table is empty before the loading. Of course, the
description includes an identification of which column(s) constitute the pri-
mary key.

The duplicate-row indicator is not intended for use during any manip-
ulative operations that are totally within the relational model. Such opera-
tions never generate duplicate rows.

R J -9 D u p l i c a t e - p r i m a r y - k e y I n d i c a t o r

(A r g u m e n t I n d i c a t o r)

When loading data from a non-relational source into a base R-table
of a relational database, the DBMS examines the data to see whether
there are duplicate occurrences of primary key values. If so, the
duplicate-primary-key indicator is turned on.

Features RJ-10 and RJ-11, which follow, are also described in Section
4.3 in the context of the insert operator RB-31.

R J - I O N o n - r e d u n d a n t O r d e r i n g I n d i c a t o r

(Result Indicator)

As noted in Feature RQ-7 in Chapter 10, the ORDER BY qualifier
can generate a result in which tuples are ordered according to
information not included in the result. When this occurs, the non-
redundant-ordering indicator (NRO) is turned on.

226 • Indicators

R J-11 Catalog Block Indicator (Result Indicator)

This indicator indicates that a catalog block of commands is being
executed. It is turned on by a BEGIN CAT command only and
turned off by an END CAT command only. Thus, it stays on
throughout the execution of a catalog block.

During the execution of a catalog block, the DBMS uses this indicator
to suppress cascading action that would occur if the indicator had been off.
See the DROP R-TABLE command (Feature RE-9 in Chapter 7) for an
example of a command in which the cascading action is dependent on the
state of the catalog-block indicator.

11.2 • The View-Def in ing Indicators

At the beginning of execution of a CREATE VIEW command, the indicators
RJ-13, RJ-14, RJ-15 are all turned off. The DBMS then examines the
updatability of the declared view using algorithm VU-1 or some stronger
algorithm (see Chapter 17). Each of the three indicators is either left off or
turned on, whichever accurately reflects the extent of updatability of the
view.

R J-13 View Not Tuple- insert ible

From the view definition contained in a CREATE VIEW command,
the DBMS has inferred that the view is not tuple-insertible.

R J-14 View Not Compone nt -updatab le

From the view definition contained in a CREATE VIEW command,
the DBMS has inferred that at least one Component of every tuple
in the view is not updatable.

Of course, as part of the execution of a CREATE VIEW command, the
DBMS determines for each component (virtual column) whether it is or is
not updatable. This information is stored in the catalog (a bit for each
component), so that it is not necessary to recompute any of it when any
update is requested on this view.

Exercises • 227

R J -15 V i e w N o t Tuple-deletable

From the view definition contained in a CREATE VIEW command,
the DBMS has inferred that the view is not tuple-deletable.

For more information on view updatability, see Chapter 17.

E x e r c i s e s

11.1 Describe the empty-relation indicator and the empty-divisor indicator.
In what ways is each of these indicators useful?

11.2 Upon completion of the execution of an RL command, it is found that
the missing-information indicator has been turned on. What does this
mean?

11.3 What are the domain-oriented indicators, and what is their purpose?

11.4 A file is being loaded into a relational database from a non-relational
source. Explain the two indicators that may be turned on, and indicate
two distinct forms of undesirable redundancy.

11.5 A user is trying to drop a domain. The DBMS refuses, and the column
still exists indicator is turned on. What does this mean?

11.6 What is the purpose of the non-redundant ordering indicator?

11.7 Consider a request for tuple insertion, component update, or tuple
deletion acting on a view. Is it at request time or at view-definition
time that the DBMS determines whether the request can be honored
while maintaining integrity? Justify the timing adopted in the relational
model.

m C H A P T E R 1 2 m

Query and Manipulation

The features described in this chapter concern the general properties and
capabilities of the relational language, not its specific features, and certainly
not its syntax.

12.1 • P o w e r - o r i e n t e d F e a t u r e s

R M - I G u a r a n t e e d A c c e s s

Each and every datum (atomic value) stored in a relational database
is guaranteed to be logically accessible by resorting to a combination
of R-table name, primary-key value, and column name. (This feature
is Rule 2 in the 1985 set.)

The access path supporting this feature cannot be canceled. Most other
access paths, however, are purely performance-oriented, and can be both
introduced and canceled. Both Feature RM-1 and Feature RM-3 are needed
in order to support ad hoc query without pre-defined access paths.

Clearly, each datum in a relational database can be accessed in a rich
variety (possibly thousands) of logically distinct ways. It is important, how-
ever, to have at least one means of access, independent of the specific
relational database, that is guaranteed~because most computer-oriented

229

230 • Query and Manipulation

concepts (such as scanning successive addresses) have been deliberately
omitted from the relational model.

Note that the guaranteed-access feature represents an associative-
addressing scheme that is unique to the relational model. It does not depend
at all on the usual computer-oriented addressing. Moreover, like the original
relational model, it does not require any associative-addressing hardware,
even though the need for such hardware was once frequently claimed by
opponents of the relational model.

The primary-key concept, however, is an essential part of Feature
RM-1. Feature RS-8 requires each base relation to have a declared primary
key (see Chapter 2). Feature RM-1 is one more reason why the primary
key of each base relation should be supported by every relational DBMS,
and why its declaration by the DBA should be mandatory for every base
relation.

RM-2 Parsable Relat ional Data Sublanguage

There is at least one relational language (denoted RL in this book)
supported in the DBMS (not in an optional additional software
package) such that (1) RE statements must be capable of being
represented as parsable character strings, and can therefore be
written or typed by a programmer, (2) for each manipulative op-
eration, each and every operand is a relation, and (3) for each
manipulative operation, each generated result is a relation with the
result indicators (see Chapter 11) acting as a possible source of
additional information.

A few vendors strongly promote interaction by programmers based on
multiple-choice questions generated by the DBMS. This is claimed to be an
alternative to writing programs, but I believe that the claim is insufficiently
substantiated. This unproven claim is one important reason for requiring
statements that are parsable character strings. Three additional reasons for
this requirement are as follows:

1. it facilitates program maintenance;

2. the language is then in a form suitable for formal analysis;

3. the language may represent a standard for interfacing the DBMS to
software packages on top (e.g., application development tools and expert
systems).

Interactive tools that are claimed to make written or typed programs
obsolete do not yet appear to support the maintenance requirement ade-
quately. Moreover, these tools are badly in need of a published abstract
model.

12.1 Power-oriented Features • 231

R M - 3 P o w e r o f t h e R e l a t i o n a l L a n g u a g e

Excluding consideration of general logical inference, RL as a lan-
guage has the full power of four-valued, first-order predicate logic
[Pospesel 1976, Stoll 1961, Suppes 1967, Church 1958].

The DBMS is capable of applying this power to all the following
tasks:

• retrieval (database description, contents, and audit log);

• view definition;

• insertion;

• update;

• deletion;

• handling missing information (independent of data type);

• integrity constraints and authorization constraints.

If the DBMS is claimed to be able to handle distributed data, it can
handle the following task:

• Distributed database management with distribution indepen-
dence, including automatic decomposition of commands by the
DBMS and automatic recomposition of results by the DBMS
(see Features RP-4 and RP-5 in Chapter 20).

This last task represents a target to which the DBMS should apply the
relational language RL, rather than a reason to extend RL. In other words,
RL is scarcely affected by the need to support the management of distributed
databases.

Of course, if the DBMS is to handle all the tasks specified in Feature
RM-3, it would need additional capabilities beyond predicate logic. Clearly,
to take just two examples, functions and arithmetic operators may also be
needed. We emphasize the predicate logic because it is vital as a source of
power of the relational language, and will remain so until another logic as
powerful and rigorous is developed, which could take another two millennia.

R M - 4 H i g h - l e v e l I n s e r t , U p d a t e , a n d D e l e t e

The relational language RL supports retrieval, insert, update, and
delete at a uniformly high, set level (multiple-records-at-a-time).
(This Feature is Rule 7 in the 1985 set.)

This requirement gives the system much more scope in optimizing the
efficiency of its execution-time actions. It allows the system to determine

- - i - I

232 • Query andManipulation

which access paths to exploit to obtain the most efficient code. It can also
be extremely important in obtaining efficient handling of transactions across
a distributed database. In this case, users would prefer that communication
costs are saved by avoiding the necessity of transmitting a separate request
for each record obtained from remote sites.

If a product supports retrieval only at this high level, it is not a relational
DBMS, but merely a system that includes a relational retrieval subsystem.

R M - 5 O p e r a t i o n a l C l o s u r e

RL is mathematically closed with respect to the relational operators
it supports.

This means that the retrieval and manipulative operators that can be
invoked by statements in RL are incapable (and must remain incapable) of
generating a result that is neither a relation nor a set of relations (although
the indicators mentioned in Chapter 11 may provide additional output). The
following misinterpretations are common:

• that R L cannot be expanded to support more operators than are currently
part of the relational model;

• that an operator must not generate a relation that lacks a primary key.

Regarding the second misinterpretation, it is worth noting that, when a
relation is generated that does not have a primary key, it always has a weak
identifier. Note also that, as mentioned in Chapter 1 and elsewhere, in RM/
V2 no relation, whether base or derived, is allowed to have duplicate rows.

Feature RM-5 is as necessary in database management as arithmetic
closure is in accounting. When applying addition, subtraction, and multipli-
cation to numbers, the accountant knows that the result is always a number.
Therefore, it is always possible to continue the process and use a result from
one activity as an argument for another. Similarly, when a user interrogates
a relational database, the result is always a relation. Thus, it is always
possible to continue the process and use a result from one activity as an
argument for another. This feature makes it possible for users to employ
interrogation in a detective style.

12.2 • B l o c k i n g C o m m a n d s

If a DBMS is to be more than a simple query system, it must support the
transaction concept. The precise definition accepted today is due to the
System R team at IBM Research. (I believe that a principal contributor to
this definition was Jim Gray.)

12.2 Blocking Commands • 233

A transaction is a logical unit of work that transforms a consistent state
of the database into a consistent state, without necessarily preserving con-
sistency at all intermediate points. All actions within this logical unit of work
must succeed, or else none of them must succeed. This atomicity of the unit
of work must be applicable even though a sequence of several commands is
normally involved in specifying the work to be done within that unit.

Within the logical unit of work, the DBMS may build up numerous
changes for the database: entirely new rows to be inserted, rows that have
been updated, or deletions. Usually these changes are accumulated in a
cache memory until a command to commit the changes (usually called
COMMIT) is received. Then, all the changes are recorded in the database.

If a failure occurs in either the hardware or the software during execution
of the transaction, it is the responsibility of the DBMS to ensure that none
of the changes accumulated in the cache memory is recorded in the database.
If the program discovers some irregularity, such as an attempt to divide by
zero, it issues a ROLLBACK command to abort the transaction and cause
none of the changes to be committed to the database.

Three commands are necessary (the System R terms are adopted):

1. BEGIN signals the DBMS that a transaction is about to begin.

2. COMMIT signals the DBMS that a transaction has been completed in
a normal manner, and that therefore all the changes to the database
generated by this transaction can be committed to the database.

3. ROLLBACK signals the DBMS that none of the changes to the database
generated so far in the execution of this transaction is to be committed.

R M - 6 T r a n s a c t i o n B l o c k

The BEGIN and COMMIT commands identify the beginning and
ending of a block of commands. At least one of the commands
within a block must be expressed in the relational language; the
others may be expressed in either the relational language or in the
host language or in both. Such a block constitutes a transaction if,
during its execution, either all parts succeed or none succeeds.
ROLLBACK signals the DBMS (1) to terminate this execution of
the transaction requested by the program, and (2) to avoid com-
mitting to the database any of the changes already developed during
this execution of the transaction."

The following practical example illustrates the need for this feature.
Suppose that a customer requests a bank to transfer $1,000 from his or her
checking account to his or her savings account. Such a transfer is normally
programmed so that the first action is an attempted withdrawal of $1,000
from the checking account (which incidentally checks to see whether the

234 • Query and Manipulation

balance in the checking account is sufficient for the withdrawal to be made).
If the first action is successful, the second action is to deposit this amount
in the savings account.

Suppose that immediately after the withdrawal succeeds, a hardware
failure occurs and the computer is taken off-line. Then, the corresponding
deposit has not been put into effect. If the withdrawal has been recorded in
the database and the deposit has not been recorded, the customer has lost
$1,000. Therefore, such a transfer of funds from one account to another
should be treated as a logical unit of work (i.e., as a transaction) so that all
of it succeeds, or none of it succeeds.

R M - 7 Blocks to Simplify Altering the
Database Description

An R L commandmlabeled CAT here--signals the DBMS that the
immediately following commands are all RL commands (i.e., no host
language occurs in the package) and that each of these commands
deals with changes in the catalog. The sequence of commands is
ended bythe RL command END CAT. In executing a block of RL
commands defined in this way, the DBMS postpones certain actions
until the command END CAT is encountered. The postponed ac-
tions include cascading actions normally associated with dropping
base R-tables and views, plus the application of certain I-timed
integrity constraints. Immediately before encountering END CAT,
the DBMS cancels that part of the postponed cascading of view
elimination, which has become unnecessary by END CAT time. It
also cancels cascading of deletion for those authorization assertions
that are still meaningful.

This feature concerns reducing or eliminating cascading actions on the
catalog that result from changes in the catalog requested by isolated (un-
blocked) RL commands. Examples of such actions follow:

• dropping every view whose definition depends on an R-table (base or
view) when that table is being dropped;

• dropping all authorization commands that refer to an R-table when that
table is being dropped.

In many cases, Feature RM-7 enables the DBMS to eliminate or dras-
tically reduce cascading action (such as the dropping of all views defined on
a relation R when R is dropped) that results from unblocked commands
that request changes in the catalog.

The main purpose of this feature is to relieve the DBA and any other
suitably authorized user from the burden of having to redefine or redeclare
all the items dropped in cascading action, when it would be necessary to

12.3 Modes of Execution • 235

restore many of them by hand as soon as one or more replacement R-tables
are created. A second purpose is to permit the DBMS to optimize its
treatment of the block of catalog commands as a whole.

For example, the addition in the catalog of a new column to the de-
scription of a base R-table can involve a complete scan of all rows of that
R-table to alter the way each row is stored. If two columns are added to a
single R-table by means of two consecutive, but unblocked, catalog com-
mands, the DBMS will make two complete scans of all rows of that R-table.
On the other hand, if these two commands are placed within a catalog
block, then the DBMS can handle both columns by means of just one scan.
If the pertinent R-table is large, the gain in performance could be significant.

12.3 a M o d e s o f E x e c u t i o n

R M - 8 D y n a m i c M o d e

The DBMS supports the following kinds of changes dynamically~
that is, without bringing activity on the regular data to a halt, without
changing the source coding of any application programs, and without
any off-line recompiling of any source RL statements:

1. creating new and dropping old domains, R-tables, and columns
for already-declared R-tables;

2. creating new and dropping old representations in storage for
parts of the database;

3. creating and dropping performance-oriented access paths;

4. changing the authorization data in the catalog;

5. changing declarations in the catalog (e.g., data types, user-
defined functions, integrity constraints).

The relational approach is intentionally highly dynamic. In contrast to
non-relational DBMS, it should rarely be necessary to bring the database
activity to a halt for any reason.

R M - 9 T r i p l e M o d e

The same language, RL, can be used in three distinct ways. First,
R L can be used interactively at terminals. Second, statements in RE
can be incorporated into application programs. Third, statements in
RE can be combined to specify the action to be taken in case of
attempted violation of an integrity constraint (see Chapters 13 and
14).

236 • Query and Manipulation

Generally speaking, adherence to this feature enables an application pro-
grammer to develop and debug the database statements separately from the
remainder of the program in which these statements occur.

1 2 . 4 • M a n i p u l a t i o n o f M i s s i n g I n f o r m a t i o n

R M - I O F o u r - v a l u e d L o g i c : T r u t h T a b l e s

The DBMS evaluates all truth-valued expressions using the four-
valued logic defined by the truth tables that follow:

not P P k/Q t a i f P / k Q

Q

t a i f

t t t t t t t a i f
P a t a a a P a a a i f

i t a i f i i i i f
f t a f f f f f f f

In these tables, t stands for TRUE, a for MISSING AND
APPLICABLE, i for MISSING AND INAPPLICABLE, and f for
FALSE. Note that t, f, i, and a are actual values, and should not
be regarded as marked values. Because the sets retrieved and ma-
nipulated in database management are all finite, the existential and
universal quantifiers can be treated as iterated OR and iterated
AND, respectively.

Evaluation of a truth-valued expression according to this logic is executed
by the DBMS without assistance from the user. This does not mean that
users should be unaware of four-valued logic, but they need not be contin-
uously concerned with the details.

RM/V1 involved only three-valued logic; no distinction was made on
the basis of reasons why information might be missing. Such a distinction,
however, is made by RM/V2. (For details, see Chapter 8.)

R M - I I M i s s i n g I n f o r m a t i o n : M a n i p u l a t i o n

Throughout the database, missing database values are manipulated
by the DBMS uniformly and systematically, and, in particular, in-
dependent of data type.

Users should be able to exploit the full expressive power of the

12.4 Manipulation of Missing Information • 237

four-valued predicate logic in RL. In particular, the MAYBE qual-
ifier should be applicable to any truth-valued expression, whether a
complete logical condition or just part of such a condition.

(This feature is part of Rule 3 in the 1985 set; see Feature
RS-13 in Chapter 2 for the representation part.)

RL should permit the MAYBE qualifier to be applied either to the whole
condition or to part of it. When a view is cited within a query command,
the DBMS must replace the name of the view by its definition. As a result,
the expanded query can contain a condition that originates partly from the
original query and partly from the view definition. Exactly one of these, the
command or the definition, could have a MAYBE qualifier attached to all
of its condition, while the other has no such qualifier. Thus, in the expanded
command, the MAYBE qualifier applies to no more than part of the
condition. It is, however, appropriate to remember that any part of a
condition to which the MAYBE qualifier is attached must be a truth-valued
expression.

R M - 1 2 A r i t h m e t i c O p e r a t o r s :
E f f e c t o f M i s s i n g V a l u e s

A marked database value in a numeric column cannot be arithmet-
ically incremented or decremented by the DBMS, whereas the un-
marked values can be subjected to such operators.

If x denotes a numeric database value, A denotes an A-mark,
and I denotes an I-mark,

x + x = 2 x
A + A = A
I + I = I

x + A = A
A + I = I
x + I = I

A + x = A
I + A = I
I + x = I

A similar table holds for the three arithmetic operators minus, times,
and divide. When both arguments are unmarked database values, however,
the result is what would be expected from ordinary arithmetic.

R M - 1 3 C o n c a t e n a t i o n : E f f e c t o f M a r k e d V a l u e s

A marked value in a character string column cannot be subjected
to concatenation with any other string by the DBMS, whereas the
unmarked values can.

L e t / ~ denote the concatenation operator and x an unmarked
character string. Using the symbols A, I as in Feature RM-12,

238 • Query and Manipulation

x A x = xx x A A = A
A A A = A A A I = I
I A I = I x A I = I

A A x = A
I A A = I
I A x = I

12.5 m S a f e t y F e a t u r e s

R M - 1 4 D o m a i n - c o n s t r a i n e d O p e r a t o r s a n d

D O M A I N C H E C K O V E R R I D E

Those relational operators that involve comparison of database val-
ues are normally constrained to compare pairs of values if and only
if both are drawn from the same domain (and therefore have the
same extended data type).

There should seldom be any need to override this constraint.
However, if the need does arise, the qualifier DOMAIN CHECK
OVERRIDE (or DCO) may be attached to the command or to an
appropriate expression in the command.

See Feature RA-9 in Chapter 18 for the authorization required to use
the DCO qualifier. See Feature RQ-9 in Chapter 10 for the DCO qualifier
itself, and Feature RJ-6 in Chapter 11 for the DOMAIN CHECK ERROR
indicator.

The normal mode of operation helps protect users from formulating RL
commands incorrectly, but of course does not provide complete protection.

As just pointed out, those relational operators that involve comparing
database values are normally constrained to compare pairs of values if and
only if both values in a pair have the same extended data type (see Chapter
3). Occasionally, however, a function may be applied to one or more
database values in certain columns to yield a value to be compared with
database values in another column or columns. Alternatively, two functions,
possibly distinct, may be applied to each pair of comparands before the
comparison is carried out. Since ordinary programming languages can be
used to implement the function(s) involved, and since these languages do
not support the extended data types of the relational model, it is not easy
to specify the extended data type of such function-generated values. The
following feature should prove helpful.

R M - 1 5 O p e r a t o r s C o n s t r a i n e d b y

B a s i c D a t a T y p e

In using any operator that normally compares pairs of database
values to compare a function-generated value with a database value

12.5 Safe ty Fea tures • 239

or a function-generated value with another function-generated value,
the requirement of Feature RM-14 that the values to be compared
must be of the same extended data type is relaxed: they are merely
required to be of the same basic data type (e.g., both character
strings or both integers).

R M - 1 6 P r o h i b i t i o n o f E s s e n t i a l O r d e r i n g

It is never the case that an R-table, whether base or derived, contains
an ordering of rows or ordering of columns, in which the ordering
itself carries database information not carried by values within the
R-table.

If such an ordering were permitted, the information carried in or by
that ordering would not be retrievable using relational operators. Assuming
that such an ordering is not permitted, it is always possible to continue using
RE in order to pursue a line of investigation by requesting additional queries
or manipulations on these results. An example of this feature being ignored
is the CONNECT command of the ORACLE product.

R M - I 7 I n t e r f a c e t o S i n g l e - r e c o r d - a t - a - t i m e

H o s t L a n g u a g e s

The programming languages FORTRAN, COBOL, and PL/1 are obvious
candidates (others may be candidates also) as host languages for
any relational language RE. The DBMS must therefore be able to
deliver the retrieved relation a block of rows at a time, where a
block can be as small as one row, but is preferably many hundreds
of rows.

A cursor that traverses the retrieved relation may be supported by the
DBMS, although it is preferable that the traversal be executed using the
HL. Normally this cursor scans from block to block, touching each block
only once. Note that this type of cursor does not scan data within the
database, but scans retrieved data only. Such a cursor is more easily managed
by programmers in a bug-free way than those cursors that scan data within
the database.

If the programmer has omitted the ORDER BY clause in his or her
relational request, the program should not be based on the assumption that
the sequence in which rows of the result are delivered by the DBMS will
remain unchanged when a similar request is executed at a later time.

240 • Query and Manipulat ion

R M - 1 8 T h e C o m p r e h e n s i v e D a t a S u b l a n g u a g e

The relational language RL is comprehensive with respect to data-
base management in supporting all of the following items interac-
tively at a terminal and by program (see the triple mode feature,
Feature RM-9): (1)da ta definition, (2) view definition, (3) data
manipulation, (4) integrity constraints, (5) authorization, and
(6) transaction boundaries (BEGIN, COMMIT, and ROLLBACK).
(This feature is Rule 5 in the 1985 set.)

In the relational approach, most of these services require the use of
four-valued, first-order predicate logic. It seems counter-productive to re-
quire users to learn several different languages to make use of this power.
Therefore, it does not make sense to separate the services just listed into
distinct languages.

As an aside, in the mid-1970s ANSI/SPARC generated a document
advocating 42 distinct interfaces and (potentially) 42 distinct languages for
database management systems. Fortunately, that idea seems to have been
abandoned.

12 .6 m L i b r a r y C h e c k - o u t a n d R e t u r n

In some installations, a database may be used as an engineering tool. It will
then contain details of the engineering design of various pieces of machinery.
For each piece of machinery, there may exist several versions representing
successive improvements in design. Since the creation or modification of a
design can take hours or days to conceive and to express in detail, an
engineer is likely to spend much more time on changing the database than
that required for commercial transactions. Therefore, concurrency control
for engineering-type activities must be quite different in nature from that
appropriate for commercial transactions. It seems essential that the DBMS
provide some support for distinctly engineered versions. The library check-
out and return features that follow represent a minimum level of support
for those DBMS products that are intended to support computer-aided
engineering.

R M - 1 9 L i b r a r y C h e c k - o u t

A duly authorized user can retrieve for several hours or days a copy
of part of the database representing an engineering version of a
piece of machinery (hardware or software) for the purpose of making
design changes and creating a new version for that piece of machin-

Exercises • 241

ery. The DBMS marks the version from which the copy is retrieved
as one that is being improved.

R M - 2 0 L i b r a r y R e t u r n

A duly authorized user can store a new version of the design of a
piece of machinery in the database. The request to store this version
must be accompanied by a new identifier for it. The request is
rejected if this identifier already exists as a version identifier in the
database.

E x e r c i s e s

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

What is meant by navigating through the database one record at a
time? Does the relational model support such navigation? State two
reasons for your answer.

List 10 tasks to which the principal relational language can apply
four-valued, first-order predicate logic.

What is a transaction? Is it safe for the database to lose integrity in
some early portion of a transaction if it regains integrity by the end
of that transaction?

What is the purpose of the CAT block? Explain how it works.

You wish to make the following changes in the database or in its
description:
1. Rename one of the base relations.
2. Unload a second relation, drop it from the DBMS, reorganize

the data, and reload a reorganized version of it, restoring the
same name as before in the catalog.

In each case, is it necessary first to bring all of the database traffic
to a halt? When the drop occurs in Case 2, is there a way to prevent
all authorization data for this relation from being lost? Or to prevent
all views defined on this relation from being lost? Explain.

List five kinds of activities that are supported dynamically by RM/
V2 (i.e., without bringing the traffic on the database to a halt).

The triple mode feature indicates that the principal relational lan-
guage can be used in three distinct ways. What are they?

List the truth values of (1) a OR f, (2) t AND i, (3) NOT i, and
(4) NOT a, where t denotes TRUE, a denotes MISSING AND
APPLICABLE, i denotes MISSING AND INAPPLICABLE, and f
denotes FALSE.

2 :

242 • Query and Manipulat ion

12.9

12.10

Under what circumstances does the relational model merely require
comparand columns to have the same basic data type, instead of
requiring these columns to have the same extended data type? What
are the reasons for this relaxation?

What six capabilities must the principal relational language have, if
it is to be comprehensive?

• C H A P T E R 1 3 •

Integrity Constraints

Preserving the accuracy of information in a commercial database is extremely
important for the organization that is maintaining that database. Such an
organization is likely to rely heavily upon that accuracy. Critical business
decisions may be made assuming that information extracted from the data-
base is correct. Thus, incorrect data can lead to incorrect business decisions.

In the relational model, the approach to maintaining the accuracy and
integrity of the database is preventive in nature. General methods for
preventing the database from being damaged by users of all kinds are far
easier to conceive than general methods for repairing the damage once it is
done.

One major step toward the goal of correctness of the data is the en-
forcement of integrity constraints by the DBMS. Many of these constraints
represent rules pertaining to the business. When enforced, these constraints
require the data to be continually consistent with those rules.

Continual and dynamic enforcement is the responsibility of the DBMS
itself. Enforcement is totally misplaced if it is made the responsibility of a
software package added on top of the DBMS as an afterthought, because
such a package can easily be bypassed.

Without doubt, the relational approach is opening up databases to many
more people than any previous approach. It is no longer the case that just
a few members of an organization can access the data because of the highly
specialized skills and knowledge needed. Therefore, far more responsibility
must be placed on the DBMS to maintain the integrity of the data. Up to
the time of writing this book, DBMS vendors have failed to provide adequate
support for the integrity features of the relational model.

243

244 • Integrity Constraints

Occasionally in this chapter and the next, the term "user-defined integ-
rity constraints" is used ~This term means integrity constraints defined by
suitably authorized users. Normally, such authorization is assigned to the
DBA and his or her staff only, since these are the people ultimately re-
sponsible for the correctness of the data.

Many people have the incorrect notion that integrity constraints merely
amount to validation of data upon its entry into the database. Integrity
constraints, however, are much broader in scope. They may be applicable
upon insertion, update, or deletion of data, and the timing of applicability
is normally specified as part of the pertinent declarations.

13.1 m L i n g u i s t i c E x p r e s s i o n o f I n t e g r i t y C o n s t r a i n t s

Early in the development of non-relational DBMS (and also in the devel-
opment of artificial-intelligence prototypes), the objective was often adopted
of casting as much as possible of the system's behavior into data structure.
This approach was thought desirable because it might simplify the program-
ming. Actually, the programming often became much more complicated,
and the systems became much harder to understand.

In the relational approach, in sharp contrast to non-relational ap-
proaches, declaration of user-defined integrity constraints is made largely
independent of the data structure (both physical and logical) to achieve in-
tegrity independence (see Feature RP-3 in Chapter 20). Such constraints
must be specified linguistically using the principal relational language, RL.

Features RI-25-RI'27 and RI-31 in Chapter 14, together with Features
RL-10 and RL-11 in Chapter 22, help users to specify those kinds of
constraints that involve inter-set relationships, such as inclusion dependence
(the inclusion 0f one set of database values within another).

13.2 • T h e F i v e T y p e s o f I n t e g r i t y C o n s t r a i n t s

Information about inadequately identified objects is never recorded in a
relational database. To be more specific, the following two integrity con-
straints apply to the base relations in every relational database, and should
be enforced by the DBMS:

1. Type E, entity integrity. No component of a primary key is allowed to
have a missing value of any type. No component of a foreign key is
allowed to have an I-marked value (missing-and-inapplicable).

2. Type R, referential integrity. For each distinct, unmarked foreign-key
value in a relational database, there must exist in the database an equal
value of a primary key from the same domain. If the foreign key is
composite, those components that are themselves foreign keys and un-
marked must exist in the database as components of at least one primary-
key value drawn from the same domain.

13.2 The Five Types of Integrity Constraints • 245

Note that the domain concept plays a crucial role in this and in other kinds
of integrity. For convenience, the following abbreviations are adopted: PK
denotes primary key; FK denotes foreign key.

Cases in which the key is a combination of columns and some (perhaps
all) of the component values of a foreign key-value are allowed to be marked
as "missing, need special attention." Those components of such a foreign-
key value that are unmarked should adhere to the referential-integrity con-
straint. This detail is often not supported in today's DBMS products, even
when the vendors claim that their products support referential integrity.

Of these two types of integrity, some versions or releases of relational
DBMS products support entity integrity. Only a few, however, provide even
partial support for referential integrity. The most important reason for this
partial support or lack of support is omission of support for the domain
concept. Also, support is omitted in most products for primary and foreign
keys. In addition, there is failure to support features that would enhance
the performance of this kind of integrity constraint, such as domain-based
indexes (see Feature RD-7 in Chapter 21).

To a large extent, Version 2 (Release 1) of IBM's DB2 supports refer-
ential integrity, a substantial improvement over Version 1. The support is
incomplete, however, for the following reasons.

• It fails to include domains supported as extended data types (see Chapter
3).

• The primary key of each base relation is optional, when it should be
mandatory.

• There is no TC timing (PK update problem).

• There is no TT timing (cyclic key state problem).

• A foreign key is allowed to cross-refer to only one primary key (when
more than one base relation may each have a primary key based on the
same domain). There is no partial check on composite FK, for which
at least one component is missing and at least one is not missing.

• The only alternative to on-the-fly checking involves use of a utility
program (see Sections 13.3 and 13.6, including Feature RI-22).

Before introducing the types of integrity constraints in the relational
model, it is worth noting that the terms "integrity constraint" and "violation
of an integrity constraint" convey the original motivation for the concept.
These terms fail, however, to convey certain important future uses of the
concept. Its use is likely to grow beyond maintenance of database integrity
into application-oriented actions based on specified states of data arising in
the database and on date and time occurrences.

For example, for certain kinds of parts held in inventory, whenever the
quantity-on-hand sinks to pre-specified levels, the DBMS may take the action
of ordering certain computed or pre-specified quantities of those parts. This
kind of use will probably receive more attention in RM/V3.

246 • Integrity Constraints

R I - 1 - R I - 5 T y p e s o f I n t e g r i t y C o n s t r a i n t s

Integrity constraints are of five types: (1) D-type or domain integrity
(Feature RI-1), (2) C-type or column integrity (Feature RI-2), (3) E-
type or entity integrity (Feature RI-3), (4) R-type or referential
integrity (Feature RI-4), and (5) U-type or user-defined integrity
(Feature RI-5).

In English, an easy way to remember the five types is that the corre-
sponding letters are those of the words CURED (the pleasing one to
remember) and CRUDE. All five types must be supported by the DBMS
using declarations expressed in RL. In this task the full power of RL, including
but not limited to four-valued, first-order predicate logic, must be applicable.

One reason that C-type integrity is part of the relational model is that
it makes it possible to avoid the needless complexities and proliferations of
domains that are subsets of other domains. For example, suppose that a
database contains many currency columns, all of the same currency type (all
U.S. dollars, say). Then, only one currency domain need be declared. The
range of values that is included in the definition of this domain is wide
enough for all company uses. Each column, however, that reflects a more
narrowly defined range (maximum expenditure by certain departments, say)
would have an additional range constraint applied to the column: in other
words, a C-type integrity constraint that the DBMS links with the D-type
constraint by logical AND.

Referential integrity is defined and discussed in Section 1.8. Its definition
was briefly repeated earlier in this section. User-defined integrity is discussed
in Chapter 14.

13.3 • T i m i n g a n d R e s p o n s e S p e c i f i c a t i o n

In RM/V2 each integrity constraint is assigned a timing, and there are
precisely two types of timing. The timing type TC specifies that integrity-
constraint checking is to be executed by the DBMS no later than the end
of execution of whatever relational request (normally originating from a
user or application program) is now active. The timing type TT specifies
that integrity-constraint checking is to be executed by the DBMS at the end
of execution of whatever transaction the relational request participates in.
Of course, a request may be free of any transaction context: that is, the
request does not participate in any transaction. In this case, all those integrity
constraints of type TT are inapplicable.

To explain these two timing types in more detail, consider the action
taken by the DBMS whenever a relational request is being executed. It is
advisable to remember that the normal source of each relational request is
either an application program or a user who is interacting with the database
using a terminal. On the other hand, the normal source of an integrity
constraint is the catalog.

13.3 Timing and Response Specification • 247

The catalog is the direct source for types D, C, R, and U, whose
definitions are explicitly stored in the catalog. It is the indirect source for
type E through use of the declarations of all primary keys, and, of course,
these declarations are stored in the catalog. The action taken by the DBMS
consists of Steps 1-5 for a request that participates in a transaction, and
Steps 1-3 only for a request that does not participate in any transaction.

Step 1 Some time during the execution of the request (possibly at the
very beginning) the DBMS determines which of the five types of integrity
constraints and which of the possibly many instances of these types are
applicable to the current request.

Step 2 The DBMS inspects the timing types of each applicable integrity
constraint that is not of type E. Integrity constraints of type E are always
of timing type TC. Most integrity constraints of types D and C are also
of timing type TC.

Step 3 Before the end of execution of the relational request, the DBMS
completes the checking of those constraints that are applicable to this
request and of timing type TC.

Step 4 The DBMS appends those constraints that are applicable to this
request and of timing type TT to a fist pertaining to the current transaction.

Step 5 Immediately before committing all changes resulting from a
transaction to the database, the DBMS checks all the constraints of type
TT in the list of applicable type TT constraints accumulated during the
execution of that transaction.

Note that Step 3 is applicable to every manipulative request regardless
of whether that request participates or does not participate in a transaction.

Of course, designers of DBMS products may choose to implement early
and tuple-by-tuple execution of type TC integrity checking for performance
reasons, but then the onus is on them to prove that the total support for
integrity checking in their DBMS product covers all the RM/V2 requirements
(see Feature RI-22).

RI-6 T i m i n g o f T e s t i n g for T y p e s R a n d U

Each constraint specification of Type R or U must include a symbol
specifying a timing condition. Thus, whenever the DBMS determines
that a particular constraint is pertinent to a command just executed,
it must also examine the timing symbol to determine whether the
constraint is to be tested either (1) immediately, upon completion
of execution of the command being executed (type TC), or (2) as
part of the execution of a COMMIT command in attempting to
complete a transaction (type TT) and immediately before commit-
ting any changes to the database.

248 m Integrity Constraints

In Case (2), it is entirely possible that the DBA may have requested
the abortion of any transaction that attempts to violate a particular integrity
constraint. Note that the timing types TC and 'IT are independent of the
types D, C, E, R, U cited earlier in Features RI-1-RI-5. Use of T-timing
for types D, C, or E, however, will probably be quite rare.

The on-the-fly timing of IBM's DB2 is discussed in Section 13.6.

R I - 7 R e s p o n s e to A t t e m p t e d Vio la t ion for
Types R and U

Accompanying each R-type and U-type integrity constraint, there
must be a violation response V, which defines the action to be taken
by the system in case of attempted violation of the constraint. The
system permits this action to be expressed in RE, in the host lan-
guage, or in both. Of course, every execution of V is also subject
to whatever integrity constraints are applicable to V. These con-
straints may be of any of the five types D, C, E, R, or U, and either
of the two timings TC or TT.

ROLLBACK is an example of a command that should be permitted. It
is reasonable, however, for the DBMS to prohibit use of the COMMIT
command as part of the violation response, because normally a transaction
is in progress (originating from an application program or interactively from
a terminal), and execution of that transaction may not be completed.

R I - 8 D e t e r m i n i n g Appl icab i l i ty of Constraints

Before completion of the execution of any R L statement, the DBMS
must examine the catalog to see whether any C-timed integrity
constraints must be tested. Before completion of the execution of
any transaction (indeed, before committing any of the changes to
the database), the DBMS must examine the catalog to see whether
any T-timed integrity constraints must be tested. Whenever the
DBMS finds that a constraint must be tested, it proceeds to execute
the specified test.

R I - 9 R e t e n t i o n o f C o n s t r a i n t D e f i n i t i o n s for
Types R and U

The DBMS stores the following in the catalog: (1) the definition of
the violation response for each instance of a referential-integrity
constraint, along with identification by column names of the perti-

13.3 Timing and Response Specification • 249

nent PK-FK association; (2) the definition of each user-defined
integrity constraint, including its violation response.

R I - I O A c t i v a t i o n o f C o n s t r a i n t T e s t i n g

As a consequence of Feature RI-8, integrity constraints are directly
activated by the DBMS. They are not activated by an explicit call
from any application program, and not by any user at a terminal.
If integrity constraints were activated in either of these ways, it
would be all too easy to bypass them altogether.

There are two important reasons for Features RI-9 and RI-10. First,
integrity constraints are a concern of the community of users, not just of a
single application programmer. Second, the act of keeping the database in
compliance with any integrity constraint should not depend on any voluntary
action whatsoever by any user or programmer (whether it be including the
code in his or her program to do the checking or including a call to invoke
a checking program).

Now, relational DBMS products have been put on the market without
adequate support for integrity constraints. Thus, some users have been
forced to place these constraints temporarily in their application programs
until the vendor supports them in the catalog, which is where they belong.
Consequently, when a vendor introduces support for new types of these
constraints should in no way depend on whether each constraint does or
does not appear in any application program.

Users of today's relational DBMS products are advised to provide
themselves with standard procedures to develop application code so that
whatever integrity constraints are incorporated in applications today can be
easily identified and removed, when the products are improved in their
handling of all five types of integrity constraints.

R I - I I V i o l a t i o n s o f I n t e g r i t y C o n s t r a i n t s of
T y p e s D , C, a n d E

Violations of integrity constraints of Types D, C, and E are never
permitted. If the source of an attempted violation is an application
program, the DBMS returns a code indicating that it has not exe-
cuted the request. Then, the programmer can choose (if appropriate)
to include commands in his or her program to bring the program to
a complete halt if this code is encountered. If the source is a user
at a terminal, the DBMS simply denies the user's request and sends
a messageexplaining the denial.

250 • Integrity Constraints

If a user were allowed to record in the database the immediate properties
of an object without recording that object's primary-key value, serious
problems would arise in trying to maintain database integrity. For example,
if two rows in the R-table for employees have equality in corresponding
property values (whenever these values do not happen to be missing from
the database), but one or both primary-key values is missing, how can one
resolve the following question: Do these two rows represent two distinct
employees or just one? In such a case, the count of the number of rows
may not be equal to the number of employees in the company.

In the following example of a relation EMP that identifies and describes
employees, notice that, in each of the two rows for employee(s) named
Knight, the primary-key value is missing. Do these two rows represent two
distinct employees or just one?

EMP (EMP# ENAME BIRTH_DATE SALARY H_CITY BONUS)

E107 R o o k 23-08-19 10,000 Wimborne 5,500
--A Knight 38-11-05 12,000 Poole --I
mA Knight mA 12,000 Poole ~1

E575 P a w n 31-04-22 11,000 Poole 3,100

" ~ A " denotes missing-and-applicable; " ~ I " denotes missing-and-inapplic-
able. This is a good example of a database that has lost its integrity. It is
also one of the simplest of such examples.

13 .4 • S a f e t y F e a t u r e s

RI-12 U s e r - d e f i n e d P r o h i b i t i o n o f M i s s i n g
D a t a b a s e V a l u e s

For any column of any base R-table other than a column that is a
component of the primary key of that table, the DBA can explicitly
request that missing database values of specified types be prohibited.
As a result, the DBMS will reject as unacceptable any execution of
a single RL command that attempts to place an A-mark or an
I-mark (whichever has been prohibited) in such a column.

See Feature RI-19 regarding the introduction of such a constraint. The
DBMS must not require that, if C is a column in which missing values are
prohibited, then C must be indexed, because indexes are supposed to b e
creatable and droppable at any time for performance reasons only. A pro-
hibition of missing values of either type, of course, is quite redundant and

13.4 Safety Features • 251

unnecessary if the column happens to be part of or the whole of the primary
key of the pertinent base R-table. In this case, the entity-integrity constraint
is automatically applied (see Feature RI-3). An explicit prohibition of
I-marks in any foreign-key column is redundant for the same reason.

In no way, however, does Feature RI-12 make the entity integrity feature
RI-3 unnecessary. The mere fact that a column or combination of columns
of a base R-table is prohibited from accepting missing database values cannot
be interpreted by the DBMS as a declaration that the pertinent combination
is the primary key of that base R-table.

Duplicate values are automatically prohibited from each simple or com-
posite column that happens to be the primary key of a base relation.
Occasionally, there is a need to prohibit duplicate values from occurring in
simple or composite columns other than the primary key. The following
feature provides this capability.

RI-13 User-defined Prohibition of
Duplicate Values

A suitably authorized user can declare of any simple or composite
column in a base relation that duplicate values are prohibited from
occurring in that column.

The DBMS may either ignore or reject any attempt by the user to apply
Feature RI-13 to the primary key, since such an attempt is completely
unnecessary. The DBMS prohibits duplicate values from occurring in the
primary key without an explicit request to do so.

It is also unnecessary to apply Feature RI-13 to the combination of all
columns in a base relation in an attempt to prevent the occurrence of
duplicate rows, since the DBMS performs this task without an explicit
request to do so.

RI-14 Illegal Tuple

A tuple consisting of nothing but marked values is prohibited from
all R-tables, whether base or derived.

Such a tuple is already prohibited from base R-tables because each such
table must have exactly one primary key, none of whose component values
can be missing. In derived relations, such a tuple is clearly devoid of
information.

252 • Integri ty Constraints

R I - 1 5 A u d i t L o g

The DBA can request the DBMS to maintain an audit log of at
least all the changes committed to the database (both description
and contents). The information recorded in this log includes at least
the date, time, and identifiers of the user, the terminal, and the
application program (if any such program was involved).

The information in this log need not be directly recorded in a manner
seen by users as a collection of relations, but it must be dynamically trans-
latable to such a form by a program that is part of the DBMS. The audit
log thus generated can be interrogated by any suitably authorized user who
makes use of RL. The translating utility can be executed with a frequency
specified by the DBA (once a day and once a week must be supported as
options).

The term "dynamically" in this context means without bringing the
database traffic to a halt.

Most database management systems maintain a recovery log, but this
log is often inadequate for auditors to trace who was responsible for each
change made to the database (in terms of both description and contents),
and at what date and time the changes were made. In a few products, an
audit log is supported that goes beyond the requirements of Feature RI-15
by recording all querying activity as well as all manipulative activity.

R I - 1 6 N o n - s u b v e r s i o n

Languages other than RL may be supported by the DBMS for
database manipulation (the relational model does not prohibit such
languages). If any of these languages is non-relational (e.g., single-
record-at-a-time), there must be a rigorous proof that it is impossible
for the integrity constraints expressed in R E and stored in the catalog
to be bypassed by using one of these non-relational languages.
(Feature RI-16 is Rule 12 in the 1985 set.)

Note that an example of inability to bypass an integrity constraint does not
constitute a proof of adequate generality. The following general assertion
must be proved: For all possible database requests permitted by the DBMS
product, all possible transactions permitted by that product, and all possible
integrity constraints permitted by that product, it is impossible to bypass
any applicable integrity constraint. Also note that Feature RI-16 is extremely
difficult for a system to support if the system is "evolving" from a non-
relational architecture to a relational architecture; such a system already
supports an interface at a lower level of abstraction than the relational
language in which the integrity constraints are specified.

13.5 Creating, Executing, and Dropping Integrity Constraints • 253

13.5 • C r e a t i n g , E x e c u t i n g , a n d D r o p p i n g
I n t e g r i t y C o n s t r a i n t s

R I - 1 7 C r e a t i n g a n d D r o p p i n g a n

I n t e g r i t y C o n s t r a i n t

RL includes a CREATE CONSTRAINT command and a DROP
CONSTRAINT command. The CREATE command includes the
following items: (1) a name for the constraint distinct from any
constraint name currently in the catalog, (2) the type D, C, E, R,
or U, (3) the constraint definition, and (4) the timing type TC or
TT. Execution of this command causes this information to be stored
in the catalog. The DROP command identifies the integrity con-
straint to be dropped by name. Its execution merely causes the
named integrity constraint to be removed from the catalog.

RI -18 N e w I n t e g r i t y C o n s t r a i n t s C h e c k e d

When a new integrity constraint of any type (except the type covered
in Feature RI-19) is introduced into the catalog, or an integrity
constraint that already exists in the catalog is modified, the activity
must be part of a CAT block (Feature RM-7). The DBMS imme-
diately checks those parts of the database that are potentially af-
fected by the new constraint in an attempt to find all violations of
that constraint that already exist in the database. The user is notified
of each such violation and the DBMS stops execution in the CAT
block until the user responds by rectifying the violation. If no such
remedial action is forthcoming within a reasonable time, the DBMS
rejects the integrity constraint. After all violations of the new in-
tegrity constraint in the entire database have been detected and
rectified, the DBMS accepts the integrity constraint and completes
the CAT block. From then on, the DBMS enforces the constraint.

RI-19 I n t r o d u c i n g a C o l u m n I n t e g r i t y

C o n s t r a i n t (T y p e C) f o r D i s a l l o w i n g M i s s i n g

Database Values

When a Type C integrity constraint, which disallows the occurrence
of missing values in a specified column, is introduced into the
catalog, the database at that instant may be inconsistent with this
constraint. That is, the pertinent column may happen to contain
numerous occurrences of missing values. Enforcement of this integ-
rity constraint in full is therefore delayed in the following sense.

254 • Integrity Constraints

Those marks that already occur in this column at the time of dec-
laration of the constraint are allowed to continue to exist until each
and every such mark is updated to an acceptable database value.
On the other hand, the DBMS rejects any attempt to update a
database value already in the pertinent column to a mark that
indicates the value is now missing.

In other words, the introduction of a constraint that disallows missing
database values in a specified column is enforced gradually. No new occur-
rences of marks are allowed, but those that exist in the specified column
are allowed to continue to exist until they are updated to database values.
This kind of gradual enforcement can be applied to certain types of integrity
constraints other than the prohibition of missing values. The next version
of the relational model (RM/V3) is likely to include such gradual enforce-
ment as an additional option on these other types.

If the column happens to be a foreign-key column, referential integrity
is applied as usual to the non-missing foreign-key values only. Note that a
column of a base R-table that is either the whole primary key or a component
of the primary key is not allowed to have any database values missing,
beginning with the creation of that R-table.

13 .6 • P e r f o r m a n c e - o r i e n t e d F e a t u r e s

In the following feature, the database scope of a command or transaction is
discussed. This is the part of the database that could have been adversely
affected by execution of the command or transaction. Note that this scope
can be broader than just the part of the database that was actually touched
by the command or transaction.

For example, a simple update applied to a primary-key value touches
only that primary-key value, but it may damage referential integrity in
several parts of the database not touched. Those foreign-key values that
previously matched this primary-key value (scattered widely in the database
and not touched) may be, and probably will be, adversely affected by the
change in primary-key value.

RI-20 M i n i m a l A d e q u a t e S c o p e of C h e c k i n g

When integrity constraints must be checked dynamically either at
the end of a command or at the end of a transaction, the DBMS is
designed to make this check over that part of the database that
could have been adversely affected by the command or by the
transaction, but no more than that.

13.6 Performance-oriented Features • 255

The preceding feature is applicable during DBMS-initiated dynamic
checking of integrity constraints. Occasionally, the DBA must be able to
initiate a complete check of an integrity constraint over an entire relation or
over several entire relations if it is a multi-relation constraint. For example,
such a check is needed soon after loading a new relation from a non,relational
source.

RI-21 E a c h I n t e g r i t y C o n s t r a i n t E x e c u t a b l e

a s a C o m m a n d

One of the commands in RL is intended for DBA-initiated execution
of any designated integrity constraint that is stored in the catalog.
The name of the particular constraint, not its type, is specified as
part of the command to designate the operand. The result of exe-
cuting the command is a complete listing of all violations of the
specified integrity constraint.

This command can be applied to integrity constraints of all five types.
To support this feature, it is essential that each occurrence of a particular
kind of integrity constraint (e.g., referential) must be given a distinct name
(see Feature RN-13 in Chapter 6). The term "occurrence" in this sentence
should not be interpreted in a row-by-row sense, but instead at the relational
level.

To avoid a reduction in performance when the DBMS checks referential
integrity, designers of IBM's DB2 invented the on-the-fly technique. This
technique is also applicable to checking other kinds of integrity constraints.
As its name implies, an integrity constraint is checked piece by piece as the
execution of a command proceeds to affect pieces of the database.

This technique is excellent for attaining acceptable performance, but it
fails to support cases in which the execution of a command or transaction
initially violates an integrity constraint, but later recovers from this violation.
In fact, the transaction concept of System R was invented for this reason.

The occasional inapplicability of the on-the-fly'approach is the justifi-
cation of the following feature. Note that it does not adversely affect per-
formance in those cases in which the on-the-fly technique is applicable in a
correct manner.

R I - 2 2 O n - t h e - f l y , E n d o f C o m m a n d ,

a n d E n d o f T r a n s a c t i o n T e c h n i q u e s

If the DBMS uses the on-the-fly technique as its normal technique
for checking integrity constraints, it must be able to resort to an

256 [] Integr i ty Constra int s

end-of-command or end-of-transaction technique in those cases when
the on-the-fly technique does not work correctly.

IBM's DB2 Version 2 does not support this feature. Consequently,
extreme care is necessary when a user wishes to update a primary-key value
and have the corresponding foreign-key values similarly updated to conserve
the matching of values that existed earlier. Using DB2 and assuming no
specially favorable circumstances, neither of the following steps is valid as
the first step:

1. update the primary-key value;

2. update one of the foreign-key values.

In both of these cases, the on-the-fly implementation of referential integrity
fails.

Is there any way of handling this kind of update in DB2? Yes, but it is
very complicatedmand needlessly so, especially when a single command is
adequate in the relational model (see Features RB-31 and RB-32 in Chapter
4). In the following explanation, assume that the foreign keys are those that
refer to the given primary key, that x is the old primary-key value, and that
y is the new primary-key value.

1. Copy a new row into the relation S with the same component values as
the row whose primary key is to be updated, except for the primary-
key value itself, which in the new row is set to y.

2. Update each corresponding foreign-key value from x to y.

3. Delete the row containing the old primary-key value x.

Although this algorithm may appear to be simple, its complexity is
enormous. Step 1 involves using host-language commands (SQL alone is
inadequate for this task). Step 2 requires the user either

[] to know all of the columns that are foreign-key columns with respect to
the given primary key column (a very risky assumption due to the highly
dynamic nature of relational DBMS), or

[] to develop a program to scan all the foreign-key declarations in the
catalog and find all those that refer to the given primary key.

While this scan and all the remaining actions in Step 2 are taking place, the
user of DB2 must ensure through explicit or implicit locking that no other
user either introduces a new foreign-key referencing the given primary key,
or deletes the row of S that has the new primary-key value.

At least one alternative algorithm handles this problem correctly in
DB2, but it is also needlessly complicated. In any event, the algorithm
involves multiple SQL statements instead of just one (See Feature RB-33 or
RB-34), and therefore degrades performance.

Exercises • 257

With regard to the problem of updating primary keys, the complexity
of D B 2 ~ f r o m the user's standpoint and in terms of implementation~stems
from the omission of a simple and cheap feature in the relational model
(namely, support of domains as extended data types; see Chapter 3). When
I introduced the domain concept into database management 20 years ago as
part of the relational model [Codd 1971b, 1971a], it was regarded by almost
all of my IBM colleagues as a purely academic exercise. It is now time for
the implementors of DBMS products to recognize that the domain concept
m u s t be implemented as part of the DBMS if these products are to provide
adequate support for database integrity. Without adequate support for da-
tabase integrity, DBMS vendors are asking DBMS consumers to put their
businesses at unnecessary risk.

E x e r c i s e s

13.1 What are the five types of integrity in the relational model? Is
recoverability from failures in hardware or software directly related
to any of these five types? If so, how? Does it matter whether a
vendor's DBMS supports any of these forms of integrity?

13.2 Is the relational approach to database integrity based on prevention
or on cure? Why?

13.3 Are integrity constraints explicitly invoked from an application pro-
gram? If not, why not, and how are these constraints invoked?

13.4 What does it mean to say that a cyclic key state exists in the
description of a relational database? How does this concept relate
to the transaction concept?

13.5 IBM introduced partial support for referential integrity in Version 2
(Release 1) of its DBMS product DB2. List six ways in which this
release falls short of full support for referential integrity, and explain
the consequences for users.

13.6 Sometimes people assert that it would be adequate if a DBMS always
responded to an attempted violation of a referential integrity con-
straint by rejecting the user's request. Describe an example that
demonstrates the need for at least one alternative reaction.

13.7 IBM's Version 2 of DB2 uses the on-the-fly technique during exe-
cution of a transaction for checking whether referential integrity is
being maintained. Develop a set of necessary and sufficient condi-
tions under which this technique is guaranteed to work correctly.

13.8 If Exercise 13.7 is solved, can the end-of-transaction timing be used
by the DBMS as a fallback for checking referential integrity whenever
the system discovers that the conditions for correctness of the on-
the-fly technique are not in effect? What does this improved support
provide in the case of row insertions when there happens to be a
cyclic key state?

258 • Integri ty Constraints

13.9

13.10

13.11

13.12

Can a user prohibit the occurrence of duplicate values in" (1) a
simple column (2) a composite column? If so, how?

A row is generated in a derived relation, and it contains nothing but
marked values.
1. What does RM/V2 do with the row?
2. Can such a row occur in a view?
3. Can such a row occur in a base relation? In each case, explain

why RM/V2 behaves this way.

What are the major differences in content between a recovery log
and an audit log?

Missing values were permitted in a column that has existed for some
time. What problems can arise in introducing a new constraint on
that column that prohibits the occurrence of missing values?

m C H A P T E R 1 4 m

User-defined Integrity

Constraints

Integrity constraints other than those of the domain, column, entity, and
referential types are needed for relational databases. There are two main
reasons. First, these user-defined integrity constraints permit the database
administrator to define, in a way that can be enforced by the DBMS, many
of the company regulations pertaining to the company operations that are
reflected in the database. Second, these constraints permit the database
administrator to define, also in a way that can be enforced by the DBMS,
many of the government and other regulations that apply to these company
operations. Once these constraints are defined and entered into the catalog,
the DBMS enforces them. Consequently, there is no need to depend on
voluntary compliance by application programmers or end users.

Although the term user-defined is applied to these integrity constraints,
any user who is attempting to define such an integrity constraint must be
authorized to do so (see Chapter 18, "Authorization"). Normally, where
the number of users is large and the database is production-oriented, few
users are so authorized. The DBA, of course, is one such user, since he or
she bears primary responsibility for the safety and accuracy of the database
and its compliance with company and governmental regulations. It is likely
that any other users similarly authorized would be on the DBA's staff.

As mentioned in Chapter 13, it is important to keep in mind that
eventually integrity constraints, especially those of the user-defined type,
will be applied not only to keep the database in an accurate state by
preventing violations of these constraints, but also to trigger specified pos-

259

260 • User-defined Integrity Constraints

itive actions (that cannot be interpreted as responses to violations) when
specified conditions arise in the database. Actually, a small class of this type
(clock-triggered actions) is supported by RM/V2.

14.1 • I n f o r m a t i o n in a U s e r - d e f i n e d
I n t e g r i t y C o n s t r a i n t

What information must a user-defined integrity constraint contain? It is easy
to see that the four components named in Feature RI-23 are necessary;
normally, these four should also be sufficient.

RI-23 I n f o r m a t i o n in a U s e r - d e f i n e d
I n t e g r i t y C o n s t r a i n t

A user-defined integrity constraint has four components: (1) Timing
type TC or TT, (2) those actions by terminal users (TU), application
programs (AP), or the date-time clock that trigger the testing of the
condition, (3) a specification of the condition to be tested, and
(4) the name of a procedure that specifies the action to be taken in
case of attempted violation. Both the user-defined integrity con-
straint and its violation procedure are stored in the catalog.

Let us consider each of these items in turn. The timing type, described
in Chapter 13, is set to TC if the specified condition (Item 3 in the preceding
list) is to be tested at the end of execution of the triggering command. It is
set to TT if the condition is to be tested at the end of execution of whatever
transaction includes the triggering command.

Now for those actions by application programs or terminal users that
trigger the testing of the specified condition.

RI-24 T r i g g e r i n g B a s e d o n A P a n d TU A c t i o n s

The DBMS detects as actions that trigger the testing phase of user-
defined integrity constraints at least the following types of encoun-
ters: (1) a retrieval from a specified relation, (2) an insertion into
a specified relation, (3) an update of a specified relation and column
(either not involving an I-marked value or involving an I-marked
value), and (4) a deletion from a specified relation. These actions
are detected by the DBMS regardless of whether they stem from
application programs (AP) or from terminal users (TU).

14.2 Condition Part of a User-defined Integrity Constraint • 261

R I - 2 5 T r i g g e r i n g B a s e d o n D a t e a n d T i m e

The DBMS is stimulated to invoke the testing phase of user-defined
integrity constraints by the advance of date and/or time to pre-
specified absolute values or by the lapse of pre-specified date and/
or time intervals from some specified starting date and time.

The timing types TC and TT are inapplicable to integrity constraints for
which the triggering is based on date and time.

Each integrity constraint of this type has exactly one absolute date and/
or time. If it is to be periodically activated, this is merely the starting time,
and a date and time interval need to be specified also. Such a timing is
recorded in the catalog as the triggering action of an integrity constraint. If
the condition-to-be-tested component of such a constraint is omitted, or if
that component is specified and happens to have the value TRUE, action
is invoked and it is specified in the integrity constraint as the action-to-be-
triggered component.

It is worthwhile to digress for a moment into issues related to imple-
mentation. When the DBA enters a clock-triggered integrity constraint into
the catalog, the request must indicate (perhaps indirectly) an absolute date
and/or time and indicate whether the activation is to be periodic with some
specified interval.

The DBMS maintains a queue of date-time combinations ordered so
that the earliest is at the top of the queue. This earliest combination is
transmitted to the clock as the next date and time to create an alarm. At
that time the alarm takes the form of an interruption of the DBMS's activities
(at some convenient time, but not significantly delayed). The DBMS then
finds the pertinent integrity constraint, and executes its condition part. If
the constraint is to be periodically activated, the DBMS places a freshly
incremented date-time combination in the queue.

14.2 • C o n d i t i o n P a r t o f a U s e r - d e f i n e d
I n t e g r i t y C o n s t r a i n t

The third component of a user-defined integrity constraint is the specification
of a condition to be tested. Such a condition is normally a truth-valued
expression of the relational language. This expression must have the value
TRUE if the integrity constraint is to be satisfied; the qualifier MAYBE is
not permitted in such an expression.

Conditions can be imposed either on states of the database or on changes
in states of the database. Consider two conditions that stem from a company's
policy. One is imposed on database states; the other, on changes of state:

262 • User-defined Integrity Constraints

1. each employee's salary cannot exceed a certain limit determined by the
employee's position or job in the company;

2. each salary cannot be increased by more than a certain percentage
determined by the employee's position or job in the company.

The following example illustrates the practical reasons for including
user-defined integrity constraints in RM/V2 and the information contained
in these constraints.

EMP EMP#

ENAME

BIRTH__DATE

SALARY

JOBCODE

EMP (EMP# ENAME

Employee serial number

Employee name

Date of birth of employee

Present salary

Position or job within company

BIRTH~DATE SALARY JOBCODE)

el0 Rook 1923-08-19 17,000 j5
e91 Knight 1938-11-05 12,000 j7
e23 Knight 1938-11-05 14,000 j7
e57 Pawn 1931-04-22 10,000 j9
e01 King 1922-05-27 23,000 j l
e34 Bishop 1930-09-17 16,500 j7

A relation called CONTROL contains for each position held by em-
ployees the maximum salary for that position"

CONTROL JOBCODE Job within company

MAXSAL Limit on salary for the job

PERCENT Limit on percentage increase in salary

CONTROL (JOBCODE MAXSAL PERCENT)

j l 30,000 20
j2 25,000 10
j5 20,000 10
j7 15,000 8
j9 15,000 8

Suppose that the salary of an employee is being raised to some new
level. Clearly, this employee's row in the relation EMP must be modified.
It is the new version of this row that must be checked by the DBMS before
the row is committed to the database. It is quite inadequate for the DBMS
to check intermediate results that are developed along the way to the new
version of the pertinent row. The DBMS is responsible for ensuring that all
the values being committed to the database conform to the integrity
constraints.

14.2 C o n d i t i o n Part o f a U s e r - d e f i n e d Integri ty Constra int • 263

Now, in the example under consideration, the salary increase may be
entered from a terminal or may be computed. The DBMS is not responsible
for monitoring how the new salary is created. After the new salary has been
created and has become a component of the new row, and after this row is
ready for commitment to the database and is no longer under the control
of the application program or user, then the DBMS must go into action and
check that the new salary complies with the pertinent integrity constraints.
Regardless of how the salary increase is created, it is only a step on the way
to the new salary. Checking this increase as an intermediate result is irrelevant.

That is why integrity constraint 2 in the preceding list is expressed in
terms of the new and old salaries, not in terms of a salary increase that may
have been generated already. Although these two versions of the increase
in salary are very likely to be identical, the possibility of mathematical
equality is not at issue. Instead, the question is which o c c u r r e n c e of the
increase must be checked if database integrity is to be enforced.

Incidentally, the use of the prefixes "new" and "old" makes this kind
of integrity constraint easier to write and more comprehensible to those who
did not write it. Let the updated salary (when it is under the control of the
DBMS) be denoted by n e L S A L A R Y .

Suppose that the pertinent employee has jobcode = j.

Condition 1" n e w _ S A L A R Y < CONTROL.MAXSAL
where JOBCODE = j

Condition 2: (n e L S A L A R Y - old__SALARY)
< old__SALARY × CONTROL.PERCENT

where JOBCODE = j

The kind of command that is to trigger the testing of these conditions
is an update on the SALARY component of a row of the EMP relation.
The timing type is TC.

On update of EMP.SALARY: If NOT condition 1, then REJECT

On update of EMP.SALARY: If NOT condition 2, then REJECT

For information on the REJECT command, see Section 14.9.
It is not difficult to conceive of similar examples that stem from gov-

ernment regulations instead of company policy. In one such example, the
total year-to-date income tax withheld from each employee's salary must be
within 10% of the total tax on the year-to-date salary, where that tax is
defined by a formula that conforms to the pertinent law or regulation.

If the preceding condition is not satisfied, it is reasonable to say that an
attempted violation of the pertinent integrity constraint has taken place.
However, when specifying an appropriate user-defined integrity constraint,
it is important to identify the condition when TRUE must trigger the
exceptional action by the DBMS, because this is the condition that is required
in that integrity constraint.

264 • User-def ined Integrity Constraints

As an example of a clock-triggered constraint, consider the following
command. Starting on October 8 at 3A.M. and every 7 days thereafter,
archive the derived relation S consisting of all those rows of R for which
the component DONE has the value 1. In a manufacturing company, R
might be information about orders of parts, and DONE = 1 might mean
that the ordered parts and invoice have been received, and the invoice paid.
In an airline, R might be a passenger list for each flight on each day.
Moreover, DONE = 1 might mean that the flight has been successfully
completed. In this second case, deletion might be more appropriate as the
triggered action instead of archiving.

14.3 • The Tr iggered A c t i o n

The fourth and final component of a user-defined integrity constraint is the
action to be taken in the event the condition is TRUE (see Feature RI-23).
This action takes the form of a simple proceduremknown as the triggered
action--encoded in some combination of the principal host language and
the principal relational language. Such a procedure is stored in compiled
form in the catalog and given a name.

The fourth component of a user-defined integrity constraint is the name
of the triggered action procedure. For performance reasons, there might be
a symbolic name table under the covers that would accelerate access to the
code when needed.

14.4 • E x c e c u t i o n of U s e r - d e f i n e d Integr i ty
Constra int s

All user-defined integrity constraints (whether of timing type TC or TT) are
examined by the DBMS at the end of executing each RE command to
determine which ones are applicable. If an applicable constraint is of type
TC, it is executed immediately. If an applicable constraint is of type TT,
the DBMS notes that this constraint must be executed at the end of this
transaction. In this way, the DBMS avoids, at the end of the transaction, a
burdensome exploration of the commands within the transaction to deter-
mine which integrity constraints are applicable at that time.

Execution of the condition part of a constraint of type TT must be
postponed to the end of the transaction. If executed earlier, the condition
could evaluate to TRUE (triggering the exceptional action), even though,
if executed at the end of the transaction, the condition would evaluate to
FALSE (no exceptional action necessary).

14.4 Execution of User-defined Integrity Constraints • 265

Note that it is completely unnecessary for any application program or
any terminal user to invoke any integrity constraint at any time. This
statement applies to all such constraints, whether user-defined or not. Once
an integrity constraint has been defined and entered into the catalog, it is
the sole responsibility of the DBMS to invoke it whenever it is applicable.
Thus, with a relational DBMS there is no reliance on voluntary action by
users in order to maintain the integrity of the database.

Consider what happens whenever a relational command is executed. Let
us assume that the user-defined integrity constraints are kept in the catalog
in separate tables as shown next (although the relational model does not
specify such an organization).

Table Basis of Constraints

1 Pure retrieval (i.e., no update intended, this is the least important
case)

2 Insertion
3 Update
4 Deletion
5 Date and time clock

The implementor may also decide to split each of the first four tables
into two by timing type (TC and TT). With either of these organizations, if
it is desired to base an integrity constraint upon two of these types of
commands (e.g., insertion and update), the constraint must be recorded in
two tables (a table for insertions and a table for updates).

Suppose that a relational command is being executed, and that it is one
of the four types: pure retrieval, insertion, update, and deletion. Suppose
also that this command involves just one relation, say R. Then, at the end
of execution of this command, the DBMS scans the table that corresponds
to the type of command (Table 1, 2, 3, or 4). From this table, the DBMS
selects only those user-defined integrity constraints (if any) that specify the
relation R.

For each constraint selected, the DBMS examines the timing type.
Suppose that the timing type is TC. Then, the DBMS proceeds to execute
the condition part of the integrity constraint. If the result of this execution
is FALSE, the DBMS proceeds to the immediately following command. If
the result of this execution is TRUE, the DBMS executes the designated
procedure for attempted violation. Now, this procedure may simply reject
the pertinent command. If so, the DBMS aborts the entire transaction,
which means that none of the changes that this transaction would have made
to the database are committed.

If the timing type is "IT, the DBMS merely notes that the condition part
of this integrity constraint must be checked at the end of the transaction.
Just before committing the transaction, the DBMS checks whether any

266 • User -def ined In tegr i ty Constraints

integrity constraints have been postponed to this time. If there are several
such constraints, the sequence in which they are executed must not affect
the outcome. If the outcome is affected, this is most likely because of an
inconsistency between integrity constraints (a DBA error)~this is a poten-
tial problem for which the DBA must maintain a careful watch. It will be
some time before tools are available to simplify the discovery of inconsis-
tencies between integrity constraints.

14.5 • i n t e g r i t y C o n s t r a i n t s T r i g g e r e d b y Date
and Time

In many commercial installations certain activities need to be triggered on
the basis of date and/or time only. A good example of an activity that needs
to be done automatically on a routine basis is archiving of some information
in the database. If such tasks are executed automatically, neither the DBA
nor anyone else has to watch a calendar or clock. An assumption is that the
DBMS has access to a clock within the computer system that registers both
date and time, and that this clock can act as a rather sophisticated alarm.

Each integrity constraint triggered by date and time must contain a
clause specifying either an absolute or a relative date and time. An example
of a relative date is every seven days starting on October 8. An example of
a relative time is every 24 hours starting at 3:00A.M. A combination of date
and time might be every seven days at 3:00A.M. starting on January 12 at
3:00A.M. Normally, the DBMS acts as soon after the specified date and/or
time as the necessary locks are released. Of course, at any time various
locks may be held by Commands and transactions that are already in the
process of being execui~ed.

Note that, if date d and time t are specified as a triggering event, the
action to be taken when the combination d, t occurs is precisely that specified
in the catalog as the triggered action procedure. As pointed out earlier, the
phrases triggering event and triggered action are more appropriate in this
context. Note also that in the case of actions triggered by date and time it
is either the truth of the specified condition or the absence of such a condition
that triggers the action.

14 .6 • I n t e g r i t y C o n s t r a i n t s R e l a t i n g t o
Missing Information

Marked values represent the fact that some information is missing from the
database. How are these marked values created at data entry time and at
later times? How is the choice made between an A-mark and an I-mark?
These questions are answered by an insertion feature, RI-26, and an update
feature, RI-27.

14.6 Integrity constraints Relating to Missing Information • 267

RI-26 Insert ion Invo lv ing I -marked Values

In any tuple that is to be inserted into a database there may be
component values missing. For each missing value, the DBMS must
determine which of the following is appropriate: (1) a default value
based on the source of the request (a terminal or work station or
an application program), (2) an A-marked value, or (3) an I-marked
value. If none of these is appropriate, the DBMS must reject the
insertion of this tuple. Note that item (1) is a real value, and it must
therefore comply with all the integrity constraints for this column.
On the other hand, items (2) and (3) denote the fact that the value
is actually missing.

At data entry time, one or more rows are inserted into a base relation,
possiblythrough a view. If a component of a row is missing from the input,
the DBMS examines the description in the catalog of the corresponding
column and poses the following sequence of questions to the catalog:

1. Is there a default value based on the terminal or work station from
which the input came (e.g., the branch identifier in the case of a bank
with many branches)?

2. Which types of mark, if any, are permitted in that column?

3. Is there an integrity constraint that generates the correct type of mark?

If the answer to Step 1 is yes, the sequence terminates after Step 1: the
DBMS inserts the default value and accepts the input. If the answer to Step
1 is no, the DBMS proceeds to Step 2. If the answer to Step 2 is that both
types of marks are prohibited, the sequence terminates after Step 2, and
the DBMS rejects the input.

If in Step 2 the DBMS finds that I-marks are prohibited (as in the case
of a foreign key) but that A-marks are permitted, the DBMS terminates the
sequence after Step 2, and prepares to insert an A-marked value as the
pertinent datum. The actual insertion takes place only if it is in compliance
with any existing integrity constraint pertaining to A-marked values in that
column. In case of non-compliance, the DBMS terminates the sequence and
rejects the input.

Similarly, if in Step 2 the DBMS finds that A-marks are prohibited but
I-marks are permitted, the DBMS terminates the sequence after Step 2, and
prepares to insert an I-marked value as the pertinent datum. The actual
insertion takes place only if it is in compliance with any existing integrity
constraint pertaining to I-marked values in this column. In case of non-
compliance, the input is rejected.

268 [] User-defined Integrity Constraints

Now, if both types of marked values are permitted, the DBMS first
seeks an explicitly stated preference in the request. If a preference is stated
there, the DBMS inserts the preferred type of marked value. If the system
fails to find such a preference, it then searches the description of the pertinent
column to see which one, A or I, is to be inserted. If a preference is stated
in that part of the catalog, the DBMS honors the preference. Otherwise,
the DBMS inserts an A-marked value (the default case).

An external symbol is needed for the marks in several cases. Whenever
such a symbol is needed, the following are suggested:

Type of Mark

External symbol

A-mark

77

I-mark

R I - 2 7 Update Involving I-marked Values

In any tuple within the database that is to be updated, there may
be an attempt to replace a database value or A-marked value by an
I-marked value. The DBMS must then search the catalog to deter-
mine (1) if 1-marked values are prohibited from belonging to that
column or (2) if their entry is permitted, but they do not conform
to some other integrity constraint. In either case a violation of some
integrity constraint is being attempted, and the DBMS must invoke
the appropriate violation response.

In the case of an update rather than an insertion, a concern that integrity
is preserved arises if the update is an attempt to change a db-value into an
I-marked value, or vice versa. The DBMS is designed to seek as a first step
a DBA-defined integrity constraint in the catalog pertaining to I-marks and
the column affected. If the system finds a pertinent constraint, it checks the
constraint and either accepts the update (if the constraint is satisfied) or
rejects it (if the constraint is not satisfied). If the DBMS fails to find a
pertinent constraint, it accepts the update. In any event, of course, the user
must be specially authorized to make such an update. The DBMS treats
such authorization quite separately from the enforcement of integrity
constraints.

14.7 • Examples of User-defined Integrity Constraints

In Section 14.2, the example was discussed of enforcing limits on salary
increases by means of user-defined integrity constraints. Now follow some
new examples.

14.7 Examples of User-def ined Integrity Constraints • 269

14.7.1 C u t t i n g Off O r d e r s t o S u p p l i e r s3

Suppose that an instruction has been issued within a company that no new
orders are to be placed for parts from supplier s3, but that existing com-
mitments to s3 will be completed. Then, user-defined integrity constraints
such as the following two are needed:

On insertion into ORDER"

On update of S# in ORDER:

If S# = s3, then REJECT

If n e w _ S # = s3, then REJECT

14.7.2 R e - o r d e r i n g P a r t s A u t o m a t i c a l l y

The first of the following two examples illustrates the need for responding
to attempted violations of integrity constraints in more complicated ways
than simply rejecting the command or the transaction. In this context, even
the term "attempted violation" seems incongruous. A more appropriate
term is "triggering event."

The first example involves two relations, one called PART, which iden-
tifies and describes the various kinds of parts, and one called REORDER,
which provides "standard orders" for use when the quantity-on-hand of a
particular kind of part falls so low that it becomes necessary to re-order that
part. Suppose that the relations are as follows:

PART P# Part serial number Primary key
PNAME Part name
SIZE Part size
Q Quantity of parts
OH__Q Quantity of parts on hand
OOmQ Quantity of parts on order
M I N ~ Q Minimum quantity of parts

of this kind to be stored

There are only four domains.

P# PNAME SIZE O
PART (P# PNAME SIZE OH__Q OO__~ MIN__Q)

pl shaft 10 400 300 300
p2 wheel 20 850 0 800
p3 radiator 5 400 200 300
p4 chassis 12 400 0 200
p5 bumper 6 620 150 400
p6 lever 15 420 200 350
p7 fan 5 500 50 400

270 • User-defined Integrity Constraints

REORDER P#

S#

R__Q

O__D
• . .

R E O R D E R

Part serial number Primary key

Supplier serial number Foreign key
(preferred supplier)

Re-order quantity

Date of order
• , • , , , , o .

P # S # Q

(P # S # R _ _ Q . . .)

p l s 1 2 6 0 0 . . .

p 2 s 5 1 6 0 0 . . .

p 3 s 5 6 0 0 . . .

p 4 s 1 7 4 0 0 . . .

p 5 s 6 8 0 0 . . .

p 6 s 2 7 0 0 . . .

p 7 s 8 8 0 0 . . .

Whenever quantities of part p are withdrawn from inventory, and the
remaining quantity is less than that specified in the minimum quantity
component MIN__Q of the p row of the PART relation, a DBA-defined
integrity constraint causes the DBMS to extract a copy of the p row from
REORDER, to update the order date to the current date, and to transmit
this order to the preferred supplier. The quantity of part p that should be
ordered and the preferred supplier of part p are also components of the p
row of REORDER. In this context, placing an order is merely constructing
a one-line order.

14.7.3 A u t o m a t i c P a y m e n t for Par t s

Suppose that it is current company policy to make payment for parts as soon
as they are delivered. Consider the action taken at the time of receipt of
the parts--namely, the insertion of a new row into the parts-received relation
PR. The new row specifies the supplier and the date of receipt. This insertion
must trigger generating a check and recording in the PR relation that
payment has been made.

If the company policy in this example is to pay at least 21 days later
and no more than 31 days later, the problem takes on a new aspect, involving
an action that is triggered on a delayed basis. The delay is begun by a delay-
triggering event (the receipt of parts accompanied by an invoice). The reader
may wish to consider the simple extensions to RM/V2 to enable it to cope
with this practical requirement. Extensions of the relational model to cope
with this practical need are postponed to RM/V3.

These exercises clearly indicate the need for the host language to be
usable in programming the triggered action.

14.8 Simplifying Features • 271

1 4 . 8 • S i m p l i f y i n g F e a t u r e s

In the late 1960s, I decided to take a close look at how databases were being
designed. At that time it was clear to me that there did not exist any
engineering discipline upon which database design could be established. One
result was that designers found it extremely diff icult~and frequently im-
possible~to explain why they had chosen a particular design. The only
reason that appeared meaningful to me was the attainment of acceptable
performance on the first application that was developed to run on the
database. Of course, this often meant that the database design was in-
consistent with attaining good performance on subsequently developed
applications.

Two major problems, and hence challenges, presented themselves. First,
there was a complete absence of concern for the database as an object that
would continue to exist and evolve independently of any collection of ap-
plication programs that might exist at some instant in time. Second, there
was no rational basis for database design because there were no carefully
conceived concepts at a sufficiently high level of abstraction. Database design
cannot be successfully pursued if the only concepts available are bits and
bytes. For these reasons, I developed the first three normal forms [Codd
1971b and 1971c] and created the field of normalization of relations for
database managemen t~a field that now requires a textbook of its own to
explain adequately.

Normalization was originally conceived as a systematic way (with proper
theoretical foundations, of course) of ensuring that a logical design of a
relational database would be free from insertion, update, and deletion
anomalies. And indeed, designs that are proposed today can be defended
on a rational basis! This subject is pursued further in Section 17.5.1.

In developing the logical design for a database, it is now quite usual to
consider the following types of dependency: functional, multi-valued, join,
and inclusion. These dependencies, however, should not be treated as if
they were valuable at database design time only. All of them should remain
in effect until the database is redesigned in part or completely. This means
that many of these dependencies should be cast in the form of DBA-defined
integrity constraints. Certain elementary constraints can be managed by the
DBMS without specific instruction from the DBA.

From time to time, but not frequently, it may be necessary to change
one or two of the integrity constraints that define the dependencies. Con-
sequently, to establish these dependencies in the first place, and to modify
them later, there is a need for a data model that can easily accommodate
such changes without impairing the correctness of already developed appli-
cation programs.

The relational model was designed to accommodate these and other
kinds of changes gracefully. Going beyond this adaptability to changes in
database design, there is a need for several extensions to the principal

272 • User-defined Integrity Constraints

relational language: extensions that simplify the expression of these depen-
dency constraints. Some sample features are listed in Section 14.8.1.

14.8.1 Integrity Constraints of t h e D a t a b a s e D e s i g n Type

These constraints are truth-valued expressions that are applicable whenever
the pertinent data is present in the database. Each one is not applicable in
those instances (tuples or rows) where any of the pertinent data happens to
be missing from the database. In the following discussidn, the term "column"
should be interpreted as a column that may be simple or composite.

RI-28 F u n c t i o n a l D e p e n d e n c y

Column B is functionally dependent on column A: R.A ~ R.B.
For each base relation, the DBMS assumes that all columns that
are not part of the primary key are functionally dependent on the
primary key, unless otherwise declared.

Using this assumption, the DBA need not declare a very large number
of obvious functional dependencies. A simple example is the case of a
relation EMP that identifies employees by employee serial number and
describes employees by their immediate properties that are of concern to
the company, including the department DEPT# to which the employee is
assigned. Suppose, however, that EMP also includes an immediate property
of the department, namely the contract type CT for that department (inci:
dentally, I am not advocating this step). In this case, the three pertinent
functional dependencies within the EMP relation are as follows:

E # ~ DEPT#

E # ~ CT

DEPT# ~ CT.

Of these three functional dependencies, the DBA would need to declare
only the third one.

RI-29 M u l t i - v a l u e d D e p e n d e n c y

Column B is multi-valued dependent on column A and column C is
independent of B's dependency on A: R.A ~ R.B / R.C.

The symbol ..4 is intended to distinguish this kind of dependency from the
functional dependency of Feature RI-28, in which the symbol ~ was used.

14.9 Special Commands for Triggered Action • 273

R I - 3 0 Jo in D e p e n d e n c y

Column A is join dependent on columns B and C: R.A = R.B *
R.C.

RI-31 Inc lus ion D e p e n d e n c y

Column A is inclusion dependent on Column B. That is, the set of
db-values in R.A is a subset of the db-values in R.B: R.A is-in R.B.
The DBMS assumes that each declared foreign key is inclusion
dependent on (1) its target primary key, if just one target is declared,
or (2) the union of its target primary keys, if several happen to be
drawn from the pertinent primary domain.

This assumption is justified by the fact that referential integrity must be
maintained. The term "is-in" stands for "is included in." As usual, a different
syntax may be adopted, but the truth-valued expressions should not be any
more complicated than these. As noted earlier, the columns A, B, and C
involved may be simple or composite.

This concludes the coverage of user-defined integrity constraints. This
type of constraint represents an exciting opportunity for DBMS vendors to
demonstrate their technical and inventive capabilities. It also presents new
challenges for DBAs. In part this is due to the richness with which conditions
can be expressed in the principal relational language, RL.

14 .9 l Specia l C o m m a n d s for Triggered A c t i o n

A few commands must be added to RL to enable the DBA to define certain
kinds of responses to attempted violations of referential and user-defined
integrity by application programs and terminal users. These commands make
use of the awareness of the DBMS with respect to the following:

• whether the DBMS is making a C-timed check or a T-timed check;

• if it is a C-timed check, what kind of command is causing the attempted
violation;

• whether a primary domain is directly involved;

• whether an application program or an interactive user is involved.

Regarding the last item, the desired response to attempted violation
may be different in the case of an interactive user and an application program
because the DBMS can communicate with the interactive user. For example,
the system can tell the user that his or her request is denied, and supply the
reason for this denial.

274 • User-defined Integrity Constraints

One of the commands in the immediately following Features RI-32,
RI-33, and RI-34 is likelyto prove to be what is needed in such a response.
There is no requirement, however, that any one of these commands be used
in any triggered action.

RI -32 T h e R E J E C T C o m m a n d

If checking is C-timed, reject the command and, if that command
is part of a transaction, reject the transaction also. If checking is T-
timed, reject the transaction.

RI-33 T h e C A S C A D E C o m m a n d

Case 1" If a primary key is being updated or deleted without using
the cascade option in the command, and the CASCADE command
is used in the violation response, the DBMS cascades the update or
delete to all corresponding foreign keys. Case 2: Let D be a primary
domain. If a foreign-key value from this domain D is being inserted
in the database as a component of a row, and if there is no equal
value in a primary key defined on D, then a new row is inserted
into a relation whose primary key is defined on D, and the primary-
key value in this row is equal to the foreign-key value just men-
tioned. This action takes place only if all the non-primary-key columns
accept marks, if one or more of these columns does not accept
marks, the DBMS executes a REJECT instead.

R I - 3 4 T h e M A R K C o m m a n d

If the cause of attempted violation can be pinned on non-primary-
key column(s) and missing values happen to be acceptable in those
columns, mark the corresponding components as missing but appli-
cable. If the marking fails, the DBMS executes a REJECT instead.

Of course, the marking can also fail because of declarations in the catalog
that prohibit marks from occurring in certain columns.

E x e r c i s e s

14.1 If you were a DBA, would you grant users who did not report to you
permission to add new integrity constraints to the catalog? Supply
reasons for your answer.

Exercises • 275

14.2

14.3

14.4

14.5

14.6

14.7

What are the three principal reasons for supporting user-defined
integrity constraints? Supply a fourth that is more futuristic in nature.

What are the four main components of a user-defined integrity con-
straint? What does each component mean?

Are user-defined integrity constraints incorporated in application pro-
grams? If not, why not, where are they stored, and how are they
invoked when they must be invoked?

What language features make it simpler to express the dependencies
of database design as integrity constraints?

List three commands that must be part of the principal relational
language, if that language is to support the types of violation responses
that are frequently needed.

Why should the DBMS support integrity constraints based on date
and time? Supply an application-oriented example that illustrates the
need for this feature of RM/V2, and that does not involve archiving.

• C H A P T E R 1 5 •

Catalog

An important property of the relational model is that both the database and
its description are perceived by users as a collection of relations. Thus, with
very few exceptions, the same relational language that is used to interrogate
and modify the database can be used to interrogate and modify the database
description. No new training is needed.

Of course, as we have seen in Chapter 7, there are a few extra commands
in RE that deal primarily or even solely with the catalog. These commands
cannot be applied to the regular data only. A user who wishes to access the
database description or any of its parts must be authorized to do so. Oth-
erwise, the authorization mechanism will prevent the user from gaining
a c c e s s .

The database description is stored in the catalog, which also contains
its own description.

15.1 • A c c e s s t o t h e C a t a l o g

In the relational model, the catalog holds the database description. In some
relational DBMS products this description is also called the catalog, while
in others it is called the directory. Whatever it is called, it should be carefully
distinguished from a dictionary, which normally includes all of the infor-
mation found in the catalog, but also contains a large amount of information
concerning the application programs that operate on a scheduled or non-
scheduled basis upon various parts of the database.

277

278 • Catalog

It is important that the DBMS provide very fast access to the information
in the catalog, to prevent a major bottleneck. On the other hand, normally
the need for speed of access is significantly less in the part of the dictionary
that does not include the catalog.

R C - I D y n a m i c O n - l i n e Cata log

The DBMS supports a dynamic on-line catalog based on the rela-
tional model. The database description is represented (at the logical
level) just like ordinary data, allowing authorized users to apply the
same relational language to the interrogation of the database de-
scription as to the regular data. (This feature is Rule 4 in the 1985
set.)

This feature is a very important tool for database administrators. When
asked whether a specific piece of information is in the database under his
or her supervision, a DBA can rapidly use a simple terminal or workstation
to interrogate the database description and obtain the answer, even if the
DBMS is on a mainframe system. Pre-relational DBMS products often failed
to provide the DBA with this tool.

One consequence of Feature RC-1 is that each user, whether an appli-
cation programmer or end user, needs to learn only one data model, an
advantage that most non-relational systems do not offer. For example, IMS
(IBM, n.d.), together with its dictionary, required the user to learn two
distinct ways of structuring data. Another consequence is that authorized
users can easily extend the catalog so that it becomes a full-fledged, active,
relational data dictionary, whenever the DBMS vendor fails to do so.

RC-2 C o n c u r r e n c y

The DBMS has a sufficiently sophisticated concurrency-control
mechanism that it can support multiple retrieval and manipulative
activities on the catalog, on the regular data, or on both concurrently.

It is important to remember, however, that the catalog can easily become
a major bottleneck, since the DBMS must access the catalog when it pro-
cesses many of the accesses to the regular data, whether by application
programs or by terminal users. Therefore, during hours of heavy traffic on
the regular data, it is unwise to grant many users the privilege of accessing
the catalog. The term "regular data" means data not in the catalog.

15.2 Description of Domains, Base Relations, and Views • 279

15.2 m D e s c r i p t i o n o f D o m a i n s , B a s e R e l a t i o n s ,
a n d V i e w s

Domains, relations, views, integrity constraints, and user-defined functions
are each described separately because, to a large extent, they are objects
whose existence is mutually independent.

• Many relations may make use of a single domain.

• Some views cite more than one base relation in their definitions.

• Integrity constraints often involve more than one base relation.

• User-defined functions are most often needed in constructing various
types of queries.

Domains, base relations, and views are now discussed in that order. Integrity
constraints were discussed in detail in the two preceding chapters. In Section
15.3, they are discussed from the standpoint of the catalog. User-defined
functions are discussed from the standpoint of the catalog in Section 15.4
and in more detail in Chapter 19.

R C - 3 D e s c r i p t i o n o f D o m a i n s

For each distinct domain (i.e., extended data type) upon which the
database is built, the catalog contains its name, its basic data type,
the range of values permitted, and whether the comparator LESS
THAN (<) is meaningfully applicable to the values drawn from this
domain.

Note that, if the comparator < is applicable, then all the other com-
parators are also applicable. For details of domain description, see Section
3.2.

R C - 4 D e s c r i p t i o n o f B a s e R - t a b l e s

For each base R-table, the catalog contains at least the following
items: (1) the R-table name, (2) synonyms for this name, if any (a
DBA option), (3) the name of each column, (4) for each column,
the name of an already-declared domain, from which the column
draws its values, (5) for each column, which kinds of missing values
are permitted (if any), (6) for each column, whether the values are
required to be distinct within that column, (7) for each column,
constraints beyond those declared for the domain, (8) for each
column, the basic data type, if applicable, (9) whether the column
is a component (possibly the only one) of the primary key (required

280 • Catalog

for a base R-table), and (10) for each foreign key, the sequence of
columns (possibly only one column) of which it is composed, and
the target primary keys (possibly only one) in the database.

Regarding Item 6, it must be possible to request distinctness of values
in any column without that column having to be indexed! If the DBMS
requires there to be an index in this case, the design is in error in coupling
a semantic property (distinctness of values) with a performance-oriented
feature (an index).

Regarding Item 9, according to Feature RS-8, each base R-table is
required to have exactly one primary key. Regarding Item 10, according to
Feature RS-10 (see Chapter 2), each base R-table may have any number of
foreign keys, including the possibility of having none at all.

~.~, .

Occasionally a column is encountered in which the values are constant;
that is, these values should not be updated, although any value can be
removed if the entire row is deleted. Instead of introducing a declaration to
this effect as one r~ore property of a column, RM/V2 leaves it to the DBA
to use the authorization mechanism to withhold updating privileges on such
a column.

The declaration of any composite column is optional; this decision is
normally made by the DBA. Each composite column that is declared is an
ordered combination of two or more simple columns, all of which belong
to a single base relation.

R C-5 Descr ip t ion of C o m p o s i t e Co lumns

For each composite column declared, the catalog contains its name,
the name of each simple component column, and an order-defining
integer for each of these simple columns. The order-defining integer
is one for the first component, two for the second, and so on.

R C - 6 Descr ip t ion of V iews

For each view, the catalog contains at least the following items:
(1) the view name, (2) synonyms for this name, if any, (3) the name
of each simple column, (4) for each column, the name of an already
declared domain (unless the column is not directly derived from a
single base column), (5) whether the column is a component (pos-
sibly the only one) of the primary key (if applicable) of the view,
(6) the RL expression that defines the view, (7) whether insertions
of new rows in the view are permitted by the DBMS, (8) whether
deletions of rows from the view are permitted by the DBMS, and
(9) for each column of the view, whether updating of its values is

15.3 Integrity Constraints in the Catalog • 281

permitted by the DBMS. For more information on items 7, 8, and
9, see Feature RV-6 in Chapter 16 and the whole of Chapter 17.

The domains (extended data types) of computationally derived columns
can be difficult to determine. Present-day host languages normally do not
deal with this problem, although it seems necessary for both relational and
host languages to deal with it. Hence, determining the domains of compu-
tationally derived columns is not a requirement at this time. The basic data
type of each computationally derived column, however, should be recorded
in the catalog.

15.3 • I n t e g r i t y C o n s t r a i n t s i n t h e C a t a l o g

As noted in Chapter 14, integrity constraints that are called user-defined
are normally defined by the DBA or by staff reporting to the DBA. Each
of these constraints represents company policy and rules, or government
regulations, or database design factors that stem from the meaning of the
data.

R C - 7 U s e r - d e f i n e d I n t e g r i t y C o n s t r a i n t s

For each multi-variable integrity constraint of type U (user-defined),
the catalog contains its complete definition. This includes its name,
the triggering event, timing type, the logical condition to be tested,
and the response to any attempted violation of this condition.

The DBMS fails to support this feature if it does not support user-
defined integrity constraints. See Feature RI-5 in Chapter 13, and the whole
of Chapter 14.

R C - 8 Referential Integrity Constraints

For each integrity constraint of type R (referential), the catalog
contains its complete definition. This includes its name, its triggering
event, its timing type, the keys that are involved, and the response
to attempted violation (relating this action to the keys involved).

The DBMS fails to support this feature if it does not support referential
integrity constraints (see Feature RI-4 in chapter 13).

Features RC-7 and RC-8 are extensions of Feature RC-3.

282 • catalog

15.4 m F u n c t i o n s i n t h e Catalog

R C-9 User-def ined Functions i n t h e Catalog

For each user-defined function, the catalog contains its name, the
source code, the compiled code, the names of relations in the
database to which the function requires read-only access, whether
the function has an inverse, the name of this inverse, the source
code for the inverse, and the corresponding compiled code.

It is certainly permissible for the four types of code cited in this feature
to reside in the regular database, especially if the host system has the
performance-oriented feature that keeps any data that is frequently a bot-
tleneck cached in fast memory.

15.5 • F e a t u r e s f o r Safety and Performance

RC-IO Authorizat ion Data

The catalog contains all the data specifying which interactive users,
which terminals, and which application programs are authorized to
access what parts of the database for what kinds of operations and
under what conditions (see Chapter 18).

In the relational model, all authorization is based on explicitly stated
permission rather than explicitly stated denial. This means that users and
application programs are unable to gain access to any part of the database
other than those parts that they have been explicitly granted permission to
access. The granting of permission must be by means of one or more GRANT
commands from a user, such as the DBA, who has the pertinent authori-
zation to grant.

R C - I I Database Statistics in the Catalog

The catalog contains all statistical information about the database
that is used by the optimizer ' in precompiling and recompiling RL
commands. This includes at least (1) the number of rows in each
base R-table and (2) the number of distinct values in every column
of every base R-table (not just those columns that happen to be

Exerc ises • 2 8 3

indexed at any specific time). (See also Features RD-8 and RD-9
in Chapter 21.)

Consider two extreme cases. If the catalog contains statistical informa-
tion about the database, and if the optimizer fails to use any of this infor-
mation in precompiling or recompiling each RL command, the DBMS fails
to support this feature. Similarly, if the catalog does not contain any statis-
tical information at all, the DBMS fails to support this feature, whatever
use the optimizer makes of its privately held statistics.

Exercises

15.1 List the major items stored in the catalog. What extra information
does a dictionary contain? Which of these components, catalog or
dictionary, is used by the DBMS to compile or interpret relational
requests?

15.2 How many primary keys can a base relation have? Can the number
of primary keys change over time?

15.3 How many foreign keys can a base relation have? Can the number
of foreign keys change over time?

15.4 Supply an example of a view that does not have a primary key. Which
column(s) constitute the weak identifier?

15.5 List the four items that are required in the description of a domain.
Supply a reason for each item.

15.6 List the five items that are required in the description of a user-defined
integrity constraint. Supply a reason for each item.

15.7 List the five items that are required in the description of a referential
integrity constraint. Supply a reason for each item.

15.8 List the eight items that are required in the description of a user-
defined function, if that function has an inverse. Supply a reason for
each item.

15.9 Concerning statistical information about the database, what is the
minimum information required by RM/V2, and where must it be
kept?

a C H A P T E R 1 6 •

V i e w s

Views are intended to insulate users, including application programmers,
from the base relations, allowing (1) changes in definition to be made in
the base relations, and (2) corresponding changes to be made in the view
definitions, in such a way as to keep the views unchanged in content. Views
also permit users to perceive the database in terms of just those derived
relations that directly belong in their applications. These views can also be
used to confine a user's interaction with the database by approving one or
more views as the only way they are authorized to interact with the database.

16.1 m D e f i n i t i o n s of V i e w s

R V-1 V i e w Definit ions" What They Are

Views are virtual relations represented by their names and defini-
tions only. Apart from these names and definitions, the DBMS does
not retain any database information (other than DBMS-derived
view-updatability information) explicitly for views. The DBMS stores
view definitions in the catalog, and supports view definitions ex-
pressed in terms of the following three alternatives only: (1) base
R-tables alone, (2) other views alone, or (3) mixtures of base R-
tables and views.

285

286 • V i e w s

Consider some examples of views. Suppose that the database includes
relations as follows: S stands for suppliers, P stands for parts, and C stands
for capabilities of suppliers in supplying parts. The relation S includes
columns S# for supplier serial number, SNAME for name of the supplier,
CITY for the city in which the supplier is located, and STATUS for a simple
rating of the supplier. Suppose that the extension of S happens to be as

S (S# SNAME CITY STATUS)

follows'

Sl Smith London 20
S2 Jones Poole 10
$3 Blake Poole 25
S4 Clark London 20
S5 Adams New York 15

The relation P includes columns P# for part serial number, PNAME
for name of the part, SIZE for size of the part, OH__Q for quantity-on-
hand, and O O _ Q for quantity-on-order. Suppose that the extension of P
happens to be as follows"

P (P# PNAME SIZE OH_Q OO_OJ

P1 nut 10 500 200
P2 nut 20 235 150
P3 bolt 5 39 240
P4 screw 12 50 0
P5 cam 6 50 8
P6 cog 15 10 10

The capabilities relation C includes columns S# for supplier serial number,
P# for part serial number, SPEED for speed of delivery expressed in
business days, UNIT_.Q for the quantity that represents a unit in which the
part is sold, and PRICE for the cost of the unit quantity when obtained
from the specified supplier. Suppose that the extension of C happens to be
as follows:

c (s# P# S P E E D UNIT_Q PRICE)

$1 P1 5 100 10
$1 P2 5 100 20
$1 P6 12 10 6000
$2 P3 5 50 15
$2 P4 5 100 15
$3 P6 5 10 7000
$4 P2 5 100 15
$4 P5 15 5 3000
$5 P6 10 5 3500

16.1 Definit ions of Views • 287

Then, an example of a view derived from a single base R-table (a so-
called single-table view) is the relation that represents the suppliers located
in London. Such a view would be represented in the catalog by a formula
such as

S [CITY = London],

along with the name of the view and certain properties of the view that are
discussed later in this chapter and the next.

The DBMS is designed to evaluate views as infrequently as possible and
as partially as possible. If this view were fully evaluated from the base
R-table S in the state just indicated, its extension would be as follows:

S i S # S N A M E CITY STATUS)

Sl Smi th London 20

S4 Clark London 20

An example of a more complicated view is the equi-join of S on S#,
with C on S# represented by

s [s # = s #] c .

If this view were fully evaluated with the database in the state indicated
above, the extension would be as follows"

VIEW (S # S N A M E CITY S # P# SPEED . . . PRICE)

Sl Smi th London Sl P1 5 10

Sl Smi th London $1 P2 5 . . . 20

Sl Smith London $1 P6 12 6000

S2 Jones Poole $2 P3 5 . . . 15

S2 Jones Poole S2 P4 5 15

S3 Blake Poole $3 P6 5 . . . 7000

S4 Clark London $4 P2 5 15

S4 Clark London S4 P5 15 . . . 3000

S5 Adams New York S5 P6 10 3500

The ellipses (" . . . ") indicate that the UNI~__Q column has been
omitted to conserve space. Note that, just as with base relations, it is
normally unnecessary at any time for the user to know what extension any
view happens to have at that time.

R V-2 V i e w D e f i n i t i o n s : W h a t T h e y A r e N o t

No view definition is of a procedural nature (e.g., involving iterative
loops). Also, no view definition entails knowledge of the storage

288 • Views

representation, access paths, or access methods currently in effect
for any part of the database, whether these techniques directly
support relations as operands or single records as operands.

This feature makes it simple for any user to define views, whether the
user happens to be a programmer or not.

R V - 3 V i e w D e f i n i t i o n s " R e t e n t i o n a n d
I n t e r r o g a t i o n

View definitions are created using RL. These definitions are retained
in the catalog. They may also be queried using the same language
RL used for interrogating the regular data. In both activities--
view definition and interrogation of ~uch a definition--the full power
of RL, including four-valued, first-order predicate logic, must be
applicable.

Retention of view definitions in the catalog is important because views
are normally of concern to the community of users, not just one user or
programmer.

Figure 16.1 illustrates two views derived from a single base relation.
One is a projection; the other, a row selection.

16.2 • U s e o f V i e w s

Features RV-4-RV-6 are motivated by a desire (1) to support a powerful
authorization mechanism that depends heavily on views, and (2) to protect
the user's investment in application programming and in training by requiring
programs and users to interact directly with views, instead of the base
R-tables.

R V-4 R e t r i e v a l U s i n g V i e w s

Neither the DBMS nor its principal relational language, RL, makes
any user-visible distinctions between base R-tables and views with
respect to retrieval operations. Moreover, any query can be used to
define a view by simply prefixing the query with a phrase such as
CREATE VIEW.

An example of an undesirable distinction is found in Version 1 of IBM's
major database management product, DB2. The operator union can be used

16.2 Use of Views • 289

Figure 16.1 T w o V i e w s D e r i v e d f r o m a S ingle Base R e l a t i o n

k
\

\

/ \
/ \

/ \

\
\

\
L "i

\
\ i \

\
\

,\
\ /]

! , /

\ /
\ / / \

\
\

Base relation R
(extension in the
database at ~
time t)

\
\

\
\
- k

View R [Cm = k]
(extension evaluated at time t)

View R [C1, C2,- .., Cn]
(extension evaluated at time t)

in a query on base R-tables, but cannot be used in creating a view. Such a
restriction can make life difficult for Companies that have Similarly structured
data at several different sites. Such companies frequently must create a view
based on the union or outer union operator to allow headquarters staff to
use the view as a source of planning data.

R V-5 Manipulation Using Views

Neither the DBMS nor its principal relational language, RL, makes
any user-visible manipulative distinctions between base R-tables and
views, except that (1) some views cannot acceptrow insertions, and/
or row deletions, and/or updates acting On certain columns (Algo-
rithm VU-1 or some stronger algorithm fails to support such action),
and (2) some views do not have primary keys and therefore will not
accept those manipulative operators that require primary keys to
exist in their operands.

290 a Views

For more information on Algorithm VU-1, see Chapter 17, "View
Updatability."

R V - 6 V i e w U p d a t i n g

To evaluate the updatability of views at view-definition time, the
DBMS includes an implementation of Algorithm VU-1 or some
stronger algorithm. Neither the DBMS nor its principal relational
language, RL, makes any user-visible manipulative distinctions be-
tween base relations and views, except that:

.

0

some views cannot accept row insertions, and/or row deletions,
and/or updates acting on certain columns because Algorithm
VU-1 or some stronger algorithm fails to support such action;
and

some views do not have primary keys (they have weak identifiers
only) and therefore will not accept those manipulative operators
that require primary keys to exist in their operands.

(This feature is a slightly modified version of Rule 6 in the 1985
set.)

One result of adherence by a DBMS to Feature RV-6 is that all views
that are theoretically updatable by Algorithm VU-1 are also correctly up-
datable by the system without the DBMS having to guess the user's intent.
VU-1 tackles a large class of views, including those that are frequently
encountered.

Note that a view is theoretically updatable if there exists a time-inde-
pendent algorithm (based on data description and data content alone) for
unambiguously determining a single series of changes to the base relations
that will have as their effect precisely the requested changes in the view.
Unfortunately, the general problem of determining whether or not a view
is theoretically updatable cannot be decided logically [Buff 1986]. Thus,
Features RV-5 and RV-6 are related to Algorithm VU-1 (see Chapter 17),
which I consider just a beginning in tackling this problem.

In Feature RV-6, the phrase "theoretically updatable" is intended to
include insertion and deletion, as well as modification of data that is already
in the database. The views handled by VU-1 are those that retain primary
keys, in the case of Views defined on single relations; those that retain
appropriate combinations of primary and foreign keys, in the case of join-
type views; and those that involve traceability of source, in the case of
union-type views.

An alternative way of expressing Feature RV-6 is that, in its language(s),

16.3 Naming and Domain Features • 291

the DBMS must not make any manipulative distinctions between base
R-tables and views, except for those views that, according to Algorithm VU-
1 or a more powerful algorithm, cannot accept row insertions and/or row
deletions and/or updates acting upon certain columns.

If a DBMS handles the view-updatability problem correctly for all those
views supported by VU-1, and the vendor claims that its product can handle
additional views, the view-updatability algorithm must be made publicly
available for analysis, along with a proof that it is strictly more powerful
than VU-1.

16.3 m N a m i n g a n d D o m a i n F e a t u r e s

R V - 7 N a m e s o f C o l u m n s o f V i e w s

In creating a view, RL permits a user to name any column of this
view differently from the way its source column (if such exists) is
named. The DBMS however, retains in the catalog the name of the
source column (if any), as well as the new name for the pertinent
view column.

This feature is required to enable the DBMS to trace back to the base
R-table and its appropriate column whenever an update is requested for this
view column (see Chapter 17).

R V-8 D o m a i n s A p p l i c a b l e t o C o l u m n s o f V i e w s

A view is created using a definition that does not indicate, for each
column, the domain from which that column draws its values. Apart
from the exception cited in the next paragraph, domain identification
is deduced by the system at view-definition time, and is stored in
the catalog along with the rest of the view definition. If, however,
values for that column are computationally derived, then the basic
data type (instead of the extended data type) is derived and stored
at view-definition time.

Note that the command defining a view provides a one-to-one corre-
spondence between the columns of the operands and the columns of the
result, except in the case of computationally derived columns and certain
kinds of union-type views.

292 n V i e w s

Exercises

16.1

16.2

16.3

16.4

16.5

What is the main reason for supporting views? For now, disregard
the use of functions to transform values from base relations into values
that will appear in views. Does RM/V2 permit views to be defined
using (1)the host language only, (2) the principal relational language
only, or (3)a mixture of both? What is the answer to this question if
functions are included in the view definition?

Can a view definition involve details concerning storage-representa-
tion and access methods in effect at view-definition time? Supply
reasons for your answer.

Can a primary key be deduced for every RM/V2 view? If not, cite
an example to support your assertion. What is the row-identifying
component called that can be used as an alternative, when necessary?
Why is this component bound to identify each row uniquely within
any view?

A user asserts that RM/V2 requires that there should be no user-
visible distinctions at all between base relations and views with respect
to (1)retrieval,i (2) insert, (3) update, and (4) delete. Which of these
can be achieved for all views? Explain.

When a view iscreated, the domain of each column does not have to
be declared. Under what circumstances is the DBMS unable to de-
termine the domain for a column? What does the DBMS do in such
a case? Supply one reason why the DBMS must know the domain of
each column.

• C H A P T E R 1 7 •

View Updatability

In the relational model, a view is a virtual relation represented by its defining
declaration, inserted by means of a command such as CREATE VIEW. It
is not represented directly by stored data. Insertions, updates, and deletions
can be requested as operators upon views in a relational database manage-
ment system.

Some views, however, cannot accept some of these operators unless the
system guesses the user's intent. Such guessing is extremely dangerous unless
the system checks with the user regarding his or her intentmwhich is not
always possible and, when possible, not always convenient.

The problem discussed in this chapter is the view-updatability problem:
how to design the DBMS so that it is able to determine whether a request
for an insertion, update, or deletion can be honored without guessing the
user's intent. I introduce two algorithms, VU-1 and VU-2, as a first step in
solving this problem for the whole range of basic operators in the relational
model.

Before proceeding, it is useful to consider two simple examples of non-
updatable views to make sure that all readers understand the problem. First,
suppose that the database contains a relation EMP that uniquely identifies
employees by means of the primary key EMP# and provides their immediate
properties:

Base: EMP (EMP# NAME BIRTH__DATE GENDER
S A L A R Y . . .)

293

294 • View Updatabil ity

Now suppose a single-table view E is created that is the projection of EMP
onto two columns, neither of which is the primary key, say GENDER and
SALARY. When the view is evaluated, true projection eliminates any
duplicate rows. Corrupted projection (supported in some DBMS products,
but not part of the relational model) does not. Regardless of whether
duplicate rows are eliminated or not, suppose that a user is authorized to
delete one or more rows from the view.

Such a request must be reflected in some change applied to the base
relations because they are the only relations that reflect the true state of
the database. Corresponding to a single row in the view E, there may be
many rows in EMP. Thus, the question arises" How can the DBMS decide
which row or rows in the base relations must be deleted? Should it delete
all the rows in EMP that have the particular combination of gender and
salary specified in the request, or should it merely delete an arbitrarily
selected row in EMP that has this combination? Whatever it does, the
DBMS would be guessing the user's or program's intent; such behavior is
unacceptable in managing a shared database.

Now for a second example, this one involving union and a view based
on two relations, not just one as in the first example. Suppose that two of
the base relations in the database are SE and SW, where SE provides the
identification and immediate properties of suppliers east of the Mississippi
River, while SW provides similar information about suppliers west of the
Mississippi. Suppose also that SE and SW are union-compatible and that
neither SE nor SW contains a column that indicates directly by its values
whether the supplier is east or west of the Mississippi.

Base:

Base:

SE (S# SNAME CITY S T A T E . . .)

SW (S# SNAME CITY S T A T E . . .)

Now, suppose that a view S is created as the union of SE and SW.
Suppose also that a user is authorized to enter a new row into the view S.
Such a request must be reflected in some change applied to the base relations,
which are the only relations that reflect the true state of the database. How
does the DBMS decide which of the two base relations SE and SW is to be
the recipient of this row? Even if two of the immediate properties of suppliers
recorded in SE and SW are the city and state in which each supplier is
located, it is not appropriate to assume that the DBMS or the database has
any knowledge about geography, and in particular about which cities and
states are on which side of the river.

It is worth noting that, in this second example, the view S is actually
the disjoint union of SE and SW, a reasonably simple case; still, however,
entry of new rows into the view is not admissible. Nevertheless, whatever
it does, the DBMS would be guessing the user's or program's intent, and
such behavior is unacceptable in managing a shared database.

V i e w Updatabi l ty • 295

Returning to the more general aspects of view updatability, in an article
published in two parts in Cornputerworld [Codd 1985], I specified 12 rules
intended to help users evaluate DBMS products that are claimed to be
relational. Rule R6, pertaining to the question of view updatability, asserted
in its original form

All views that are theoretically updatable are also updatable by the
system.

This rule was a reaction to the ad hoc nature of the design of many
relational DBMS products, specifically in regard to requests for row inser-
tion, updating, and row deletion applied to views. Part of the problem with
these systems, as we shall see, was and is their incredible lack of support
for primary keys, foreign keys, and domainsmincredible because I made it
clear to the designers well in advance that it was important not to omit these
particular features.

A few months after publication of the 1985 Computerworld article, I
received a letter from H. W. Buff [1986] of a Swiss re-insurance firm in
Zurich proving that the general question of whether a view is updatable
cannot be decided in the logical sense. This means that there does not exist
any general algorithm to determine whether an arbitrary view is updatable
or not. What, then, can be designed into the system, if it is to be reasonably
systematic in its support of views, and yet avoid unreasonable overhead?

First, consider the question of whether a user is authorized to access
data through a specific view, and whether he or she can cause the DBMS
to take actions such as insertion, update, and deletion in accordance with
this view. It is important to observe that this question can be separated
completely from the topic of view updatability discussed in this chapter. In
fact, the relational model requires these two topics to be treated separately
from one another. Authorization is discussed in Chapter 18.

In the approach adopted here, as a first step I define an algorithm that
determines for any given view whether it belongs to an elementary class of
views, each of which is clearly updatable in a non-ambiguous manner. If the
view is found not to belong to this class, the system merely reports it cannot
handle the request, avoiding any assertion that the view is not updatable at
all. In Section 17.6, I cite a reasonable change to the 1985 form of rule R6,
intended to reduce the possibility that it might be misleading.

One of the reviewers for this book stated that [Dayal and Bernstein
1982] and [Keller 1986] reported independent work on view updatability
that is somewhat similar to the approach I describe in this chapter. I regret
that, at the time of writing this book, I was unaware of this work and still
have not seen the papers.

One approach to view updatability that does not represent a solution
places the burden completely on the DBA staff, in the following sense. For
each view, the DBA is required to supply a program that translates each

296 u View Updatability

kind of action on the view into corresponding actions on one or more base
relations. There may have to be an escape mechanism of this kind, but it
should not be the routine mechanism for handling views.

17.1 • P r o b l e m - o r i e n t e d D e f i n i t i o n s

The term "tuple" is frequently used in this chapter. The reader is reminded
that a tuple of a relation is a row of an R-table. In the title and in this
chapter so far, the term "updatability" is used in making a general reference
to the collection of operators: tuple insertion, tuple deletion, and update of
specific components of a tuple that already exists in the database.

Now it is necessary to be more specific, clearly distinguishing among
these three kinds of operators.

A view is considered tuple-insertible by a DBMS, if the DBMS accepts
any collection of tuples (all of the same type and all compatible with the
relation type) as an insertion to the view and correctly executes this insertion,
provided only that the set of tuples and every one of its components meet
the integrity constraints in the context of the transaction in process, and no
help is needed from the user to resolve any ambiguities.

Similarly, a view is considered tuple-deletable by a DBMS, if the DBMS
accepts and correctly executes a request to delete any subset of its tuples,
provided only that such a deletion meets the integrity constraints in the
context of the transaction in process, and, once again, that no help is needed
from the user to resolve any ambiguities.

In dealing with the update operator, it is necessary to consider the action
for each component of each of the tuples involved, and not deal with it in
terms of complete tuples of a view as a whole. A column of a view is
component-updatableby a DBMS, if the DBMS accepts and correctly exe-
cutes a request to update that column, provided only that such an update
meets the integrity constraints in the context of the transaction in process,
and no help is needed from the user to resolve any ambiguities.

In each of these three cases, "correct execution" means that, for the
requested action upon the view V, the DBMS determines that there is either
a unique or a uniquely sensible collection of corresponding changes to be
made to the base relationsmchanges that have as their effect upon the
extension of V (a view that is not necessarily materialized) precisely those
changes requested on the view. Another way of expressing this is that the
changes applied to the view would hold if view V were conceptually changed
into a base table.

Again, in each of these three cases, along with the phrase "meets the
integrity constraints" goes the phrase "in the context of the transaction in
process." This extra phrase is necessary because a single command within
a multi-command transaction can validly and temporarily create a violation
of any integrity constraint that has T-type timing for testing to see whether
there has been an attempted violation. As explained in Feature RI-6 (see

17.2 Assumptions • 297

Chapter 13), T-type timing means just before committing the changes re-
sulting from the transaction to the database. Normally, of course, temporary
violations in the middle of a transaction are removed by the end of the
transaction.

17.2 m A s s u m p t i o n s

By way of introduction, a view V for a relational database is defined solely
in terms of base relations, other views, or both, using a relational language.
If the definition of V happens to involve other views, the occurrences of
names of these views can be replaced by their definitions, and so on until
the definition of V has been expanded to involve base relations only.

For brevity, the original view definition is called the unexpanded version,
and the fully expanded definition is called the corresponding fully expanded
version. Of course, if the definition of a view is given in terms of base
relations only, then these two versions are identical.

The two algorithms are collectively called the view updatability :algo-
rithms. Whenever it is necessary to describe a property that is applicable to
both of the algorithms VU-1 and VU-2, the term VU will be used.

It is now appropriate to consider Assumptions A1-A4 underlying both
of the proposed view updatability algorithms, VU-1 and VU-2.

17.2.1 A s s u m p t i o n A I

The definition of a view and its consequences with respect to insertion,
deletion, and update of its tuples must be understood by users. Users,
however, need not know or exploit any details of the DBMS implementation
or storage-representation. This includes as a special case that users need not
know or exploit the ordering of tuples in base tables or any internal identifiers
for specific tuples (so-called tuple ids).

Assumption A1 should not be interpreted as requiring all users to
understand the view-updatability algorithms; it is absolutely necessary that
only the DBA and his or her staff should understand these algorithms. Many
users may not wish to concern themselves with this issue. They may prefer
to think of a view as if it were a base relation, although I am not advocating
this over-simplification.

17.2.2 A s s u m p t i o n A2

The decision regarding whether a view is tuple-insertible, tuple-deletable,
or component-updatable can be made on the basis of the following:

• the fully expanded definition of the view (not its extension);

• the declarations of the base tables stored in the catalog;

• integrity constraints in the catalog;

298 • View Updatability

simple information about any statistical or aggregate functions explicitly
involved in the view definition.

The simple information in the last item amounts to whether the function
has an inverse, and, if so, the name and program for this inverse.

17.2.3 A s s u m p t i o n A3

The decision regarding whether a view V is tuple-insertible, tuple-deletable,
or component-updatable is, on the one hand, dependent on parts of the
database description at view-definition time. On the other hand, this decision
is required to be independent of (1) whether any view other than V is
affected by updating on V, and (2) the extension of the database at view-
definition time.

This decision can therefore be made without considering as a whole the
potential or actual value of that view (the so-called extension of that relation)
or the actual value of the base relations from which that view is derived.

Thus, it is not necessary for algorithm VU to evaluate view V in order
to make the decision regarding the updatability of view V. Assuming that
the DBMS has decided that the view is updatable in one or more of the
three senses cited, the system may have to examine part of the extension
of the view whenever it encounters a manipulative request (a particular
insertion, deletion, or row-component update) in order to handle this request
correctly.

The decision making by the DBMS in Assumption A3 is concerned with
determining whether or not a view is updatable and, if so, in what ways it
is updatable. The process of actually applying a request for an insertion,
update, or deletion to a view is entirely different. Nothing in Assumption
A3 prohibits this latter request-time process from including inspection of
the extension of the pertinent view or of its operands.

17.2.4 A s s u m p t i o n A 4

The translation activity invoked at request time is not permitted to convert
an operator of one type into an operator of a quite different type. More
specifically, an insertion must be converted into one or more insertions, an
update into one or more updates, and a deletion into one or more deletions.

For users, this constraint makes the updating of views much more
comprehensible. Now let us consider the purposes served by each one of
the first three assumptions.

17.2.5 P u r p o s e s o f A s s u m p t i o n s

Assumption A1 is valuable whenever the system responds with a message
to the effect that a requested insertion, deletion, or update is refused. Users

17.3 View-updatabi l i ty Algor i thms VU-I and VU-2 [] 299

can examine the problem themselves, if they so desire, because an exami-
nation does not entail use of the unavailable information.

Assumption A2 permits the decision algorithm to be independent of the
implementation of any relational DBMS.

Assumption A3 enables the DBMS to determine the tuple-insertible,
tuple-deletable, and component-updatable characteristics of a view at the
time of entry of the view definitionmwhen it should be doneminstead of
every time the view is used. Suppose that a suitably authorized user, perhaps
the DBA, requests a change in the database description that might affect
the updatability of one or more existing views. Now, because the view-
updatability decision is made at view-definition time and is dependent on
parts of the database description, the DBMS must examine what effect, if
any, the requested change in database description might have upon this
decision. If the DBMS finds that the decision might be altered, it must re-
execute Algorithm VU exactly as if the pertinent view definition had just
been entered into the catalog.

The assumptions underlying Algorithm VU-2 consist of Assumptions
A1-A4, together with one additional assumption, A5.

17.2.6 A s s u m p t i o n A5

For any view that the DBA or any other authorized user can introduce into
the catalog, interpretation algorithms determine the action to be taken when
a request is made for an insertion, update, or deletion to be applied to this
view.

17.3 • V i e w - u p d a t a b i l i t y A l g o r i t h m s V U - 1 a n d V U - 2

These algorithms are alternatives; only one is needed to make a decision
regarding view updatability. Thus, only one should be implemented in a
relational DBMS. Algorithm VU-2 is intended to be strictly more capable
than Algorithm VU-1. As will become apparent, however, Algorithm VU-
2 depends heavily on the interpretation algorithms of Assumption A5. Also,
more research is needed to ensure compliance of both algorithms with
Assumption A4.

Each algorithm VU establishes the following for any given view whose
definition involves only the basic relational operators:

[] whether that view is tuple-insertible,

[] whether that view is tuple-deletable, and

• which of its columns, if any, are component-updatable.

These algorithms are intended to be invoked by the relational DBMS
whenever it receives the definition of a proposed view. The results generated

300 • View Updatability

by either algorithm are stored in the catalog, and are therefore available to
anyone who has authorization to access that part of the catalog.

Incidentally, it may happen that users need a view for retrieval purposes
only. Thus, when Algorithm VU encounters the definition of a view and
finds that this view is not tuple-insertible, not tuple-deletable, and not
component-updatable, it is not appropriate for VU to reject the view request
altogether. Instead, VU returns its three-fold decision both by turning on
appropriate indicators (see Features RJ-12-RJ-14 in Chapter 11) and by
recording these results in the catalog along with the view definition.

It is easier to understand Algorithm VU by keeping in mind that the
algorithm makes its decision at view-definition t ime--not later, at request
time, when an actual request for a deletion, insertion, or update on a view
is received. It is the responsibility of the DBMS to respond to a request
made at request time in a manner that is consistent with the decision made
by Algorithm VU at view-definition time. Nevertheless, to explain how VU
works at view-definition time, it is necessaryto look at examples of the
subsequent response by the DBMS at request time.

The main steps in algorithm VU are as follows:

1. Convert the fully expanded view definition from the source language
(e.g., QUEL [Relational Technology 1988] or SQL) into a sequence of
operations of the relational algebra, a sequence that contains no super-
fluous operations and no Cartesian product.

2. Examine each of the relational algebra operations to determine whether
it generates a view that is tuple-insertible, tuple-deletable, or component-
updatable, or some combination of these properties.

3. Let property P denote any one of the three properties tuple-insertible,
tuple-deletable, component-updatable. Consider the collection of alge-
braic operations resulting from Step 1. If any one of these operations
by itself yields a view that does not have property P, write in the catalog
that the given view definition yields a view that does not have property
P.

Step 1 was treated in [Codd 1971d] and [Klug 1982].
The remainder of this section deals with the treatment of each basic

operator of the relational algebra by algorithm VU. No claim is made that
either VU-1 or VU-2 is able to discover all the possibilities of tuple insertion,
deletion, and updating. An implementor of VU within a DBMS may find it
advantageous to save some of the intermediate results to help later in the
actual execution stage of those insertions, deletions, and updates permitted
on the pertinent view.

17.3.1 P r o h i b i t i o n o f D u p l i c a t e R o w s w i t h i n a R e l a t i o n

An operator of the relational algebra may have either one or two operands.
No operand is permitted to have duplicate rows, and the result does not

17.3 View-updatabil i ty Algorithms VU-1 and VU-2 • 301

contain any duplicate rows. One of the many reasons for adhering to the
prohibition of duplicate rows in any relation is that view updatability is
impaired if duplicate rows are permitted at any stage (for details, see Chapter
23).

It is important to note that some of the relational languages supported
by today's DBMS products are defective in permitting duplicate rows within
a relation. SOL is one of these defective languages. Thus, much of what
follows is applicable to an SOL environment only if the following discipline
is pursued:

• specify one primary key for each and every base relation;

• use DISTINCT in every SOL command to which it can be applied;

• avoid use of the qualifier ALL on each and every UNION command.

The potential occurrence of duplicate tuples at any stage means that the
DBMS will be unable to trace the origins of each tuple occurrence back to
a particular row of the corresponding operand by means of an algorithm
that is independent of the database state. Moreover, this inability to trace
origins applies quite often even if duplicate tuples are eliminated as a last
step in the derivation.

Therefore, let us assume that, for each of the algebraic operators con-
sidered next, each operand and each result is assumed to be devoid of
duplicate tuples. Let us also assume (but only for the time being) that, for
each of the algebraic operators considered next, the operands are base
relations and the result is a view. Each operator is examined first with regard
to tuple-insertions, then tuple-deletions, and finally updates of tuple-
components.

17 .3 .2 S o l u t i o n - o r i e n t e d D e f i n i t i o n s

When a component value of a row in a view is to be updated, or when a
new row is to be inserted, it is necessary to consider which of the following
cases is applicable:

• The untransformed case: the pertinent component is a value stored in
the database;

• The transformed case: the pertinent component is the result of applying
some function either to a single value or to several values stored in the
database.

The transformed case involves finding the name of the pertinent function
in the catalog, searching its description for the name of its inverse (if any
exists in the database), and finding where in the database the code for the
inverse is stored. This phase of the inspection is called Part 1. In this case,
if no inverse exists in the database, Algorithm VU declares that the pertinent

302 • View Updatabilit¥

column of the view is not component-updatable, and Part 2 (specified next)
is ignored.

A column of a view is back-traceable if one of the following conditions
is applicable:

The transformed case: an inverse function exists, and the code for this
inverse is retrievable from the database;

• The untransformed case.

Both cases involve tracing the row and its components back to one or
more specific rows in the operand relation(s); this task is called Part 2 of
the inspection. Whenever Part 2 is successful, the view is said to be back-
traceable with respect to its rows. Part 2 is described for each operator when
dealing with the insertion of rows.

A view is completely back-traceable if every row and every column of
that view is back-traceable. Part 1 of the inspection is successful if every
column of the pertinent view is back-traceable. When Algorithm VU has
determined that every column of the view is back-traceable, it proceeds to
Part 2 and determines whether every row is back-traceable also. This last
part of the inspection, Part 2, is described for each of the basic operators.

17.3.3 Genera l R e m a r k s a b o u t t h e D e c i s i o n P r o b l e m

The view-updatability decision made by Algorithm VU is based on its finding
in regard to the back-traceability of the view, as follows:

• If the view is back-traceable with respect to rows, it is tuple-deletable;

• If it is completely back-traceable (rows and all columns) it is tuple-
insertible;

If it is back-traceable with respect to rows and with respect to a specific
column, then that column is component-updatable.

Some views lack normalization, even those that the DBMS decides are
updatable in one or more of the three respects just cited. For example, a
join that matches primary-key values in one relation to corresponding foreign-
key values in another is not normalized. In these cases, the user or program
may encounter update anomalies of the type described in [Codd 1971b].

It is the responsibility of the DBA to declare for each base relation and
view whether or not it is fully normalized. The information in this declaration
is saved in the catalog.

17.3.4 T h e S e l e c t O p e r a t o r

Suppose that the view

T = S E L E C T R (A # x) ,

17.3 View-updatability Algorithms VU-I and VU-2 • 303

where R is a relation, # is one of the comparators applicable to the select
operator, and x is a constant, a host-language variable, or the name of a
second column (say, B) of relation R.

The select operator of the relational algebra selects complete tuples from
the operand relation. Consequently, if there are no duplicate tuples in the
operand, there are none in the result. Thus, the system encounters no
problem relating which tuple of the result (the view) corresponds to which
tuple of the operand. This view is therefore back-traceable with respect to
its rows.

Accordingly, Algorithm VU declares the following for every view based
on the operator select:

• The view is tuple-deletable;

• If it has nothing but back-traceable columns, then it is tuple-insertible;

• Each column that is back-traceable is component-updatable.

Later, at request time, when a tuple is presented for insertion into the
view T, the DBMS checks to see that this tuple satisfies the condition part
of the view definition (A # x). If it does not, that particular insertion is
rejected, and an error indicator is turned on.

One final remark on updating views: an update to a component value
of a row in a view can be non-compliant with the definition of the view. It
can cause the entire row to be removed from the view. For example, if a
row in the view

T = R I A < 100]

happens to contain 90 as its value of A, and if a user requests that value be
incremented by 25, then the DBMS updates the corresponding value of A
in R to 115. The effect of this update is that the pertinent row is removed
from the view T.

If the DBA would prefer the request to be rejected, he or she must
either place an additional authorization constraint upon the user~namely,
that no update is allowed to take a row out of the view (this is one more
reason why authorization should not be based on views only) or make use
of the N-person turn-key feature, Feature RA-5 (see the remarks following
Feature RA-6 in Chapter 18).

17.3.5 T h e P r o j e c t O p e r a t o r

Suppose that

T = R [A , B , C , . . .] ,

where A, B, C denote columns of the relation R.
When executed, the project operator selects only those columns whose

names are cited in the view-defining command. If the primary key is included

304 • View Updatability

in the list of columns to be selected, there is a clear one-to-one correspon-
dence between the rows in the view and the rows in the operand. Such a
view is declared by Algorithm VU to be tuple-insertible and tuple-deletable.
Although Algorithm VU could make the same decision if a candidate key
(and not the primary key) were included in the list of columns to be selected,
it does not do this, partly because the class of updatable views would not
be significantly enlarged in this way, and partly because RM/V1 and RM/
V2 do not require all of the candidate keys for every base relation to be
recorded in the catalog.

If, on the other hand, neither the primary key nor any candidate key is
included in the list of columns to be selected, there is no guarantee that any
row in the end result (a relation) corresponds to precisely one row in the
operand. One way of describing this situation is that one or more rows in
the result can have ambiguity of origin. Hence, for reasons of safety, a view
based on projection in which the primary key is not preserved must be
treated as not tuple-insertible, not tuple-deletable, and not component-
updatable. Accordingly, for every view V that is based on the operator
project and includes the primary key of the operand, Algorithm VU declares
that,

• view V is tuple-deletable;

• if V has nothing but back-traceable columns, V is then tuple-insertible;

• each column that is back-traceable is component-updatable.

A possible improvement over both VU-1 and VU-2 in regard to projec-
tion is for the DBMS to treat as tuple-deletable a projection that includes
a column, all of whose values are declared in the catalog to be distinct within
the column and in which it is also declared that missing information is not
allowed. This is so slight an improvement, however, that it is not included
in either algorithm.

It is now appropriate to consider views, each of which is based on two
relations.

17.3.6 T h e E q u i - j o i n O p e r a t o r

A simple example may help the reader to understand the problem. This
example includes detailed commentary on the extension of a view, even
though the aim is to have the DBMS decide whether the view is tuple-
insertible, component updatable, and/or tuple-deletable at view-definition
time. Think of this commentary as nothing more than an attempt to explain
the problem.

It should be remembered that extensions of base relations, and therefore
of views when they are evaluated, are continually changing because of the
many interactions by users with the database. One reason that the updata-
bility decision should be made by the DBMS at view-definition time is that
it is quite unstable behavior for the DBMS to decide when one request is

17.3 View-updatabil i ty Algori thms VU-1 and VU-2 • 305

made that the view is updatable, then at an immediately following request
to decide that it is not updatable, and at still another time to decide that,
once again, it is now updatable.

Suppose that R and S are two base relations, each having the present
extension shown next. Suppose that column B of R and column C of S draw
their values from a common domain. These two columns are accordingly
chosen to act as the comparand columns in the equi-join of R with S. Suppose
that V is a view defined by

C R E A T E V I E W V ~ R [B = C] S .

The extension of V is shown next, along with the operand relations R and
S:

R (A B) S (C D)

al 1 1 bl
a2 2 2 b2
a3 2 3 b3
a4 3 3 b4
a5 4 4 b5
a6 4 4 b6

4 b7

V (A B C D)

al 1 1 bl 1
a2 2 2 b2 2
a3 2 2 b2 3
a4 3 3 b3 4
a4 3 3 b4 5
a5 4 4 b5 6
as 4 4 b6 7
a5 4 4 b7 8
a6 4 4 b5 9
a6 4 4 b6 10
a6 4 4 b7 11

The row numbers on V are for explanatory purposes only.
Table 17.1 indicates what should take place when deletions are applied

to the view V, if the DBMS were to decide on the acceptability of a deletion
at the time a request is made. The "if" clause is for explanatory purposes
only.

Deletion of any one of Rows 1-5 applied to V can be put into effect
by deleting just one row in R only, in S only, or in both base relations. The
effect is to delete just one row of V, exactly the one the user requested. It
is worth noting that Row 1 involves matching one row of R with one row
of S (the comparand value is one), while each of Rows 2 and 3 involves
matching many rows of R to just one row of S (the comparand value is
two), and each of Rows 4 and 5 involves matching one row of R to many
rows of S (the comparand value is three).

The reason why the DBMS rejects deletion of any one of the Rows
6-11 of V is that it would be necessary for the DBMS to delete more than
one row in V to maintain the view V in conformity with its definition as a
join.

The effect of this is to delete more information than the user would
anticipate, and to make the view behave differently from a base relation.

306 • V iew Updatabil i ty

Table 17.1 E f f e c t o f D e l e t i o n s o n t h e V i e w V

Row in V Deleted Action on R Action on S

1 Delete row 1 Delete row 1
2 Delete row 2 Nil
3 Delete row 3 Nil
4 Nil Delete row 3
5 Nil Delete row 4
6 Reject Reject
7 Reject Reject
8 Reject Reject
9 Reject Reject
10 Reject Reject
11 Reject Reject

For example, deletion of Row 7 in view V < a5, 4, 4, b6 > appears to
require deletion of the row < a5, 4 > in R, and the row < 4, b6 > in S. If
just these deletions are executed, the rows that disappear from the view V
are Rows 6, 7, 8, and 10~three more than the user requested. It is worth
noting that, in each of these cases, the relationship between rows of R and
rows of T that have a common value in R.B and S.C is many-to-many.

It is clearly unnecessary work for the DBMS to decide view updatability
each time a request is received for insertion, update, or deletion. As pointed
out earlier, repeated decision making at request time makes the DBMS
behave in an unstable fashion.

Furthermore, an early decision regarding view updatability at view,
definition time ensures that the decision is not based on the somewhat
ephemeral extension of the view. Therefore, the DBMS must know when
it can depend on the continued existence of a one-to-one, many-to-one, or
one-to-many relationship between those rows of R and those rows of S that
have equal comparand values. In the relational model, such relationships
are guaranteed, regardless of time and regardless of changes in extension,
when one comparand column is a primary key and the other is either a
primary key or a foreign key whose values are drawn from the same domain.
Both of the algorithms VU take advantage of this fact.

Any additional time-independent relationships that are guaranteed not
to be many-to-many must be peculiar to a particular database. These rela-
tionships are often represented by a declaration for column R.B that all of
the values in R.B are distinct from one another and that there are no missing
values in R.B. In other words, R.B is a candidate key for relation R. Then,
for any column S.C that draws its values from the same domain as R.B, a
one-to-many relationship exists between column R.B and S.C. Only Algo-

17.3 View-updatabi l i ty Algor i thms VU-1 and VU-2 • 307

rithm VU-2 takes advantage of these relationships in making its decision on
view updatability.

Consider the view

T = R [B = C l S ,

where B denotes a column of relation R, and C denotes a column of relation
S. Suppose also that the simple or composite columns B and C whose values
are being compared are as cited in Cases 1, 2, or 3.

1. The primary key of R is being compared with the primary key of S;

2. The primary key of R is being compared with a corresponding foreign
key of S;

3. The primary key of S is being compared with a corresponding foreign
key of R.

In each of these three cases, one should assume that the keys being
compared are drawn from the same domain, since this is what is meant by
the term "corresponding" in the three cases.

Now for some terminology. In any relational operation that involves
comparing values between a pair of columns (simple or composite), this pair
of columns must normally draw its values from a common domain. As
introduced earlier, columns being compared are called the comparand col-
umns. Between the values in a pair of comparand columns (say R.B, S.C),
there may exist a relationship indicated in Row 1 of the table below. The
join has a corresponding description in row 2"

Row 1 Relationship One-to-one One-to-many

Row 2 Join One-to-one join One-to-many join

Row 1 Relationship Many-to-one Many-to-many

Row 2 Join Many-to-one join Many-to-many join

Of interest are relationships such as these that are independent of time,
not those that happen to exist for a short time because of the data that
happens to be active in that time interval. Therefore, one can expect to
encounter phrases such as the time-independent PK-to-FK relationship, where
PK is an abbreviation for primary key and FK is an abbreviation for foreign
key.

In Case 1, it makes little sense to permit R = S, since a relation is
allowed to have only one primary key. On the other hand, in Cases 2 and
3 it may happen that R and S are either the same or distinct relations. It is
assumed, however, that in all three cases the pairs of columns being com-
pared are defined on the same domain; of course, the DBMS checks whether
this is the case.

308 • V i ew Updatabi l i ty

Case 1 is the simplest. No ambiguity of origin can arise in the result.
Hence, any view defined as in Case I is tuple-deletable; if the view is back-
traceable with respect to its columns, it is tuple-insertible also.

It is easy to see that what applies to Case 2 must also apply to Case 3,
with the appropriate interchange of relations R and S in the reasoning. In
Case 2, if the view is back-traceable with respect to its columns, insertion
of a new tuple into the view can easily be put into effect by splitting this
tuple into two parts:

1. one part (say pl) corresponding in type to relation R;

2. the other part (say p2) corresponding in type to relation S.

Let the result of appropriately back-transforming p l and p2 be p l" and
p2", respectively. If p l" does not already occur in R, it is inserted into R.
If p2" does not already occur in S, it is inserted into S. If both p l" and p2"
already occur in R and S, respectively, the DBMS rejects the insertion as
an attempt to put a duplicate row into the view, and an error indicator is
turned on.

In Case 2, deletion of a tup!e that does not exist in the view is rejected,
and an error indicator is turned on. Deletion of a tuple that already exists
in the view can be handled in a fashion rather similar to that for insertion.

First, split the tuple to be deleted into the two parts p l and p2 as before.
Then, examine the view to see whether any tuple other than the one being
deleted has p2" as its type S part. If not, delete p2" from S. Regenerate
the view and check it to see whether any tuple other than the one being
deleted has p l" as its type R part. If not, delete p l" from R. If no deletion
is indicated in either operand, the original deletion command should be
rejected as inapplicable, and an error indicator is turned on.

The term quad means a contribution of several rows to a join arising
from a specific value that occurs at least twice in each comparand column
(say m times in the first-cited comparand column and n times in the other
comparand column). Such a contribution to the equi-join must consist of a
number of rows that is the product of the two integers m and n. Since each
integer is at least two, this product cannot be less than four" hence, the
name "quad." Clearly, a quad contribution cannot consist of 3, 5, 7, 11, or
any prime number of rows. The integers m, n are the parameters of any
selected quad.

Quads are a phenomenon pertinent to the join operators when they are
applied to operands that have a many-to-many relationship between the
comparand columns. This phenomenon should not be confused with the
phenomenon of ambiguity in origins, which is applicable to many relational
operators.

Suppose that a view is the equi-join of two given relations. Suppose also
that the comparand-column relationship is many-to-many, and hence one or

17.3 View-updatability Algorithms VU-I and VU-2 • 309

more quads can exist in that equi-join. Then, the deletion of exactly one
row that happens to belong to one of these quads generates a relation that
can no longer be the equi-join of the given relations. The product m n reduced
by one cannot be either m (n-1) or (m - l) n, because each of m and n is
greater than or equal to two. Similarly, the insertion of exactly one row that
happens to expand one of the quads by one row can no longer be the equi-
join of the two given relations. Algorithm VU-I does not conduct any
searching for quads, since that could be effective only at request time.
Instead, at view-definition time, the algorithm rejects any attempt to delete
rows from or insert rows into any view that is a many-to-many equi-join
(that is, an equi-join for which there exists a many-to-many relationship
between the comparand columns).

Similar remarks apply to any deletion of several rows from (or insertion
of several rows into) a many-to-many equi-join that leaves any quad in that
join with a prime number of rows.

The methods of handling insertion and deletion in Cases 2 and 3 work
because a pKoto-FK relationship is a time-independent, one-to-many rela-
tionship, provided the keys are drawn from a common domain. Therefore,
quads cannot occur in the corresponding join. Hence, quads and their
associated problems are not encountered in a view that is a join involving
P K and FK columns based on a common domain.

Equi-joins according to columns other than those cited in Cases 1-3
could have quads since the time-independent relationship between the com-
parand columns can be many-to-many. In Algorithm VU, it is not assumed
that either the DBA or the DBMS is aware of those cases (if any exist in
the given database) in which it happens that the time-independent, non-key,
comparand-column relationship is not many-to-many. Therefore, VU rejects
as non-updatable all views based on equi-join other than those cited in Cases
1-3.

In summary, for every view T based on equi-join, Algorithm VU inspects
the catalog to see whether Case 1, 2, or 3 applies. If one of these cases is
applicable, VU declares the view T to be tuple-deletable. VU also examines
every such view T to see whether it has nothing but back-traceable columns.
If this additional condition is applicable, VU declares the view to be tuple-
insertible. Finally, for each component that is back-traceable, VU declares
that component to be updatable. If none of the Cases 1-3 applies to the
view T, Algorithm VU declares T to be not tuple-deletable, not tuple-
insertible, and not component-updatable.

17.3.7 I n n e r J o i n s O t h e r t h a n E q u i - j o i n s

Consider a view that is a join based on the comparator LESS THAN (<).
Suppose that the relation R is joined with the relation S using column A of
R and column B of S as comparand columns (A and B may both be simple

] 10 • View Updatability

or both composite). In such a join, each A-value occurrence is likely to be
associated with many B-values.

Consider the following example:

T = R [A < B] S .

R (A C) S (B • .) T (C A B

2 cl 1 cl 2 3
4 c2 3 cl 2 4
5 c3 4 cl 2 7
9 c5 7 cl 2 11

13 c6 11 c2 4 7

c2 4 11
c3 5 7
c3 5 11
c5 9 11

. .)

Note that, in this example, the value 13 in column R.A and the value
1 in column S.B do not participate in the join based on LESS THAN.
Moreover, the value 9 in column R.A and the values 3 and 4 in column S.B
are the only values that occur once in the corresponding columns of the join
T. Thus, these three values participate in their respective columns and in
exactly one row each.

This once-only occurrence permits the DBMS to select a specific row
of R (in the case of 9 in R.A) and of S (in the case of 3 and 4 in S.B) to
be deleted when the corresponding row in the join T is deleted. However,
the DBMS cannot make any sensible deletion in R or in S for any other
row in the join. Since only a relatively few values at the low end in S.B and
at the high end in R.A enjoy the once-only occurrence in the join T, it
seems simplest to reject deletions of rows altogether in any view based on
a LESS THAN join. This is precisely the action taken by Algorithm VU.

Similar remarks apply to the inner joins, for which the comparators are
LESS THAN OR EQUAL TO, GREATER THAN, GREATER THAN
OR EQUAL TO, and NOT EQUAL TO. However, the four inner joins,
for which the comparators are limit-imposed (GREATEST LESS THAN,
GREATEST LESS THAN OR EQUAL TO, LEAST GREATER THAN,
and LEAST GREATER THAN OR EQUAL TO) deserve special attention.

Inner joins can be used with or without the ONCE qualifier. With the
ONCE qualifier, each tuple of each operand can be used only in at most
one tuple of the result. Only this case is examined here. Treatment of these
joins is illustrated using the GREATEST LESS THAN comparator and the
ONCE qualifier, first assuming that the values in R.A are distinct and that
the values in S.B are also distinct.

T = R [A G < B] S O N C E

17.3 View-updatability Algorithms VU-I and VU-2 • 311

R (A C) S (B . .)

2 cl 1
4 c2 3

5 c3 4
9 c5 7

13 c6 11

T (C A B

cl 2 3
c3 5 7

c5 9 11

. .)

A request to delete the row < c3,5,7 > from the view T can be
interpreted in one of three ways:

1. delete the row containing 5 from R;

2. delete the row containing 7 from S;

3. delete both rows (5 from R and 7 from S).

Of these three versions, the third is selected by VU because it is both
simple and the most symmetric (i.e., lacking in bias).

Now consider an example that is similar in all respects, except that"
(1) the values in R.A are not all distinct, and (2) column C in R is explicitly
illustrated to distinguish between the two rows of R that contain 5 in R.A.

Note that the result is different from the previous result with respect to
the comparand columns"

R (A C) S (B

2 cl 1
4 C2 3
5 c3 4
5 C4 7
9 c5 11

13 C6

. .) T (C A B . .)

cl 2 3
c3 5 7
c4 5 11

The request to delete the row < c3, 5, 7 > from the view T is interpreted
by VU as a deletion of row < 5, c3 > from R and the row containing 7
from S.

Accordingly, algorithm VU declares that, for every view based on one
of the inner joins other than equi-join, and based on the four limit-imposed
comparators with the qualifier ONCE attached:

m that view is tuple-deletable;

m if that view has nothing but back-traceable columns, it is tuple-insertible;

• each column that is back-traceable is component-updatable.

All other views based on inner joins (except natural join and equi-join)
are not tuple-deletable, not tuple-insertible, and not component-updatable.

312 • View Updatabifity

17.3.8 T h e N a t u r a l Jo in Operator

Both Algorithm VU-1 and Algorithm VU-2 treat views defined as natural
joins in a way that is very similar to their treatment of views defined as
inner equi-joins. Removal of the redundant column from the equi-join does
not affect the action taken by these algorithms significantly.

17.3.9 T h e O u t e r E q u i - j o i n Operator

Algorithm VU handles outer equi-joins in the same way as the inner equi-
joins, except for the two items that follow. Assume that, in the definition
of the view T, the first-cited operand is R and the second is S. There are
some differences in the dynamic handling by the DBMS at request time of
insertions and deletions because of two facts"

1. The R-part of a tuple to be inserted into T may happen to have all of
its component values missing, if the operator is either right or symmetric
outer join;

2. The S-part of a tuple to be inserted into T may happen to have all of
its component values missing, if the operator is either left or symmetric
outer join.

17.3.10 The R e l a t i o n a l D i v i s i o n Operator

Algorithm VU rejects tuple insertions, tuple deletions, and component
updates applied to any view defined using relational division. Such changes
have a major effect on the operand relations in terms of which the view is
defined. In addition, appropriate interpretations of such operations are not
at all clear.

17.3.11 The U n i o n Operator

Consider a view

T = R U S ,

where R and S are relations that are union-compatible. Normally it is
impossible to deduce from the relation T alone which of its rows came from
R, which from S, and which from both R and S.

Deletions of rows from a union-based view are a simple matter and are
always accepted by VU. At request time, the deletion of a row from T
causes the DBMS to check whether that row occurs in R, in S, or in both.
If the row occurs in R, it is deleted from R. If it occurs in S, it is deleted
from S.

Algorithm VU-I on Union Suppose that an insertion of just one row is to
be made into the view T. The question arises as to whether this row should

17.3 View-updatabi l i ty Algor i thms VU-I and VU-2 • 313

be inserted into R alone, into S alone, or into both. Normally, there is no
basis for the DBMS to decide which action to take. If T happens to be the
disjoint union of R and S at all times of integrity, however, the row inserted
into T should be inserted into either R or S, but not both. Under these
circumstances, how can the DBMS determine which one? One reasonable
source for this information is the user-defined integrity constraints in the
catalog. One of these constraints should clearly state the following:

that T is the disjoint union of R and S (not just any union); and

that the values in a particular simple or composite column of R identify
the corresponding rows as originating from R (not S), while the values
in the corresponding column of S identify the corresponding rows as
originating from S (not R).

When these two catalog-based conditions are satisfied, and every column
is back-traceable, Algorithm VU-1 accepts insertions into the view T. For
all other views based on the union operator, it rejects insertions.

When these two Catalog-based conditions are satisfied, each column that
is back-traceable is component-updatable. Otherwise, Algorithm VU-1 re-
jects updating components in such a view.

Algorithm VU-2 on Union When inserting a row into a view that is a union
of two relations R, S (not necessarily disjoint), it is possible to use a function
(normally defined by the DBA) to determine whether the row should actually
be inserted into R only, into S only, or into both relations. Such a function
is called a view-interpretation function.

The DBMS treats this function just like an integrity constraint except
that it is neither C-timed nor T-timed (see Feature RI-6 in Chapter 13).
Instead, the DBMS examines it at command-interpretation time (early in the
execution of an RL command); it is said to be 1-timed.

At view-definition time, Algorithm VU-2 looks in the catalog to see
whether a view-interpretation function for this view has been stored there.
If so, the DBMS records in the catalog that the requested union view is
tuple-insertible. If no interpretation function is found for this view, the
DBMS resorts to making this decision according to VU-1.

Consider again the example of a union view cited at the beginning of
this chapter. This view (R UNION S) concerned suppliers west of the
Mississippi River (relation R) and those located east of the Mississippi
(relation S). Using Algorithm VU-1, this view was found to be not tuple-
insertible.

Using VU-2 and a suitable view-interpreting function, the view R union
S can now be treated as tuple-insertible. All that this function need do is to
use the city and state components of each row offered to the DBMS for
insertion into the view R union S. By consulting an extra table stored in the
database and indicating which states are west of the Mississippi and which
ones are east (Minnesota and Louisiana excluded), the view-defining algo-

314 • ViewUpdatability

rithm, and hence the DBMS, can determine which side of the river the
supplier was on, and hence whether to enter the row into R or into S. (In
the case of Minnesota and Louisiana, the function must examine a separate
table indicating which cities in these states are on which side of the Mississippi
(New Orleans straddles the river)).

Pending the development of a clearly superior algorithm, Algorithm
VU-2 is being held as a candidate for insertion into RM/V3. Note that
VU-2 does not require the operand relations to be disjoint.

17.3.12 T h e O u t e r U n i o n Operator

Insertions of rows into a view based on outer union are treated by Algorithms
VU-1 and VU-2 just as they treat such insertions in the case of union. Note,
however, that if the row being inserted belongs in one of the operand
relations, say R, and if it contains a component value that for R should be
missing (since R does not include the corresponding column), that value
will be dropped as the insertion into R is made. A similar constraint also
applies to S.

For both operands, the DBMS turns on a warning indicator whenever
a component value of an inserted row is dropped altogether upon entry into
the database. Deletions of rows from a view based on outer union are also
treated just as in union. To execute the outer union correctly, however, the
DBMS must take note of the type differences between the view T and its
operands R and S.

17.3.13 T h e I n t e r s e c t i o n O p e r a t o r

Consider a view

T = R N S ,

where R and S are relations that are union-compatible. Then, every row of
T occurs in both R and S.

If the user requests deletion of a row from the view T, the DBMS must
delete it from both R and S. Algorithm VU-1 declares such a view to be
tuple-deletable.

An insertion of a new row into T requires the DBMS to insert the back-
transformed version of that row as follows:

• into R if it is already present in S;

• into S if it is already present in R;

m into both 'R and S if it is present in neither.

Algorithm VU-1 therefore declares such a view to be tuple-insertible,
provided every column is back-traceable. Note that, if at request time the
back-transformed version of the row to be inserted is already present in

17.3 View-updatability Algorithms VU-I and VU-2 • 315

both R and S, the DBMS treats the request as an attempt to create duplicate
rows in T, rejects that particular request, and turns on an error indicator.

For a view based on intersection, each column that is back-traceable is
component-updatable.

17 .3 .14 T h e O u t e r I n t e r s e c t i o n O p e r a t o r

Deletions of rows from a view based on outer intersection are treated just
as in the case of intersection. In some circumstances, however, the DBMS
must take into account the type differences between the view T and its
operands R and S.

Insertions of rows into a view based on outer intersection are also treated
just as in intersection. Note, however, that when making corresponding
insertions into the operands R and S, the DBMS must take into account the
type differences between the view T and its operands R and S.

Once again, for every view based on outer intersection, each column
that is back-traceable is component-updatable.

17.3 .15 T h e R e l a t i o n a l D i f f e r e n c e O p e r a t o r

Consider a view

T = R - S ,

where R and S are relations that are union-compatible. Then, every row in
T is required to occur in R, but must not occur in S.

The DBMS can handle requests for deletions of rows from T by simply
making those deletions effective on R. The a l ternat ive~introducing the
given row into S as a new r o w ~ w o u l d have the same effect on T as deleting
that row from T because of the definition of the view T. This action, however,
is deemed inconsistent with user expectations regarding any deletion. Users
normally expect every request for a deletion to cause information to be
removed from the database.

A user's request to insert a new row in T can be correctly handled by
the DBMS if (1) every column in T is back-traceable and (2) the DBMS
simply inserts the back-transformed version of that row into R only. As a
precaution, the DBMS should check first that the back-transformed version
of the row being inserted into R does not already occur in S. If the system
finds that the row in question does already exist in S, it should reject the
insertion and turn on an error indicator.

Thus, views based on relational difference are treated by VU-1 as follows:

• as tuple-deletable;

• as tuple-insertible, provided every column is back-traceable;

• as component-updatable for each back-traceable column.

316 • View Updatability

17.3.16 The Outer Difference Operator

For all views based on outer difference, the manipulative activities (deletions
of rows, insertion of new rows, and updating of components) are treated
just as in the case of relational difference. In some circumstances, however,
the DBMS must take into account the type differences between the view T
and the operands R and S.

17.4 • M o r e C o m p r e h e n s i v e R e l a t i o n a l R e q u e s t s

Usually a single command in a relational language based on predicate logic
will require that a sequence of algebraic operators be executed. The com-
mand is decomposed into such a sequence. Then, this sequence is examined
by Algorithm VU-1, one operator at a time.

Let us refer to the properties tuple-insertible, tuple-deletable, and com-
ponent-updatable by the generic name property P. Only if three conditions
are satisfied does Algorithm VU-i declare the whole view (defined by the
pertinent command) to have property P:

1. every operator in the sequence is found to have property P;

2. at most one outer operator occurs in the view definition, and it generates
the final result only;

3. there is no occurrence of any one of the MAYBE qualifiers.

One consequence of this approach is that columns such as primary-key
columns that are crucial to property P in one part of a relational command
cannot be discarded by projection in another part of that command. For
example, the comparand columns in an updatable join must be retained in
the ultimate result.

In what way does Algorithm VU-2 open up Pandora's box? Unless great
care is taken in designing the DBMS as a host to view defining functions,
database administrators will be able to use this facility to re-interpret actions
on views in extremely irregular ways. For example, an insertion into a view
could be re-interpreted as a deletion from that view.

On any column C that the DBA chooses, it is possible for him or her
to impose two semantic constraints"

1. that all the values in column C are distinct;

2. that no values are missing from column C.

Since these two constraints are applied by the DBMS to all primary
keys unconditionally, it is senseless for the DBA to attempt to impose or
drop these constraints on primary keys. Suppose, therefore, that column C
is not the primary key of the pertinent relation. In supporting views to which
manipulative actions can be correctly applied (without any guessing by the

17.5 Fully and Part ial ly Normal i zed Views m 317

DBMS), these constraints appear to make column C as good as a primary
key.

However, neither Algorithm VU-1 nor Algorithm VU-2 exploits con-
straints of this type defined by the DBA. The main reason for this "weak-
ness" in these algorithms is that the DBA is free at any time to drop either
or both of these constraints--as free as he or she is to introduce them. Such
a drop could cause certain views to change drastically with regard to their
updatability. Some or all of the ability to delete tuples, update tuples, and
insert tuples is likely to be lost when these constraints are dropped.

17 .5 m F u l l y a n d P a r t i a l l y N o r m a l i z e d V i e w s

So far, the question of view updatability has been discussed with little regard
for the meaning of the insertions, updates, and deletions. The main concern
has been to identify and avoid situations in which the DBMS would have
to guess the user's in~ent because of difficulties in back-tracing from views
to base relations, or because of functions that do not have inverses. Now,
it is appropriate to bring into focus the fact that an updatable view may not
be a fully normalized relation.

I introduced and discussed normalization of relations in 1971 [Codd
1971b and 1971c]. My main goal was to develop some theory that would be
applicable to logical database design, and especially to the creation of a
sound collection of base relations.

Our main concern here, however, is in the creation of views, not base
relations. Now, a view, just like a base relation, may be fully normalized
or not. This property holds even if the view is tuple-insertible, component-
updatable, and tuple-deletable. If the view is likely to be subjected to many
insertions, updates, and deletions, the DBA must examine whether it is
normalized or not.

17.5.1 N o r m a l i z a t i o n

Because some readers may not be familiar with the concepts involved in
normalizing relations, these concepts are briefly discussed here.

One of the aims of normalizing a collection of relations is to make the
insertions, updates, and deletions clear in meaning and therefore easily
understandable. Normalization has little to do with pure retrieval. In fact,
normalization usually involves breaking relations into relations of smaller
degree (those with fewer columns); this tends to reduce performance on
pure retrieval because many more joins must often be executed.

Every database is intended to model some micro-world. Thus, the
objects to which reference is made in the following list are those found in
this micro-world. The basic ideas in normalization are to organize the
information in a database as follows:

318 • V iew Updatabi l i ty

Each distinct type of object has a distinct type identifier, which becomes
the name of a base relation.

Every distinct object of a given type must have an instance identifier
that is unique within the object type; this is called its primary-key value.

Every fact in the database is a fact about the object identified by the
primary key.

Each such fact contains nothing other than the single-valued immediate
properties of the object.

Such facts are collected together in a single relation, if they are about
objects of the same type. The result is a collection of facts, all of the
same type.

Note that this methodology makes no distinction between abstract ob-
jects and concrete objects. Furthermore, no distinction is made between
entities and relationships.

It is the coupling together of facts of different type that gives rise to
problems. Such facts are likely to be independent of one another with regard
to their truth in the micro-world and their existence in the database. Inserting
a fact of one type does not usually require inserting a fact of another type
at the same time. Deleting a fact of one type does not normally require
deleting a fact of another type at the same time. As I discussed in [Codd
1971b, 1971c], the problem with relations that are not fully normalized is
that insertions, updates, and deletions can create unpleasant surprises for
users because of anomalies in their behavior and meaning.

Consider an example involving suppliers and simple shipments of parts.
A typical fact about a supplier includes an identifier (the supplier serial
number), the company name and address, a suitable contact within the
company, and his or her telephone number. A typical fact about a simple
shipment includes the supplier serial number, the part serial number, the
quantity of parts shipped, the date of receipt at the receiving end, the
amount to be paid, whether this amount has been paid, and the date of
payment.

Suppose that the fact f about each supplier is coupled with the facts gl,
g 2 , . . , gn about shipments from that supplier. Because it is then necessary
to repeat f with every g, the first problem noticed is the serious level of
redundancy in the relational representation. The adoption of a hierarchic
structure to remove this redundancy is a backward step, one that introduces
a whole new set of complexities and problems. These have been thoroughly
discussed elsewhere (see [Codd 1970]).

It is now appropriate to comment on insertions, updates, and deletions
applied to the unduly coupled relation.

Insertion Anomalies Usually the suppliers from which a company acquires
its parts constitute a relatively stable collection. On the other hand, fresh

17.5 Fully and Partially Normalized Views • 319

orders are continually being placed with each supplier, and for almost every
order there will be a new shipment. Thus, there is a continual need for
insertions of new facts concerning new shipments. Every time a new shipment
is entered into the database using a normal insert command (see Feature
RB-31 in Chapter 4), it must be accompanied by the fact pertaining to the
cited supplier, even if that fact already occurs many times in the database.
This is clearly an unnecessary burden to place on the users.

When a new supplier is being entered into the database, it is unfortu-
nately necessary to enter information concerning a shipment from this sup-
plier. It would help users if there were a concise way of asserting that the
shipment information is missing from the unduly coupled tuple.

Update Anomalies Suppose that one of the suppliers moves from one lo-
cation to another. A change must be made in the supplier's address, and
perhaps in other properties also. This address, however, may occur in many
rows of the unduly coupled relation. Unless the user employs a command
more sophisticated than the update commands described in Chapter 4 (Fea-
tures RB-30-RB-32), translation of this request into correct commands is a
tedious task, one in which the user must be aware of the unfortunate
redundancy cited earlier.

Archiving and Deletion Anomalies Suppose that a particular supplier has
five distinct shipments recorded in ~ the database. As just described, each
recording of a distinct shipment is accompanied by a repetition of the basic
fact about the supplier that is shipping the parts involved.

Suppose that when a shipment is paid for, the database fact pertaining
to this shipment is either archived or deleted.With each archiving or deletion,
the redundancy level of the fact pertaining to the supplier is reduced by
one. It may happen that this supplier receives no fresh orders for such a
long time that the level of redundancy is reduced step by step from five
down to one, and finally to zero. In the range from five down to one no
problem arises because the basic fact concerning the pertinent supplier is
retained in the database. In the final step, however, when payment is made
for the last of the five shipments, this fact is removed from the database
altogether. In this example, as in others, the archiving or deletion proceeds
in a regular manner until the final step. Then, and only then, is there a
substantial, and probably unexpected, side effect: the total removal from
the database of information about the supplier involved.

17.5.2 R e l a t i n g V i e w U p d a t a b i l i t ¥ to N o r m a l i z a t i o n

If the definition of a view includes a join of some kind, it will not be unusual
for the DBMS to make a check to see whether referential integrity has been
maintained. Such a check can cause any insert, update, or delete request to
be rejected.

320 • View Updatability

The DBMS (and preferably all users) must know which relations are
the contributors to every view involving a join, allowing insertions, updates,
and deletions to be intelligently requested. Thus, if a base relation T is the
outer equi-join of two relations R and S that are more fundamental than T,
but are not base relations themselves, R and S should nevertheless be
described in the catalog, and T should be defined in terms of R and S. Such
relations are then called conceptual relations.

17.5.3 N e w Operators for Part ia l ly N o r m a l i z e d V i e w s
and Base R e l a t i o n s

As an aid in explaining these operators, consider a quite useful example
based on the outer equi-join. Let T denote the right outer equi-join of relation
S on B with relation K on C:

T ~ S [B = C \] K .

It is adequate to consider either left or right outer equi-join only since
the main concern is with T as an updatable view (not a base relation), and
it has already been established that a view involving many-to-many matching
of values in the comparand columns is not tuple-insertible, not component
updatable, and not tuple-deletable.

In the examples of the use of the four new operators presented in
Features RZ-41-RZ-44, assume that S denotes suppliers and K denotes
capabilities of suppliers in supplying parts. If T happens to be a base relation,
assume that S and K are declared as conceptual relations (not base, not
view, and not query).

R Z - 4 1 T h e S e m i - i n s e r t O p e r a t o r

An insertion into T of a fact f represented by a semi-tuple is
requested. The DBMS examines the pertinent half of T to see
whether the fact f already occurs there. If f is already in T, the
DBMS rejects the request. If not, the DBMS associates the fact f
with either an existing pairing fact that happens to have its other
half missing or, if no such attaching point is available, creates such
an attaching point by making a copy of a fact that can successfully
pair with it.

Consider as an example the insertion of a capability for supplier s3 and
part p15. If supplier s3 occurs at all in T with a missing capability, it must
occur just once, and the DBMS updates this tuple to include the new
capability. If s3 does not occur at all in T, the DBMS rejects the request.
If s3 occurs in one or more supplier semi-tuples of T, but always paired

17.5 Fully a n d Part ial ly Normal ized Views • 321

with a capability semi-tuple, the DBMS copies one of these supplier semi-
tuples and pairs it with the new capability.

R Z - 4 2 The S e m i - u p d a t e Operator

An update is requested that is to be applied to a fact that is
represented by a semi-tuple of T. If the DBMS is able to find at
least one semi-tuple to which the update pertains, it proceeds to
update every copy of the pertinent fact that exists in T. If the DBMS
is unable to find such a semi-tuple, it rejects the request.

Consider as an example of an update to change the address of a specific
supplier. Every copy of the supplier semi-tuple that exists in rows of T is
similarly updated. If no semi-tuple is found for the specified supplier, the
request is rejected.

RZ-43, RZ-44 The Semi-archive and
S e m i - d e l e t e Operators

The DBMS checks to see whether the fact to be archived or deleted
occurs in more than one semi,tuple of T. If so, as Step 1, it archives
or deletes all rows of T (except one row) in which the fact occurs.
As Step 2, the DBMS marks as missing all components of the one
remaining semi-tuple of T. if at the start the fact to be archived or
deleted occurs only once, Step l is omitted and Step 2 is executed.
If the fact to be archived or deleted does not Occur at all in T, the
DBMS rejects the request.

As an example of an archive or deletion, consider the deletion of the
capability of supplier s3 to supply part p15. The DBMS checks to see whether
supplier s3 occurs in just a single row of T. If so, it marks as missing all
components of the capability semi-tuple. If s3 occurs in more than one row,
the DBMS makes a simple deletion of the particular row in which the
specified capability occurs. If s3 does not occur at all, the DBMS rejects
the request.

17.5.4 O u t e r E q u i - j o i n v e r s u s I n n e r E q u i - j o i n as Views

Suppose that a decision has been made that facts of two different types must
be combined in a single view by making use of either an outer or an inner
equi-join with the primary key of one relation (containing facts of Type 1,

]

322 • View Updatability

say) matching the foreign key of the second relation (containing facts of
Type 2, say). The question arises, Which is the better operator to choose?

Given a fact of Type 1, it is useful to say of a fact of Type 2 that it
matches the Type 1 fact if the primary-key value in the Type 1 fact equals
the foreign-key value (drawn from the same domain) in the Type 2 fact.
The following question is crucial: Is it necessary for one or more Type 1
facts to exist in the database when there are no matching Type 2 facts, and
for this to be obvious from the content of the view?

If this question is answered affirmatively, the choice is clearly outer
equi-join. Outer equi-join permits the continued existence of Type 1 facts
even when matching Type 2 facts have not been entered or have become
obsolete and been archived or deleted.

17.6 • C o n c l u s i o n

View updatability is extremely important because application programs and
end users at terminals should always use views as the means of interacting
with a relational databasemthe only way now known for application pro-
grams and end users to be able to cope with many kinds of changes in the
logical database design without the need for reprogramming and retraining.
This is known as logical data independence. Algorithms VU-1 and VU-2 are
the tools by which relational DBMS products can adequately support de-
termination by the DBMS of view updatability at view-definition time.

The original version of Rule R6 in the 1985 set was stronger than
theoretically achievable. In Version 2 of the relational model, Rule R6 has
become Feature RV-6 (repeated here).

R V - 6 V i e w U p d a t i n g

To evaluate the updatability of views at view definition time, the
DBMS includes an implementation of Algorithm VU-1 or some
stronger algorithm. Neither the DBMS nor its principal relational
language, RL, makes any user-visible manipulative distinctions be-
tween base relations and views, except that

1. some views cannot accept row insertions, and/or row deletions,
and/or updates acting on certain columns because Algorithm
VU-1 or some stronger algorithm fails to support such action;

2. some views do not have primary keys (they have weak identifiers
only) and therefore will not accept those manipulative operators
that require primary keys to exist in their operands.

Why dopresent versions of relational DBMS products handle the up-
dating of views in such an ad hoc, severely limited, and ill-conceived manner?

Exercises a 323

Performance is not the reason. Perhaps one reason is that, for some time,
very few people have been aware that view updatability is a major factor in
attaining logical data independence.

Furthermore, if the columns that constitute the primary key are not
explicitly declared to be the primary key for at least each base relation, then
it will be extremely difficult, if not impossible, for the DBMS to determine
at view-definition time whether or not that view is tuple-insertible or tuple-
deletable, and which of its tuple-components are updatable (if any).

The development of algorithms that, when compared with Algorithms
VU-1 and VU-2, are more efficient or more thorough (or both) can be
expected. The situation is very similar to that which came about after I
completed development of the first three normal forms for database organi-
zation [Codd 1971b]. I named them normal forms 1, 2, and 3 to encourage
researchers to create additional normal forms~which they did.

Exercises

17.1 What are the four assumptions upon which both of the view-updata-
bility algorithms are founded in RM/V2? What is the fifth assumption
on which VU-2 only is based?

17.2 Suppose that a view is defined as a projection on a base relation and
does not include the primary key of that relation. Discuss whether
view-updatability Algorithm VU-1 would accept or reject the insertion
of rows into the view.

17.3 Are all of the views that are definable by RM/V2

• Tuple-insertibie by RM/V2?

a Tuple-deletable by RM/V2?

• Component updatable by RM/V2?

If not, why not? Supply one example for each case.

17.4 Supply a brief description of Algorithm VU-1. What are the main
improvements in VU-2?

17.5 Suppose that a view is defined as the equi-join of two base relations,
and this join does not involve the primary key of either relation as
one of the comparand columns. Discuss whether view-updatability
Algorithm VU-1 would accept or reject the insertion of rows into the
view.

17.6 As the security chief for a database, you have been asked to make
available to a user certain columns of a relation, but these do not
include the primary key of that relation. You have also been asked
to grant that user the privileges of inserting and deleting rows in the
pertinent projection. Should you grant all of these privileges? If not,
what are the problems?

324 • V i e w U p d a t a b i l i t y

17.7 As the DBA of a database, a user has requested you to define a
union of two base relations as an updatable view. Upon examining
the pertinent base relations, yo u find that they are union-compatible,
but that their intersection is either non-empty or not guaranteed to
remain empty. Can you grant the user's request, assuming your DBMS
supports view-updating Algorithm VU-i? Explain your answer. Can
VU-1 be improved to enable the request to be granted? If so, how?

m C H A P T E R 1 8 •

A u t h o r i z a t i o n

To quote from Chapter 13,

Preserving the accuracy of information in a commercial database is
extremely important for the organization that is maintaining that
database.

A major step cited in Chapter 13 concerned the preservation of integrity.
In this chapter a second major step is discussed, namely, controlling who
has access to what parts of the database and for what purposes.

Because of its ease of use, the relational approach to database manage-
ment is without doubt opening up databases to many more people than did
any previous approach. No longer can just a few members of an organization
with highly specialized skills and knowledge access data. Therefore, far more
responsibility must be placed on the DBA, and on the DBMS, to protect
the data from damage by people who lack adequate knowledge of the
pertinent company operations, procedures, and policies.

Many of those who are authorized to access the data should be permitted
by the DBA and DBMS to read the data, but not to modify it. Even when
restricted to no more than reading data, such users may be authorized to
read only specified parts of the database.

Consider the example of a production database (one that is supposed
to reflect the reality of company operations) and a user who is a member
of the planning staff. Suppose that this planner must investigate various
"what-if" types of questions. He or she may want to make some changes

325

326 • A u t h o r i z a t i o n

in the database that reflect possible future changes, either within the com-
pany or in its environment, such as changes in the marketplace. Generally,
such changes cannot be permitted on data in a production database because
that database would no longer reflect the reality of present company oper-
ations. A useful approach to this problem is to request the DBMS to deliver
to planning staff workstations, with some specified regularity (e.g., once a
week), snapshots or summaries of parts of the production database.

The responsibility of the DBA with regard to authorization is to enter
into the catalog a collection of statements that specify who is to access what
information, for what operational purposes, and under what time constraints.
Continual and dynamic enforcement is the responsibility of the DBMS itself.
Because there can be millions of accesses every day, it would not be practical
to require the DBA to adjudicate every access. Enforcement by software,
however, is totally misplaced if it is made the responsibility of a software
package added as an afterthought on top of the DBMS. Such a package can
easily be bypassed.

It is quite normal in companies and government institutions for a sig-
nificant variety of kinds of information to be present in a database. Some
of this data, perhaps much of it, is not intended to be spread around within
the organization (e.g., employees' salaries). Generally, the information should
be available to individuals to the extent required by their job and respon-
sibilities. This basis for the availability of information is sometimes called
the need to know.

Institutions of different kinds often establish quite different procedures
intended to safeguard the security of their information. The approach to
security and authorization that is incorporated in the relational model is
sufficiently flexibile that these institutions can maintain the procedures they
are accustomed to using, either without any changes, or, at worst, with only
minor changes.

Availability of the information must be distinguished from authorization
to modify the information, whether by (1) insertion of new data, (2) update
of existing data, (3) archiving of old data, or (4) deletion of obsolete data.
For any given part of the database, these four distinct kinds of activities
should be separately authorizable. Normally, even fewer people are author-
ized to engage in these activities than those who are merely authorized to
access the information on a read-only basis.

In present relational DBMS products, there is a strong coupling between
views and authorization, an idea that probably had its origins in IBM's
System R prototype [Chamberlin et al. 1981]. One benefit of this approach

t o authorization is that it avoids needless complexity in the implementation.
The consequences of this coupling, however, must be examined. One major
consequence is examined here. Some minor ones are considered later in this
chapter.

If one or more programs or users are authorized to manipulate certain
rows or columns of a relation, then the scope of this authorization must be
expressed in terms of a view containing just those rows and columns. Such

18.1 Some Basic Features • 327

a view must therefore be defined to put such authorization into effect. One
consequence is that numerous views are defined for authorization reasons.
This means that the capability of the DBMS in terms of view updatability
must be strong. Unfortunately, as noted in the preceding chapter, the DBMS
products available today are quite weak in this respect.

18 .1 • S o m e B a s i c F e a t u r e s

R A - I Aff i rmat ive Basis

All authorization is granted on an affirmative basis: this means that
users are explicitly granted permission to access parts of the database
and parts of its description instead of explicitly being denied access.

In non-relational DBMS, the approach to authorization was (and is)
often negativemthat is, based on explicit denial of access. In a relational
DBMS, if user A grants authorization to user B, user A specifies what B
can do, not what B cannot do. As a consequence, the introduction of new
kinds of data into the database does not require urgent examination of any
access denials to see how these denials should be extended. Instead, access
approvals can be introduced quite safely and gradually as they are conceived
and found to be in line with company policies or government regulations.

R A - 2 G r a n t i n g A u t h o r i z a t i o n : S p a c e - t i m e S c o p e

In granting authorization, the full power of RL (including four-
valued, first-order predicate logic) must be applicable in defining
(1) the parts of the database and its description accessible for spec-
ified purposes (retrieving, inserting, or updating database values,
archiving or deleting, or any combination of these activities), and
(2) at what time access is permitted (using the date and time func-
tions of RE).

If the applicability of the full power of RL in supporting authorization
is achieved through views (the usual method in relational DBMS products
today), then Features RV-4 and RV-5, relating to retrieval and manipulating
power on views (see Chapters 16 and 17), must be fully supported in the
DBMS in a systematic (not ad hoc) fashion.

When a DBMS is designed to support Feature RA-2, the usual approach
taken with regard to allocating parts of the database to each user or program
is flawed. Access control of this kind is achieved by exploiting views as the

328 • A u t h o r i z a t i o n

sole tool. To exploit views as a tool is fine because it leads to a simple
design for the authorization mechanism. To exploit views as the sole tool
for this aspect of authorization, however, leads to serious difficulties. The
following example illustrates the problem.

Suppose that one of the base relations is the usual employee relation
EMP, with employee serial number as the primary key. Suppose also that
two of the immediate properties of employees included as columns in EMP
are the present job title and the present salary. One possible requirement
is that a particular user be allowed access to the entire job title and salary
columns for the purpose of analyzing the correspondence between these two
factors.

Further, in order to keep the salaries of individuals from becoming
public knowledge, suppose that the DBA denies this user access to the
primary key by omitting that column from the pertinent view that this user
is authorized to access. This is the DBA action that is required by the DBMS
that exploits views as the sole tool for authorizing what parts of the database
can be accessed by each user.

In this particular example, the view to be defined must include the job
title and salary columns, and exclude the primary-key column; in other
words, the view must be a projection of EMP onto these two columns only.
Assuming that the DBMS supports true projection and not a corrupted
version of this operator, duplicate rows do not appear in the result of
projecting the base relation EMP onto job title and salary only, even though
there may be duplicates of these pairs of values in the EMP relation. Thus,
statistical functions applied to the projection are likely to yield answers that
are different from those that would be obtained from the job title and salary
columns of the EMP relation itself. Given the intent of the user, the answers
obtained from the non-key projection are simply wrong.

Does this mean that the definition of projection should be altered to
permit duplicate rows to be retained in the result? The answer is definitely
no, given the seriously adverse consequences of permitting duplicate rows
(see Chapter 23).

There is a better solution to the problem. It involves imposing the
database space-time constraints on the pertinent user partly through a view
(in this case, a projection that includes the primary key) and partly through
an additional mechanism that blocks this user from seeing any values in the
primary key column.

It is clear that this design of the authorization mechanism is not as
simple as the one that exploits views as the sole tool but at least it is not
obviously wrong in its actions. However, if adopting the use of views as the
sole tool requires permitting duplicate rows, then the overall simplicity of
the DBMS design is significantly reduced by adding this small complexity
to the authorization mechanism. Even more important, simplicity for users
is achieved (see Chapter 23).

18.1 S o m e Basic Features • 329

A reasonable question to ask concerning the example just described is,
"How does the user distinguish between (1) a view that is a key-based
projection with the key hidden, and (2) a view that is non-key-based and is
a corrupted projection (one in which duplicate rows are permitted)?"

The answer is that there is no difference from tile standpoint of inter-
rogation and insertion. There could be a difference, however, from the
standpoint of update and deletion. I am not advocating that the view-
updatability Algorithm VU-1 (see Chapter 17) be extended to handle the
case of hidden keys, The main advantage of using an approach based on
view 1 rather than view 2 is that no user, not even the DBA, can create a
relation that contains duplicate rows, along with a l l0f the headaches that
result therefrom.

The next obvious question is, "In requesting authorization from the
DBA, how does the user distinguish between the need for (1) a view that
is a key-based projection with the key hidden, and (2) a view that is a true
projection on the non-key columns (one in which duplicate rows are not
permitted)?"

Under this scheme, both of these requests are legitimate, and they are
quite distinct from one another in meaning. A user who is carrying out
statistical analysis and who is not allowed to see primary-key values is likely
to want view 1. The main distinction is whether the primary key participates
at all in the view. The DBA can already select participation by the primary
key in a view. What is new here is that the DBA has the additional option
of hiding or not hiding all of the primary-key values.

R A - 3 H i d i n g S e l e c t e d C o l u m n s i n V i e w s

A suitably authorized user such as the DBA can not only define
what parts of the database a user is authorized to access by means
of views, but he or she can also select columns of each view that
are to be blocked from that user's access.

Suppose that a user is authorized to access a view V and apply the
update operator to column A. An update to the A-component of a row w
in a view can make w non-compliant with the definition of the view, causing
row w to be removed from the view.

For example, if a row in the view

V = R [A < 100]

happens to contain 90 as its value of A, and if a user requests that value be
incremented by 25, then the DBMS can update the corresponding value of
A in R to 115. The effect of this update is that the pertinent row is removed

330 • Authorization

from the view V. If the DBA prefers that the request be rejected, he or
she must place an additional authorization constraint upon the user, namely,
that no update is allowed to take a row out of the view. This is one more
reason why authorization should not be based on views only.

R A - 4 B l o c k i n g U p d a t e s That R e m o v e R o w s
From a V i e w

Suppose that a user is authorized to access a view V and to update
a column A in V. The DBA has the choice of providing or denying
this user the additional authorization to apply those updates to values
in column A that take the corresponding row out of the view.

A company can become critically dependent on some database. If a
disgruntled or careless employee is authorized to use the DROP RELATION
command, he or she could issue numerous commands of this type and cause
a complete or near-complete loss of the database. The following two features
are aimed at protecting companies and institutions from this serious problem.

R A - 5 N - p e r s o n T u r n - k e y

In those DBMS installations at which the continued existence and
integrity of the database are critical to the company or institution,
the DBMS must support an N-person turn-key in order for certain
selected activities to be requested by a user successfully (N > 1).

A simple use of this feature is to require that both the DBA and his or
her manager approve the following:

• any execution of the DROP RELATION command;

• any execution of the DELETE command;

• any change in the delay period cited in Feature RA-6, following.

Feature RA-6 delays the execution of drops and large-scale deletions
(possibly all deletions) by archiving the data for a specified number of days
or weeks. The DBMS executes these commands in two steps:

1. archive the data immediately;

2. delete the data later.

This delay gives the installation time to react and fully recover from the
damage, whether intended or not.

18.2 Authorizable Actions • 331

R A -6 Delayed D e l e t i o n s o f D a t a and Drops
B y Archiving

Execution of the command DROP RELATION results in the spec-
ified relation being archived for a period of at least seven days.
Execution of large-scale deletions (possibly all deletions) is delayed
by archiving in a similar fashion. Seven days is the default value if
no longer period is specified.

Together, Features RA-5 and RA-6 provide the fundamental security
that a company needs if it depends heavily on the continued existence and
accuracy of its databases. A possible additional use for the N-person turn-
key is applicable to the type of updates called exporting updates in distributed
databases. When executed, these updates cause the DBMS to move one or
more rows from a relation at one site into a relation at another site. The
user or application program at the FROM site would have to be authorized
to update beyond the range permitted at that site. The DBA in control of
the receiving site might have to authorize reception at that site of the updated
information as an insertion (see Section 24.6.2).

A quite different concern in some installations is that the private use of
storage for preserving the results of queries is escalating at an alarming rate.
Two approaches to limiting this questionable consumption of resources
appear useful.

In the first approach, a feature is introduced into RM/V2 that blocks
execution of any query for which the result exceeds the quota of storage
assigned to a user or group of users, either on a per-query basis or with
respect to a specified total.

The second approach requires each result of a query that the user
requests the DBMS to store to be transmitted to his or her personal computer
or to some storage unit that is specifically assigned to that user. For the
time being, no feature of RM/V2 is proposed to handle this requirement.

18 .2 • A u t h o r i z a b l e Actions

R A - 7 Authorizable Database-control Activities

There are at least 13 database-control activities that must be sepa-
rately authorizable and authorizable in combination.

The 13 such database-control activities are as follows:

1. creating and dropping a domain;

2. creating and dropping a base R-table;

332 • Authorizat ion

10.

11.

12.

13.

3. creating and dropping a column of an existing base R-table;

4. creating and dropping a view;

5. creating and dropping an integrity constraint by type;

6. creating and dropping a user-defined function;

7. creating and dropping a performance-oriented access path (such
as an index);

8. creating a foreign key in one R-table referencing a primary key
in another R-table (possibly the same R-table);

9. requesting that a specific authorization be granted or dis-
continued;

requesting a snapshot;

requesting that an audit log be maintained or discontinued (see
Feature RI-15 in Chapter 13);

establishing a condition for archiving with a new label;

establishing the UP or DOWN mode for "rounding" pseudo-
dates (e.g., February 30 or March 32).

R A - 8 A u t h o r i z a b l e Q u e r y a n d M a n i p u l a t i v e

A c t i v i t i e s

At least seven database query and manipulation activities must be
separately authorizable and authorizable in combination. The seven
such activities are as follows:

1. retrieving on specific R-tables (base or view);

2. inserting into specific R-tables (base or view);

3. updating specific components of rows in specific R-tables (base
or view);

4. updating the primary key of a specific R-table;

5. archiving rows from specific R-tables (base or view);

6. deleting rows from specific R-tables (base or view);

7. updating an I-marked value to either an A-marked value or a
database value, and vice versa (see Chapter 8).

The granting of any of these operations, except the second one,
may be not only confined to specific R-tables, but may also be value-
dependent.

18.2 Authorizable Actions • 333

RA-9 Authorizable Qualifiers

Use of all qualifiers must be separately authorizable and authorizable
in combination (see Chapter 10). The thirteen qualifiers are as
follows:

Feature Qualifier

RQ-1 A-MAYBE
RQ-2 I-MAYBE
RQ-3 MAYBE

RQ-4 AR(x)
RQ-5 IR(x)
RQ-6 ESR(x)
RQ-7 ORDER BY
RQ-8 ONCE ONLY
RQ-9 DOMAIN CHECK OVERRIDE
RQ-10 EXCLUDE SIBLINGS
RQ-11 DEGREE OF DUPLICATION
RQ-12 SAVE
RQ-13 VALUE

Other activities that should be subject to special authorization are the
use of various functions recorded in the catalog, as well as the use of the
date-conversion functions (see Item 14, following Feature RT-4 in Chapter
3). Although support within a DBMS product for this special kind of
authorization is optional at this time, such a product should be at least
designed to accept this extension later.

R A - I O G r a n t i n g a n d R e v o k i n g A u t h o r i z a t i o n

Authorization to access or modify parts of the database may be
assigned to a user or to an already-declared user group and, at a
later time, withdrawn from the user or from the group by using
statements in the relational language RL. Cycles in which user A
makes a grant directly or indirectly to user B, and user B makes a
grant directly or indirectly to A, are prohibited.

When two or more users independently grant another user two or more
authorizations to access parts of the database (the DBMS certainly supports
this), these authorizations may overlap each other in space-time scope either

334 • Authorization

partially or completely. Later withdrawal of any one of these leaves the
others in effect.

Relational DBMS products on the market in the early 1980s often failed
to support user groups in their authorization mechanisms. This failure meant-
that at least one authorization declaration was needed for each individual
user, a severe burden on those responsible for this task.

R A - 1 1 P a s s i n g o n A u t h o r i t y t o G r a n t

Suppose that a user authorizes another user or user group to access
part of the database and to execute specified database operations.
Suppose also that the grantor is authorized to pass on to other users
the granting option. Then, the grantor has the option of granting to
or witholding from the recipient permission to make further grants
of part or all of this authorization.

This feature is compatible with government-type security, in which a
few distinct classes of clearance are set up (e.g., top secret, secret, confi-
dential). Few institutions, however, want to adopt this government-type
security, which is relatively rigid and forces the DBA or security officer to
establish a class structure on all users.

Therefore, the authorization class of features in RM/V2 has been de-
signed to permit the adoption of many different approaches to database
security, ranging from strongly centralized to strongly decentralized.

R A - 1 2 Cascading Revocation

Consider three distinct users A, B, C. If user A grants specific
authorization to user B, and if user B passes on part or all of this
authorization to user C, revocation of the grant from A to B causes
the DBMS to revoke the corresponding grant from B to C. If user
U receives identical authorization from two or more sources, then
U retains the pertinent authorization until every one of the sources
has revoked the authorization.

18 .3 i A u t h o r i z a t i o n S u b j e c t t o D a t e , T i m e , R e s o u r c e
Consumption, and Terminal

R A - 1 3 Date and Time Conditions

Authorization can be conditioned by day of the month, by day of
the week, by a time interval during the day, or by a combination
of these.

18.3 Authorization Subject to Date, Time • 335

R A - 1 4 R e s o u r c e C o n s u m p t i o n

(A n t i c i p a t e d or A c t u a l)

Authorization can be conditioned by either (1) the system's esti-
mated resource consumption to complete the execution of any re-
quest submitted by the user (the system must make this estimate in"
any case as part of the optimization), or (2) limits on the resource
consumption permitted for any request from the user. In the latter
case, the request is started unconditionally but is aborted if the
specified limits are exceeded.

Of these ~ two options, the first one is preferred, provided the system's
.estimate of resource consumption is reasonably accurate. Even then, Option
2 is a good additional safety precaution.

R A - I $ C h o i c e o f T e r m i n a l

Authorization can be conditioned by the particular terminal or
workstation from which a user is operating.

R A - 1 6 A s s i g n i n g A u t h o r i z a t i o n

For each user who interacts with a relational database, there must
be at least one declaration in the catalog that he or she is authorized
to engage in activities (A) within a specified space-time scope (S).
Normally very few users would be authorized to pass on to another
user part or all of the authorization they possess. This process of
passing on authorization is called granting.

Occasionally it is necessary nevertheless for someone who does
not have authorization with space-time scope (S) and activities (A)
to be able to assign that authorization to another user. This action
is called assigning authorization. Very few users would be authorized
to assign authorization.

Thus, when a user assigns authorization to some other user or
users, the assignor is granting an authorization whose scope and
permitted actions are not within the range of what is owned by the
assignor. It is usually the DBA and some of the DBA's staff that
need to be able to assign authorization.

It is the DBA staff that is normally responsible for authorizing users to
access and, in some cases, modify specified parts of the database. How
would the DBA or the DBA staff then cope with a company policy that
requires these people NOT to be able to access data in a relation they

336 • Authorizat ion

created? The answer is that after the DBA or staff create ANY relation,
the DBMS does not automatically give the creators the right to be able to
access and modify whatever data is entered into that relation. Instead, the
DBA can assign user privileges to other users without having those privileges
himself or herself.

E x e r c i s e s

18.1 Is the scope of what a user is allowed to interrogate limited to a DBA-
specified list of columns in a single relation? If not, what can the scope
be, and how is it specified?

18.2 Should the authorization mechanism in a DBMS be designed so that
the power of the relational language in limiting the space-time scope
that is authorized for each user is totally and exclusively dependent on
applying that power to defining views? Explain your position.

18.3 What are the N-person turn-key and seven-day archiving features?
Why should both of these features be supported within a relational
DBMS?

18.4 List the seven "create and drop" capabilities that should be separately
authorizable and authorizable in combination.

18.5 Why should user groups as well as individual users be supported in
regard to authorization?

18.6 Cycles are prohibited in the granting of authorization. Describe the
kind of cycles that are prohibited. Explain how cascaded revocation is
related to this prohibition.

18.7 What authorization features of RM/V2 enable a DBA to permit a
certain amount of ad hoc query to accompany a significant load of
production-oriented transactions?

• C H A P T E R 1 9 •

F u n c t i o n s

A query expressed as a relational command indicates what types of items
are to be retrieved by listing a sequence of pairs of names. Each pair consists
of a relation name followed by a column name; this is called the target list.
A relational command of the query type also indicates the condition to be
satisfied by the particular items that are to be extracted; this is called the
condition. The condition is expressed in four-valued, first-order predicate
logic.

Suppose that a database contains information about shipments within a
relation named SHIP. Suppose further that for each shipment this infor-
mation includes the supplier serial number s#, the part serial number p#,
and the date of the shipment. An example of a query is as follows: Obtain
all of the part serial numbers and dates of shipment for parts shipped after
January 31, 1988. A simple relational command for this request is as follows:

get SHIP.p#, SHIP.ship_date where ship__date > 88-1-31.

The target list in this command is SHIP.p#, SHIP.shipdate. The condition
is that part of the query that follows the word "where," namely, "shipdate
> 88-1-31."

Functions are needed in database management for two purposes. The
first purpose is to transform target database values within a query or view
definition. The function is then part of the expression for the target list.

Consider as an example the database just cited. Suppose that the primary
key of SHIP is the combination of supplier serial number s# and part serial
number p#. Suppose that both shipdate and quantity of parts shipped are

337

338 • Functions

immediate properties included as columns in the relation SHIP. Someone
must know the number of shipments of part p2 after January 31, 1988.
Suppose also that the DBMS supports the COUNT function. Then, an
appropriate query is as follows:

get COUNT(SHIP.s#, SHIP.p#) where ship_date > 88-1-31.

Note that the function COUNT occurs in the target list.
The second purpose of including functions in database management is

to determine the condition to be satisfied by the target database values in
retrieval and in data manipulation. The function is then part of the expression
for the condition.

Consider as an example the same database, but a different query: Find
the serial numbers of only those parts for which the number of shipments
recorded in the database exceeds 10. An appropriate query is as follows:

get SHIP.p# where COUNT (SHIP.s#, SHIP.p#) > 10.

Note that the function COUNT occurs in the condition. Note also that this
query could not be expressed as simply in SQL.

19.1 m S c a l a r a n d A g g r e g a t e F u n c t i o n s

The two types of functions discussed in this chapter are scalar functions and
aggregate functions. Each type of function can be used in both of the ways
just described.

A scalar function transforms a scalar into a scalar. An example of such
a function is a currency-exchange function, which transforms an amount of
money expressed in one currency into a corresponding amount expressed in
some other currency.

An aggregate function transforms a set of scalars or a set of tuples into
a scalar. An example of such a function is the COUNT function just
mentioned. Another example is the SUM function, which scans a collection
of numbers in a column of some relation (such as amounts that are all
expressed in some common currency) and computes their sum.

RF-1 B u i l t - i n A g g r e g a t e F u n c t i o n s

The DBMS provides at least the five aggregate functions--COUNT,
SUM, AVERAGE, MAXIMUM, MINIMUMmas built-in func-
tions for use either in transforming target database values within a
query or view-defining command, or in d~Iermining the condition
to be satisfied by the target database values in retrieval and in data
manipulation.

19.1 Scalar and Aggregate Funct ions • 339

Note that an aggregate function in this context normally transforms
many scalar values into a single scalar value. The usual source of the many
scalar values is a simple or composite column. When an aggregate function
is applied to a column that happens to contain duplicate values, all occur-
rences of those values participate in the action.

For example, if the SUM function is applied to a currency column C in
relation R, the result obtained is the sum of every value occurrence in C,
which is normally not the same as the sum of every distinct value in C.

Consider the example of a relation EMP that identifies employees and
records their immediate properties. The SALARY and BONUS components
of each row have as their values the year-to-date salary and commission
earned by the employee described in that row:

EMP (EMP# ENAME DEPT# SALARY BONUS)

E 10 Rook D 12 12,000 15,800
E91 Knight D12 10,000 6,700
E 23 K n i g h t D05 13,000 13,000
E57 Pawn D02 7,000 3,100

The following queries illustrate the built-in functions:

How many employees
are there?

What is the total
bonus earned?

What is the average
bonus earned?

What is the maximum
salary earned?

What is the minimum
bonus earned?

get COUNT (EMP)

get SUM (EMP.BONUS)

get A V E R A G E (EMP.BONUS)

get MAXIMUM (EMP.SALARY)

get MINIMUM (EMP.BONUS)

There is a simple way to obtain the sum or the count of the distinct
values in a simple or composite column C, if that is what is needed: take
the projection (uncorrupted, of course) of the relation R onto column C,
and then apply the SUM or COUNT function to the result. This method
takes advantage of the fact that true projection eliminates duplicate rows
from the result.

The following query is based on the same EMP relation: What is the
number of distinct salaries? get COUNT (EMP [SALARY])

A good measure of the degree of duplication of values in column C is
obtained by taking the count of rows in the relation containing C and dividing
that count by the count of distinct values in C. In a relation that provides
the immediate properties of employees, it is likely that the degree of dupli-

340 m Functions

cation in the gender column (which has only two values, male and female)
would be very high, while the degree of duplication in the last-name column
would be very low.

The abbreviation DOD stands for DEGREE OF DUPLICATION.
Suppose that the values in a simple or composite column C are the intended
arguments of a statistical function f. Then, for each row containing the DOD
component n, the contribution of the C-component of that row is n times
the value of that C-component.

R1--2 T h e D O D V e r s i o n s o f B u i l t - i n
Stat i s t i ca l F u n c t i o n s

For each statistical function built into the DBMS (including SUM
and AVERAGE as required by Feature RF-1), there is also a DOD
version built into the DBMS. (See Feature RQ-11 in Chapter 10 for
details concerning the DOD qualifier.)

RF-3 B u i l t - i n Scalar F u n c t i o n s

The DBMS supports at least the following arithmetic scalar functions
as built-in functions and expressions in RL: addition, subtraction,
multiplication, division, and exponentiation. The DBMS also sup-
ports at least the following string scalar functions as built-in functions
and expressions in RE: concatenation, substring directly specified,
and substring by pattern-directed search.

These functions are for use either in transforming target database values
within a query or view-defining command, or in determining the condition
to be satisfied by the target database values in retrieval and in data
manipulation.

Note that a scalar function in this context has a fixed number of argu-
ments (usually one or two, seldom more), that each argument is a scalar,
and that the function transforms each of its arguments into a scalar result.

19.2 • U s e r - d e f i n e d F u n c t i o n s

Clearly, the number of functions supplied by the DBMS vendor as part of
the DBMS is small, and therefore is not likely to satisfy all DBMS users.
There must be a means by which users can add functions suited to their
own businesses or institutional activities. Feature RF-4 provides the means.
Subsequent features provide additional support or constraints.

19.2 User-defined Functions • 341

RF-4 User-de f ined Functions: Their Use

Users can define their own functions. The DBMS can then record
such functions (scalar, aggregate, or other types) in the catalog
together with their names and types. The system then supports use
of such functions in access targeting, in access conditioning, or in
both. Use is more generally determined by the orthogonality feature,
Feature RL-7 (see Chapter 22). If the function that is required
happens to be statistical in nature, users can define a non-DOD
version, a DOD version, or both.

Note that the non-DOD version ignores the degree-of-duplication col-
umn, if one occurs in the operand relation. On the other hand, the DOD
version causes each row that has n as its DOD component to provide a
contribution to f that is equal to that from n occurrences of the value in the
contributing column.

RF..5 Inverse Funct ion Required, If It Exists

Together with each user-defined function recorded in the catalog, a
symbol is entered that indicates whether this function has an inverse.
If so, the name of this inverse, together with the code for the inverse,
is also recorded in the catalog.

Rarely is it the case that an aggregate function has an inverse.
Some functions are expected to be used in defining some columns of

views. If such a function happens to have an inverse, there is a chance that
the pertinent column of the view will be updatable, since in such a case the
DBMS can compute from any new value in that column of the view the
corresponding value (simple or composite) that it should enter into appro-
priate column(s) of the base R-tables.

RF-6 User-de f ined Funct ions:
C o m p i l e d Form Required

The DBMS requires that each user-defined function and its inverse
(if any) be written in one of the host languages, and compiled before
the function is stored in the catalog.

342 • F u n c t i o n s

Note that, when a user programs a user-defined function and incorpo-
rates it into a DBMS, he or she need not know anything about the internal
coding or internal structure of the DBMS. The term "host language" is used
to identify any one of the so-called general-purpose programming languages
such as FORTRAN, COBOL, and PL/1. The relational model supports at least
these three as languages with which the principal relational language can
communicate.

R F - 7 U s e r - d e f i n e d Funct ions Can Access
the Database

The DBMS is capable of handling user-defined functions that make
use of data extracted from the database at the time of execution of
these functions.

An example of the need for this feature is found in transactions that
involve currency exchange between various currencies. It is then quite likely
that the databases will contain a relation (say EX) that reflects the exchange
rates currently in effect. Four of the columns of EX would be as follows:
(1) identification of the FROM currency (primary key); (2) identification of
the TO currency (primary key); (3) an amount of the FROM currency
expressed in that currency; and (4) the corresponding amount expressed in
the TO currency. An exchange function would have to access this relation
EX with three arguments:

1. the type of currency from which the exchange is to be made;

2. the type of currency to which the exchange is to be made;

3. the number of units of the FROM currency to be exchanged.

19.3 • S a f e t y a n d I n t e r f a c e F e a t u r e s

RF-8 N o n - g e n e r a t i o n o f Marked Values
b y F u n c t i o n s

The application of a scalar function to unmarked arguments and of
an aggregate function to a set of unmarked database values (even
if the set is empty) never yields a marked result.

In IBM's DB2, the application of the AVERAGE function to an empty
set yields the NULL of SQL~a mistake because this is a case of the result
being undefined, and not a case of a value missing from the database. The
mistake probably resulted from a confusion about two kinds of facts:

19.3 Safety and Interface Features • 343

1. The fact that a database value might be missing (represented by the
NULL of SOL).

2. The fact that, for some arguments, a function may not have a defined
result. '~

In this example, the average of zero elements is normally taken to be
undefined. Whenever an empty set is encountered as an argument to the
A V E R A G E function, the relational model supports the options of (1)
signaling this undefined state, and (2) executing user-defined action if needed
(see Feature RQ-6 in Chapter 10).

Note that the outer operators (see Chapter 5) almost always generate
marked values, even if the arguments contain no marked values. The ad-
dition of a new column to a base R-table also generates marks within that
column. Thus, it is not intended that these operators be perceived as func-
tions when interpreting Feature RF-8.

The power and usefulness of a relational database is increased if the
following three steps are taken:

1. Columns are permitted to contain names of invokable functions, as well
as the usual kinds of value-oriented data.

2. Columns are permitted to contain names of arguments, as well as the
usual kinds of value-oriented data.

3. Both the relational language and the host language have the capability
of invoking a function for which the name and the values of its arguments
can all be obtained, either directly from the database, by use of argument
names in the database, or partly from the database and partly from the
host-language program and its data.

The following two features make it less likely that the user will feel that
he or s he,-is becoming more and more isolated from the outside world as
interrogation of the database proceeds.

RF-9 D o m a i n s a n d C o l u m n s C o n t a i n i n g N a m e s

o f F u n c t i o n s

One of the domains (extended data types) that is built into the
DBMS is that of function names. Such names can be stored in a
column (possibly in several columns) of a relation by declaring that
the column(s) draw their values from the domain of function names.
Both R E and the host programming language support the assemblage
of the arguments together with the function name, followed by the
invocation of that function to transform the assembled arguments.

344 • Functions

R F - I O D o m a i n s a n d C o l u m n s C o n t a i n i n g N a m e s

o f A r g u m e n t s

One of the domains (extended data types) that is built into the
DBMS is that of argument names. Such names can be stored in a
column (possibly in several columns) of a relation by declaring that
the column(s) draw their values from the domain of argument names.
These arguments have values that can be retrieved either from the
database or from storage associated with a program expressed in
the HL.

Features RF-9 and RF-10 are very likely to be useful in making exten-
sions to the relational model that involve user-defined functions. Therefore,
more is said about them in Chapter 28.

E x e r c i s e s

19.1

19.2

19.3

19.4

19.5

In the relational model, each value in a column of a relation is required
to be atomic with respect to the DBMS. Under what circumstances,
if any, are such values not atomic? Give examples that illustrate the
use of database values in a non-atomic role.

What are scalar and aggregate functions? List the five aggregate
functions that should be built into the DBMS.

For each user-defined function, which of the following is required to
be stored in the catalog?

• The source code.

• The compiled code.

• Both the source and compiled code.

Identify those items that are also stored in the catalog for each user-
defined function, and that facilitate the updating of certain kinds of
views. Explain the items you selected and why you chose them.

In certain kinds of manufacturing, the production of most products
involves the use of several machines, each of which has an associated
minimum interval of use and a distinct cost-of-use function. Describe
a feature of RM/V2 that is essential if the computation of total cost
is to be incorporated in the retrieval of data from the database.

a C H A P T E R 2 0 a

P r o t e c t i o n of I n v e s t m e n t

When a company or institution acquires a database management system,
the immediate investment consists of the cost of the hardware and software.
However, there is a longer-term investment, that may be even larger than
the initial one" the investment in the development of application programs
and in the training of users, both programmers and end users. The total
investment is quite heavy, and the purchaser of a DBMS needs some
assurance that the risk is slight.

This chapter deals with features of the relational model designed to
protect the user's total investment. In particular, these features enable
application programs to continue to run correctly when a variety of changes
are made in the database, including changes in the physical representation
of data, the logical representation, the integrity constraints, and the distri-
bution of data between a given collection of sites.

20 .1 • P h y s i c a l P r o t e c t i o n

R P - I P h y s i c a l D a t a I n d e p e n d e n c e

The DBMS permits a suitably authorized user to make changes in
storage representation, in access method, or in bothmfor example,
for performance reasons. Application programs and terminal activ-
ities remain logically unimpaired whenever any such changes are
made. (This feature is Rule 8 in the 1985 set.)

345

346 • Protection of Investment

To handle physical data independence, the DBMS must support a clear,
sharp boundary between the logical and semantic aspects, on the one hand,
and the physical and performance aspects of the base R-tables, on the other;
application programs and terminal users must deal with the logical and
semantic aspects only. Relational DBMS can and should support this feature
totally. Non-relational DBMS rarely provide complete support for this fea-
ture (in fact, I know of none that do).

20.2 • L o g i c a l P r o t e c t i o n

R P - 2 L o g i c a l D a t a I n d e p e n d e n c e

Application programs and terminal activities remain logically un-
impaired when information-preserving changes are made to the base
R-tables, provided these changes are of the kind that permit un-
impairment, either according to Algorithm VU-1 or according to a
strictly stronger algorithm. (This feature is Rule 9 in the 1985 set.)

0

Three examples of information-preserving changes are listed below.

Partitioning an R-table into two or more tables by rows using row
content.

2. Splitting an R-table into two tables by columns using column names,
provided the original primary key is preserved in each result.

3. Combining two R-tables into one by means of a non-loss join. (Note
that many authors now call non-loss joins "lossless.")

To provide this service whenever possible, the DBMS must be capable
of handling insertions, updates, and deletions on all views that are updatable
in accordance with Algorithm VU-1 (see Feature RV-5 in Chapter 16, as
well as Chapter 17). Features RP-1 and RP-2 permit logical database design
to be tackled with a high degree of independence from physical database
design. Feature RP-2 also permits the logical design to be dynamically
changed if necessary for any reason, without damaging the user's investment
in application programs.

The physical and logical data-independence features permit database
designers for relational DBMS to make mistakes in their designs without
the heavy penalties levied by non-relational DBMS. In turn, this means that
it is much easier to get started with a relational DBMS, because not nearly
as much performance-oriented planning is needed before putting the data-
base into operation.

20.4 Re-distribution Protection • 347

20.3 m Integr i ty P r o t e c t i o n

R P - J Integr i ty I n d e p e n d e n c e

Integrity constraints specific to a particular relational database must
be definable in the relational data sublanguage RL, and storable in
the catalog. Application programs and terminal activities remain
logically unimpaired when changes are made in these integrity con-
straints, provided such changes theoretically permit unimpairment
(where "theoretically" means at a level of abstraction for which all
DBMS implementation details are set aside). (This feature is Rule
10 in the i985 set.)

Safe control of database integrity cannot be guaranteed if these constraints
are included in the application programs only.

In addition to the two general integrity constraints~entity integrity and
referential integrity~which apply to each and every relational database,
there is a clear need to be able to specify additional integrity constraints of
the domain type, column type, and the user-defined type. Such constraints
usually reflect business policies, and/or government regulations, and/or the
principal types of well-understood semantic dependencies (functional, multi-
valued, join, and inclusion).

If, as sometimes happens, either business policies or government regu-
lations change, it is probably necessary to change the user-defined integrity
constraints. Normally, this can be accomplished in a fully relational DBMS
by changing one or more integrity statements stored in the catalog. The
DBMS is designed not to require any changes in the application programs
or in the terminal activities, unless such changes are unavoidable. Non-
relational DBMS rarely support this feature as part of the DBMS (where it
belongs). Instead, they depend on a dictionary package or application gen-
erator (which may or may not be present, and can readily be bypassed).

20.4 • R e - d i s t r i b u t i o n P r o t e c t i o n

R P - 4 D i s t r i b u t i o n I n d e p e n d e n c e

A relational DBMS has a data sublanguage RL, which enables
application programs and terminal activities to remain logically un-
impaired under two circumstances"

348 • P r o t e c t i o n o f I n v e s t m e n t

• When data distribution is first introduced (this may occur be-
cause the DBMS originally installed manages non-distributed
data only);

• When data is redistributed (if the DBMS manages distributed
da ta)~the redistribution may involve an entirely different de-
composition of the totality of data.

(This feature is Rule 11 in the 1985 set.)

The DBMS property defined in Feature RP-4 is called distribution
independence, This definition is carefully worded so that both a distributed
and a non-distributed DBMS can fully support Feature RP-4. Whether a
DBMS product provides such support is primarily resolved by examining
the data sublanguage(s) that the product supports. Is at least one of these
languages at a sufficiently high level to support both of the situations just
stated, and has this been demonstrated (e.g., by a prototype)? I believe that
the relational level is essential. Certainly, no non-relational approach has
beenpublished that has proved its success in supporting Feature RP-4.

Some examples of DBMS products in the marketplace that fully support
Feature RP-4 are SQL/DS and DB2 of IBM, INGRES of Relational Tech-
nology, and NonStop SQL of Tandem (in their current releases). Other
vendors are rapidly entering the distributed database management market.
Except for distribution independence and decomposition and recomposition
(see Feature RP-5), the features that appear necessary for a DBMS to excel
in distributed-database management are discussed separately (see Chapters
24 and 25).

Support of Feature RP-4 by the IBM systems has been demonstrated
as follows: SQL programs written to operate on non-distributed data, using
System R, run correctly on distributed versions of that data using System
R*, the IBM San Jose Research prototype of a distributed database man-
agement system [Williams et al. 1981]. The distributed INGRES project has
shown a similar capability for the QUEL language of INGRES [Stonebraker
1986].

Distribution independence is a more serious requirement than mere
location independence. The former concept permits not only all the data at
any one site to be moved to another, but also a completely different
decomposition of the totality of data at all sites into fragments to be deployed
at the various sites.

It is important to distinguish among (1) distributed processing, (2)
networking, and (3) distributed data. In the first case, application programs
are transmitted to the data. In the second case, messages can be sent from
a processing unit at any site to a processing unit at another. In the third
case, data is derived from possibly multiple sites (the derivation being
executed at whatever sites the optimizer selects for efficiency) and directed

20.4 Re-distribution Protection • 349

to the requesting program or terminal. Many non-relational DBMS support
distributed processing, but not the management of distributed databases.
Support for distributed database management~in which all the data, whether
stored locally or remotely, appears to be local~has been demonstrated by
relational DBMS prototypes. Whether it can be supported by any other kind
of DBMS remains to be seen.

In the case of distributed relational DBMS, a single transaction may
straddle several remote sites. Such straddling is managed entirely under the
covers--the system may have to execute recovery at multiple sites. Each
program or terminal activity treats the totality of data as if it were all local
to the site where the application program or terminal activity is being
executed.

A fully relational DBMS that does not support distributed databases has
the capability of being extended to provide that support, while leaving
application programs and terminal activities logically unimpaired, both at
the time of initial distribution and whenever later re-distribution is made.
There are four important reasons why relational DBMS enjoy this advantage.

1. Decomposition flexibility in deciding how to deploy the data.

2. Recomposition power of the relational operators when combining the
results of sub-transactions executed at different sites.

3. Economy of transmission resulting from the fact that the DBMS has
multiple-record-at-a-time capability. Thus, there need not be a request
message sent for each record to be retrieved from any remote site, or
a reply message for each result record to be transmitted back.

4. Analyzability of intent (due to the very high level of relational languages)
for vastly improved automatic optimization of execution~and, when
necessary, automatic re-optimization.

R P - 5 D i s t r i b u t e d D a t a b a s e M a n a g e m e n t :

D e c o m p o s i t i o n a n d R e c o m p o s i t i o n

If the DBMS supports distributed database management, it uses the
full power of RL (including four-valued, first-order predicate logic)
to decompose each RE statement into simpler RE statements, each
of which is capable of being executed at a single site. Such a DBMS
also uses this full power to recombine the results from the subre-
quests to yield a coherent and correct response to the whole request.

Note that Feature RP-5 is not applicable if the DBMS is not claimed to
support distributed database management.

350 • Protection of Investment

20 .5 m S u m m a r y o f t h e P r a c t i c a l R e a s o n s f o r F e a t u r e s
RP- 1 - R P - 5

Features RP-1-RP-4 represent four different types of independence aimed at
protecting users' investment in application programs, terminal activities, and
training. Features RP-1 and RP-2~physical and logical data independence~
have been widely discussed for many years. Nevertheless, today there still
exist DBMS products that fail to support these features. Features RP-2, RP-
3, and RP-4~logical data independence, integrity independence, and dis-
tribution independence~have received inadequate attention to date, but
are likely to become as important as Feature RP-1. There is no claim that
these four types of independence are easily implemented in a DBMS. Feature
RP-5 may help the reader understand (1) the complexity of the problem,
and (2) the fact that the relational model has the capability of solving it.

E x e r c i s e s

20.1

20.2

20.3

20.4

20.5

What are the four main types of investment protection that are ob-
tainable from a fully relational DBMS?

If at its inception a database is properly designed logically and phys-
ically, why should it ever be necessary to change that design (1)
logically and/or (2) physically?

Why should it ever be necessary to change integrity constraints?

If integrity constraints are changed, why be concerned about having
to change a few application programs, especially if the programs are
written in a "fourth generation language"?

Someone asserts that determining how data should be distributed to
various sites is a design problem that occurs just once (at installation
time), and concludes that distribution independence is a feature of no
value. Is there any merit in this argument?

• C H A P T E R 2 1 •

Principles of DBMS

Design

The relational model is based on the fundamental laws discussed in Chapter
29. It is intended that implementations of the model are to be based on the
design principles described in this chapter. The main motivation for for-
mulating these principles in explicit terms was the numerous blunders that
have been made in various DBMS implementations.

In the next chapter, design principles for relational languages are dis-
cussed. I recommend to DBMS vendors that they use the principles in both
chapters to get the designers of their DBMS products back on track.

R D - 1 N o n - v i o l a t i o n of any F u n d a m e n t a l Law
of M a t h e m a t i c s

The DBMS and its relational language(s) do not violate any of the
fundamental laws of mathematics.

At first glance, this appears to be a completely unnecessary feature. In
examining a database management system in 1969, however, I discovered
that, under certain conditions, it failed to support the commutativity of
logical AND. More specifically, suppose that X and Y are correctly for-
mulated truth-valued expressions, and that Q1, Q2 are two identical queries
except that Q1 has the condition X AND Y, while Q2 has the condition Y
AND X. Under the special conditions, Q1 and Q2 failed to yield the same

351

352 • Principles ofDBMS Design

result on identical databases. This fact was not disclosed in the manuals
supplied to users. Fortunately, this DBMS product failed in the marketplace.

The reader may imagine that such a blunder could have happened only
in the 1960s. Unfortunately, a recent release of a well-known relational
DBMS product, marketed by a vendor with an excellent reputation, fails
under certain conditions to yield x from the expression x + y - y when x
happens to be a date and y happens to be a date interval, even though x
and y are correctly formulated. The error in the result can be as much as
three days.

In my opinion, both examples illustrate the appalling lack of real concern
for the quality of their products by the workers and managers in software,
and an astonishing lack of concern for the very large number of institutions
that are likely to be adversely affected by such sloppy work. The examples
also illustrate an apparent lack of understanding of basic user requirements
and basic mathematics.

R D - 2 U n d e r - t h e - c o v e r s R e p r e s e n t a t i o n

a n d A c c e s s

The DBMS may employ any storage representations and any access
methods for data, provided these are implemented "under the cov-
e r s "~ tha t is, they must not be exposed to users (with the possible
exception of giving the DBA a few types of commands to create
and drop performance-oriented structures and access methods). Once
these structures are created, the responsibility for maintaining them
during insertion, update, and deletion activities belongs to the DBMS,
not to users and not to the DBA.

R D - 3 S h a r p B o u n d a r y

The DBMS makes a sharp separation between two aspects: (1)
performance-oriented features (such as indexes), and (2) semantic
and logical features (such as the uniqueness of values in a column
or combination of columns, the exclusion of missing values, the
primary-key property, and the foreign-key property).

In general, most users should be protected from having to deal with the
first item altogether. In particular, if the DBA drops an index (for example),
there should be no loss of semantic features, such as those cited in the
second item. Some existing DBMS products fail in this respect because they
require an index to exist on any column whose values must all be distinct
from one another. Distinctness of values is a semantic feature, while an
index is a performance-oriented feature.

Principles of DBMS Design • 353

Should application programmers or end users be burdened by concern
for the logical aspects of concurrency control? This question deserves special
consideration.

Two types of concurrency must be supported by a relational DBMS"

1. intra-cornmand concurrency consists of treating various portions of a
single relational command as independent tasks, and executing these
tasks concurrently;

2. inter-command concurrency consists of executing two or more relational
commands concurrently.

RD-4 Concurrency Independence

Application programs and activities by end users at terminals must
be logically independent of whether the DBMS supports intra-
command concurrency, inter-command concurrency, neither, or both.
Application programs and activities must also be independent of the
controls (Usually locking) that protect any one action A from inter-
fering with or damaging any other action that happens to be con-
current with A.

A relational DBMS never requires the user or application program to
make an explicit request for some kind • of lock. Such a n action would be
oriented too heavily to a particular implementation. An interrogative o r
manipulative request, however, may represent an implicit request for some
kind of lock.

Some requests cause the DBMS to impose long-term locking. An ex-
ample is the updating of several primary-key values, each of which triggers
corresponding updating of foreign-key values scattered in various parts of
the database.

Occasionally, a terminal user makes a request that requires the DBMS
to lock a large quantity of data. Then the user may leave the terminal,
absent-mindedly signing off before completing whatever action would release
the locks. The DBMS must protect other users and programs from unau-
thorized long-term locking.

R D - 5 Protection Against Unauthorized
Long-term Locking

The DBA can specify a time block T permitted on every locking
action caused by any request from a terminal user or application
program. For each user and program, the DBA can also specify a
locking quota expressed in multiples of T. Whenever one block is

354 • Principles of DBMS Design

consumed, the DBMS checks the authorization data to see whether
the quota, for which the user or application program is authorized,
has been consumed. If the quota has been consumed, the DBMS
aborts the request. If not, the DBMS reduces the quota by one, and
proceeds with the transaction.

Whenever a terminal user is involved, each time a time block is con-
sumed, the DBMS should check that the user is still at his or her terminal.
This can easily be done by requesting the user to press a certain key if he
or she wants the action to continue and wants the locks held for one more
time block.

R D - 6 O r t h o g o n a l i t y i n D B M S D e s i g n

Any coupling of one feature with another in the design of a DBMS
must be justified by some clearly stated, unemotional, logically
defensible reason.

Feature RD-6 should not be confused with Feature RL-7 (see Chapter
22). Two examples of unjustified coupling of features in a very prominent
relational DBMS may clarify the intent behind Feature RD-6. Both examples
involve indexes, and it should be understood that, from the standpoint of
the relational model, an index is purely a performance-oriented concept,
one that should be kept hidden from all users except possibly the few who
are authorized to create and drop indexes.

In the first example, the relational DBMS requires that any column in
which the values are constrained to be distinct from one another (a frequently
encountered semantic constraint) must be indexed. Unfortunately, this means
that such an index cannot be dropped purely for performance reasons.

In the second example, the relational DBMS maintains statistics for use
by the optimizer to deliver improved performance. This is a good perform-
ance-oriented feature that should be independent of whatever columns hap-
pen to be indexed at any time. The statistics consist chiefly of the number
of distinct values in each column. The relational DBMS, however, maintains
these statistics only for those columns that are indexednthe simplest task
for the implementors. As a result, it is easy to construct examples of SQL
commands for which the relational DBMS will give unnecessarily poor
performance. Perhaps the designers failed to realize that statistics normally
do not change rapidly, and therefore need not be (and should not be)
updated every time any part of the database content is changed.

In each of these examples, there is an unjustified coupling of two
independent featuresuin the first case, a semantic feature coupled with a
performance-oriented feature; in the second case, one performance-oriented
feature with another quite distinct and independent one.

Principles of DBMS Design • 355

R D - 7 Domain-based Index

For those DBMS that are based primarily on software, the DBMS
supports the creation and dropping of domain-based indexes by
suitably authorized users. This may also provide advantages in per-
formance for hardware-based DBMS.

A domain-based index is a single index on the combination of columns
defined on the specified domain (normally all of those columns are involved,
but a suitably authorized user may select only those columns that will prove
advantageous). Such an index will usually be a multi-table index. It facilitates
the efficient execution of referential integrity (if the domain is a primary
domain) and other occurrences of inclusion dependence. So far, the only
relational DBMS I have encountered with a domain-based index is one
developed at the University of Nice.

R D - 8 Database Statistics

In the catalog, the DBMS stores statistics of the data (see Feature
RC-11 in Chapter 15). This information is used by the optimizer to
select the most efficient method of handling each retrieval and
manipulative command. The DBMS updates these statistics only
occasionally--certainly not upon every insert, delete, or update.
The updating of statistics is executed by the DBMS with a frequency
and at times requested by the DBA or any suitably authorized user.

The DBMS fails to provide full support for this feature if it either
(1) supports no database statistics at all or (2) supports statistics for only
those columns that happen to be indexed or happen to have some other
performance-oriented property.

R D - 9 Interrogation. of Statistics

The DBMS statistics cited in RD-3 may be interrogated by use of
RE by the DBA or by any suitably authorized user.

R D - I O Changing Storage Representat ion and
Access Options

Commands must be available to the DBA for dynamically changing
the storage representation and access method in use for any base

356 • Principles of DBMS Design

relation without causing logical impairment of any transaction in source
code form (whether already compiled or not), or any noticeable
delays in the execution of the transactions in progress or of trans-
actions waiting to be processed.

If transactions are normally compiled before their first execution, and
if the change in storage representation or access method necessitates re-
compilation, then this feature requires that the re-compilation must be
automatically called int0action by the DBMS without manual intervention
by the DBA or by any user.

R D - 1 1 A u t o m a t i c P r o t e c t i o n in Case
o f M a l f u n c t i o n

In case of a malfunction that causes one or more transactions to fail
to complete, the DBMS must protect the database from the effects
of the failed transactions.

R D - 1 2 A u t o m a t i c R e c o v e r y in Case
o f M a l f u n c t i o n

In case of a malfunction that causes one or more transactions to fail
to complete, the DBMS must be able--without user intervention--
to recover immediately after the cause of the malfunction has been
repaired. Recovery can be deemed effective when the aborted and
delayed transactions have been successfully re-executed using the
state of the database effective at re-execution time.

The DBMS maintains a recovery log for this purpose. This feature is included
because it is considered an essential requirement of any DBMS, whether
relational or not.

R D - 1 3 A t o m i c E x e c u t i o n of
R e l a t i o n a l C o m m a n d s

Each relational command is executed in its entirety without breaks
or stoppages because of restrictions on the size of operands or the
size of results imposed by the DBMS implementation, or any other
reason except malfunction.

Principles of DBMS Design l 357

A few DBMS products discontinue the processing of an RL command
after processing a fixed number of rows (50,000 in one case) from any one
R-table; the number is a DBMS implementation constraint. This could be
an unpleasant surprise for the many users who must process much larger
tables, involving in some cases millions of rows.

Sometimes programmers using a relational DBMS must apply an update
across a relation that has a million rows. It is good practice to avoid tackling
such an update on a global, single-commit basis, because of the possibility
of a massive rollback if anything goes wrong in the later stages. The other
extreme consists of processing the updates on a row-by-row basis (single-
record-at-a-time); this is likely to detract from performance. An efficient
solution involves tackling the update in batches of several thousand rows
each at a time. E v e r y t i m e such a batch is successfully completed, the
corresponding updates are committed to the database. Support for this
progressive, batch-by-batch activity is needed in relational languages, and
can be expected in RM/V3.

R D - 1 4 A u t o m a t i c A r c h i v i n g

The DBMS supports the automatic archiving of data when it reaches
an age specified by the DBA. The frequency of archiving is also
specified by the DBA (e.g., once every quarter of a year). It must
be possible to re-activate any relational snapshot that has been
archived.

R D - 1 5 A v o i d i n g C a r t e s i a n P r o d u c t

During the execution of any single RL command, the DBMS avoids
generating the Cartesian product of two R-tables as an intermediate
result, and never generates the Cartesian product as the final result
of an RE command, except possibly in the case of a join being
requested without any join condition. In this case, the DBMS issues
a warning message.

The Cartesian product is wasteful in terms of memory space, channel
time, and processing-unit cycles. Thus, if it is requested as a final result,
the user should be aware that it is expensive and contains no more infor-
mation than its factors.

358 • Principles of DBMS Design

R D - 1 6 R e s p o n s i b i l i t y f o r E n c r y p t i o n

a n d D e c r y p t i o n

It is the sole responsibility of the DBMS to invoke programs for
encrypting data immediately before storing it in the database, and
for decrypting data upon retrieval.

The DBA must enforce this feature until an acceptable way is found for
the DBMS to enforce it. Clearly, if programmers are allowed to include
encrypting and decrypting functions in their own programs, the DBMS and
the DBA have abandoned the maintenance of integrity in at least the
encrypted data, and possibly in closely related data also.

The design principles introduced in this chapter are aimed at cleanliness
of design and ease of use by the whole community of users. They are n o t

aimed at reducing either the creative originality of individual implementors
or the degree of competition among their respective companies.

• RD-1

• RD-2

• RD-3

• RD-4

• RD-5

• RD-6

• RD-7

• RD-8

• RD-9

• RD-10

• RD-11

• RD-12

• RD-13

• RD-14

• RD-15

• RD-16

Non-violation of any fundamental law of mathematics

Under-the-covers representation and access

Sharp boundary between performance-oriented features

Concurrency independence

Protection against unauthorized locking

Orthogonality in DBMS design

Domain-based index

Database statistics

Interrogation of statistics

Changing storage representation and access options

Automatic protection in case of malfunction

Automatic recovery in case of malfunction

Atomic execution of relational commands

Automatic archiving

Avoiding cartesian product

DBMS responsible for all encryption and decryption of data

E x e r c i s e s

21.1 A designer who helped design a DBMS product says, "Who cares
about any violations of mathematics? Mathematics is a subject strictly
for mathematicians, whereas our DBMS is concerned with the real
world." Decide whether this is a defensible position or an untenable
position. Explain.

Exercises • 359

21.2

21.3

21.4

21.5

21.6

21.7

21.8

21.9

Is it required that the relations of the relational model be represented
as tables in storage? If not, what are the only constraints on this
representation?

A DBMS designer says, "In the old days, we never bothered about
separating storage representation and access methods, on the one
hand, from the logical representation, on the other hand. I fail to see
why such sharp separation is necessary." Try to provide this designer
with some insight regarding the need for this separation.

Supply the names and definitions of the two types of concurrency in
database management. Which of these would be more advantageous
if your workload involved:
1. many complex requests?
2. many simple requests?

What is a domain-based index, and what is it good for?

Can skilled application programmers develop code that runs more
efficiently on a pre-relational single-record-at-a-time DBMS than on
a relational DBMS that has a well-designed optimizer? Give reasons
for your position. (See Chapter 26.)

Will the code described in Exercise 21.6 continue to run more effi-
ciently (if it does) in spite of changes in the business and hence in the
traffic on the database? How readily can this code be adapted to the
new traffic? Explain.

A fully relational DBMS provides the following:

m protection from hardware malfunction;

m continuation of those processes that have not been damaged by
the hardware malfunction;

• recovery without loss of information or commands after the hard-
ware malfunction has been repaired.

State which of these services are supported by RM/V2.

Why should Cartesian product be avoided in:
1. designing a relational DBMS product?
2. in using a relational DBMS that happens to support this operator?

• C H A P T E R 2 2 •

Principles of Design for
Relational Languages

The question has often been asked, "Why not extend a relational language
to become a general-purpose programming language?" More recently, often
the following is asked: "What are you going to do about image data and
the large numeric arrays that are common in science and engineering?"

Early in my work on database management, I decided not to try to
modify any of the well-established programming languages, such as FOR-
TRAN, COBOL, and PL/1, to inclUde the kind of statements needed in
database management. Experience in dealing with the standards committees
for these languages had convinced me that the members were not very
interested in technical issues of any depth. Thus, I concentrated on database-
oriented sublanguages, languages intended for every aspec t of database
management only. The term "sublanguage" clearly indicates that the lan-
guage is specialized, and is not intended to support the computation of all
computable functions.

This direction has proved to be sound. It was subsequently pursued with
great success by the developers of text editing on micro-computers. After
all, how many secretaries would now be using text editors if they had to
learn COBOL or PL/1 first?

Programming languages such as PL/1 and ADA have reached a total
complexity that is staggering. Therefore, it seems reasonable to predict that
there will be continued growth in specialized sublanguages, each capable of
being used interactively alone, and of communicating with programming
languages of a more general nature in order to participate in application
programs.

361

362 • Principles of Design for Relational Languages

The processing of image data and large numeric arrays, especially mat-
rices, involves many specialized operators and functions. Two examples of
specialized operators are the inversion and transposition of matrices, while
the computation of their determinants involves a specialized function.

As a user option, it should be possible to embed the corresponding
retrieval expressions and functions in the target part or the condition part
of a request in a relational language. It should not be necessary, however,
for a commercial or industrial user to learn about these separable concepts
unless he or she needs them on the job. Thus, a relational language should
be designed to accommodate a wide variety of specialized operators and
functions, not all of which can be anticipated at the time the language is
designed.

In Features RL-1-RL-17, following, the abbreviation RL continues to
denote whatever relational language is the principal one supported by a
relational DBMS.

R L - I Data Sublanguage: Variety of Users

RL is a data sublanguage intended to support users of all types,
including both programmers and non-programmers, in all logical
aspects of managing databases. RE contains no commands for
branching, looping, manipulating pointers, or manipulating indexes.

The reasoning behind this feature is that the introduction of commands
of this type would convert RL into an overly complicated language usable
by programmers, but by hardly anyone else.

R L - 2 Compiling and Re-compiling

RL commands must be compilable separately from the host-language
context in which they may appear. The DBMS must support the
compilation of RE commands, even if it also supports interpreting
them. Moreover, the DBMS must support automatic re-compilation
of RL commands whenever any change in access paths, access meth-
ods, or indexing invalidates the code developed by a previous
compilation. 1

R L - 3 Intermixability of Relational- and
Host-language Statements

In application programs, statements in RL can be freely intermixed
with statements in the host language.

~This feature of RM/V2 is based on work done by Raymond Lorie while he was a member of
the System R team in IBM Research, San Jose.

Principles of Design for Relational Languages • 363

R L - 4 P r i n c i p a l R e l a t i o n a l L a n g u a g e Is

D y n a m i c a l l y E x e c u t a b l e

Any request expressed as an RL command can be pieced together
as a character string using RL and/or HE. This character string can
then be compiled and executed either immediately or later (user's
choice) as if it were a command that has been entered from a
terminal.

R L - 5 RL B o t h a S o u r c e a n d
a T a r g e t L a n g u a g e

RL is designed for two modes of use, as a source language and as a
target language. In the first mode, statements must be easy for
human beings to conceive correctly. In the second mode, statements
must be easy for a computer-based system to generate.

Frequently, a language is designed as a source language only. However,
almost every source language in the computing field becomes a target
language for software packages on top. This is particularly true for relational
languages because many services must make use of the information in
relational databases.

R L - 6 S i m p l e R u l e for S c o p e W i t h i n a n

RL C o m m a n d

The scope of operators, comparators, functions, logical connectives,
qualifiers, and indicators within any single RL expression or com-
mand must conform to a simple and readily comprehensible rule.

R L - 7 E x p l i c i t B E G I N a n d E N D for
M u l t i - c o m m a n d B l o c k s

The scope of multi-command blocks such as the transaction block
and the catalog block (see Feature RM-7 in Chapter 12) must be
explicitly stated by a BEGIN type command and an END type
commanduexcept where the intended extent of the block is a single
command, in which case both the BEGIN and the END are omitted.
Each of the commands BEGIN and END includes some identifi-
cation of the type of block.

364 • Principles of Design for Relational Languages

The SQL of prototype System R [Chamberlin et al. 1981] had both an
explicit BEGIN and an explicit END for transactions. The IBM product
DB2 fails to support the BEGIN command; this means that it is difficult to
pin down the scope of a transaction block.

R L - 8 Orthogonality in Language Design

The features of RL are expressed orthogonally. When a semantic
feature is supported in one context, it should be supported in every
RE context in which it can be interpreted sensibly and unambigu-
ously, No single semantic feature is expressed in two or more distinct
ways with the choice of expression being context-dependent. Wher-
ever a constant can appear, an expression can replace it, provided
it yields a value that is type-compatible with the type needed in the
given context.

This feature means that there is no unnecessary coupling of one feature
with another. Moreover, to take an example violated by SQL, the mode of
expressing the removal of duplicate rows from the result of an operation
should not be dependent upon whether the operation is projection or union.
In the case of projection, SQL requires the presence of the qualifier DIS-
TINCT. In the case of union, SOL requires the omission of the qualifier
ALL. Of course, duplicate rows should not have been supported as an
option in the first place.

R L - 9 Predicate Logic versus Relational Algebra

RE is more closely related to the relational calculus of the language
ALPHA [Codd 197la] than to the relational algebra. The purpose is
to encourage users to express their requests in as few RL commands
as possible, and hence improve the optimizability of these RE com-
mands taken one at a time.

To support this feature, RL must include join terms as in ALPHA [Codd
1971a]. RE must also include a simple way of expressing the universal
quantifier. This avoids the kind of circumlocutions and circumconceptions
that require the user to translate

FOR__ALL x Px

into

NOT T H E R E ~ E X I S T S x NOT Px.

Principles of Design for Relational Languages • 365

Such a translation must be made by users of the SQL Of IBM's current release
of DB2, which lacks a simple way to express relational division.

R L - I O S e t - o r i e n t e d O p e r a t o r s a n d C o m p a r a t o r s

RL includes certain set-oriented operators such as set union, set
intersection, and set difference. These operators are subject, of course,
to the usual constraints of the relational model that the operands
and the results must be relations that are type-compatible with one
another. RE also includes set comparators such as SET INCLUSION.
These set operators and set comparators must be defined, at least
in technical papers available to the public, in terms of the predicate
logic supported in RE.

The requirement for definitions in terms of the predicate logic within
RL is based on the following reasons:

• to simplify the interface between the DBMS and inferential systems
designed to operate on top of the DBMS;

• to simplify the DBMS optimizer by making it easy, as a first step, to
convert any query or integrity constraint into a canonical form.

The second reason is important in attaining good performance no matter
how the user chooses to express his or her needs. In this way, the burden
of gaining good performance is transferred from the user to the DBMS,
where it belongs.

R L - I I S e t C o n s t a n t s a n d N e s t i n g of Q u e r i e s
W i t h i n Q u e r i e s

RL includes certain relation or set constants, such as the empty set.
It may also include, but is not required to include, the nesting of
subqueries within queries, as in SQL. However, unlike the present
SQL of either ANSI or IBM, if nesting is supported, it must be
defined in terms of simple basic expressions of predicate logic, and
it must be an optional way of expressing the request, not a required
way under any circumstance.

The last two sentences in Feature RL-11 are vital to ensure effective
optimization that gives the best performance regardless of the way any
condition is expressed. They also simplify the task of software vendors
developing software based on the DBMS as a platform. For example, such

366 • Principles of Design for Relational Languages

vendors may want to develop inferential packages, such as expert systems,
that must interface with the DBMS using RL.

The introduction of set-oriented operators and comparators, plus set
constants and nesting, frequently makes complex logical conditions easier
to express, and therefore supports user productivity. On the other hand,
one of the penalties of this introduction is that a given condition can now
be expressed by the user in several different ways. In this case, it is extremely
undesirable to burden users or software (on top of the DBMS) with the task
of selecting a specific one of these ways so as to obtain the best performance
with respect to the database traffic, storage representations, access paths,
and access methods currently in effect.

R L - 1 2 C a n o n i c a l F o r m f o r E v e r y R e q u e s t

There must be a single canonical form for every request expressed
in RE, whether interrogative or manipulative. Thus, no matter how
a user chooses to express a query or manipulative action, the first
step taken by the DBMS is to convert the source request into this
canonical form.

This is another feature intended to enable the DBMS to assume the
whole burden of finding the most efficient way to handle the request. The
programmer or interactive user is then left with the sole task of determining
how to express his or her logical and semantic needs.

R L - 1 3 G l o b a l O p t i m i z a t i o n

RL statements are compiled or interpreted into target machine lan-
guage. The optimization is carried out entirely within the DBMS.
It is not split into a sequence of local suboptimizations such that the
total sequence is less optimal than a corresponding single global
optimization.

This global optimization includes at least the following:

• determining the alternative sequences in which the relational
operations can be correctly executed;

• for each such sequence, selecting access paths that yield the
least possible use of resources for that sequence, given the access
paths currently in effect;

• finally, selecting that combination of a sequence of operations
and pertinent access p a t h s ~ a combination that yields overall
the least possible use of resources.

Principles of Design for Relational Languages • 367

In some products, optimization is implemented partly in the DBMS and
partly in separate, additional software packages. As a consequence, perfor-
mance suffers. Usually, a sequence of two or more local optimizations is
not as good as a single global optimization.

R L - 1 4 U n i f o r m O p t i m i z a t i o n

For any query or data manipulation, whenever RE permits that
activity to be expressed in two or more alternative (but logically
equivalent) RE statements, the optimizer converts them to a can-
onical form, thereby ensuring that these alternatives yield target
codings that are either identical or equally efficient.

This feature is intended to relieve users of the burden of selecting
detailed source coding in RL for performance reasons. If not removed, such
a burden would significantly reduce the adaptability of the relational ap-
proach to changes in storage representation and access paths resulting from
changes in the total database traffic or from changes in the statistics of data
in the database.

This feature also applies to distributed database management (see Chap-
ters 24 and 25).

R L - 1 5 C o n s t a n t s , Var iables , a n d F u n c t i o n s
I n t e r c h a n g e a b l e

Wherever a constant can occur in an RL command, it can be replaced
by an RE or host-language variable of a type suited to the context.
Wherever an RL or host-language variable can occur, it can be
replaced by an expression invoking a function (either built-in or
user-defined), provided that function yields a result of a type suited
to the context. In both cases, the substitution must yield a clearly
meaningful and unambiguous command.

Regarding user-defined functions, see Chapter 19.

R L - 1 6 E x p r e s s i n g T i m e - o r i e n t e d C o n d i t i o n s

Time-oriented conditions can be included in any condition specified
in an RL command, along with any other conditions that may be
specified and oriented toward database content.

368 • Principles of Design for Relational Languages

For example, RL would handle the requirement that a particular au-
thorization be in effect for some specified interval of the day by attaching
a time-oriented condition to the authorization command. See Feature RA-
13 in Chapter 18, "Authorization."

R L - I 7 F l e x i b l e R o l e f o r O p e r a t o r s

In a relational command, any one of the basic operators can yield
either an intermediate or a final result. More specifically, no basic
operator is excluded from use in either of the following roles:
(1) subordinate within an RE command to any other basic operator,
or (2) superordinate within an RL command to any other basic
operator.

SQL does not conform to this requirement because union cannot be used
in a subordinate role to a join, although join can be subordinate to union.
In other words, within a single SQL command the union of two or more
joins can be requested. The join of two or more unions cannot be requested.
This kind of complexity places an unnecessary load on the user's memory
and makes SQL a frustrating tool to use.

In the design of a relational language, it is clearly desirable to make as
few distinctions as possible between the interactive use of that language at
a terminal and its use as a language for application programming. An
example of a departure from this principle is the asterisk of SOL which is
trouble-free when used interactively, but not trouble-free when used in
application programs.

In SQL an asterisk can be used to denote all columns of a specified
relation. This asterisk is intended to alleviate the burden of naming every
column whenever the need arises for all columns to be involved in a query
or manipulative command.

Interactive use of this feature of SQL at a terminal appears to present
no special problem. Incorporation of an SOL asterisk in an application
program is, however, another matter entirely. The asterisk damages the
immunity of the program to such changes as the addition of new columns
to the relation and the dropping of columns that already participate in that
relation. This difficulty stems largely from the need to interface relational
DBMS to old, single-record-at-a-time, host languages such as FORTRAN,
COBOL, and PL/1. These languages deal with record structure in a rather
inflexible way.

The 17 design principles introduced in this chapter are aimed at clean-
liness of design and ease of use by the whole community of users. They are
not aimed at reducing either the creative originality of individual implemen-
tots or the degree of competition among their respective companies.

Exercises • 369

• RL-1

• RL-2

• RL-3

• RL-4

• RL-5

• RL-6

• RL-7

• RL-8

a RL-9

m RL-10

• RL-11

• RL-12

• RL-13

• RL-14

[] RL-15

• RL-16

• RL-17

Data sublanguage' variety of users

Compiling and re-compiling

Intermixability of RE and host-language statements

Principal relational language is dynamically executable

RE is a source language and a target language

Simple rule for scope within an RE command

Explicit BEGIN and END for multi-command blocks

Orthogonality in language design

Predicate logic versus relational algebra

Set-oriented operators and comparators

Set constants and nesting of queries within queries

Canonical form

Global optimization

Uniform optimization

Constants, variables, and functions are interchangeable

Expressing time-oriented conditions

Intermediate result from any basic operator

Exercises

22.1 Why does the relational model treat the language aspect of database
management as a separate sublanguage, instead of promoting
the advancement of programming languages to include database
management?

22.2 What does it mean for a sublanguage to be able to communicate well
with a host language?

22.3 The features in a we!l-designed language are orthogonal with respect
to each other. Give three examples, each illustrating a distinct and
serious lack of orthogonality in SQL.

22.4 What are multi-command blocks, and how are their boundaries made
explicit?

22.5 Which is preferable, a data sublanguage based on the relational al-
gebra, or one based on predicate logic? Why?

22.6 Of two sublanguages based on predicate logic, which is preferable,
one that uses tuple variables; or one that uses domain variables?
Why?

• C H A P T E R 2 3 •

Serious Flaws in SQL

Most of the database management systems now being introduced as products
on the world market are based on the relational model. Each of these
products supports the Structured Query Language (SOL) [IBM], or, more
accurately, some version of this language. Very few of these versions, and
possibly no two of them, are identical. In the early 1980s, the American
National Standards Institute (ANSI) rapidly adopted their own version of
SOL as a standard.

It appears that all present versions share the following three flaws:

1. they permit duplicate rows to exist in relations;

2. they fail to separate psychological features from logical features;

3. they fail to provide adequate support for the use of either three-valued
or four-valued logic (i.e., logics with truth-values in addition to TRUE
and FALSE).

The devastating consequences of these three properties are explained in
this chapter. The following kinds of steps are suggested:

• steps that vendors should take to remedy the problems;

• precautionary steps that users can take to avoid severe difficulties before
vendors take action; and

• steps to avoid compatibility problems when vendors make the necessary
changes in SOL.

371

372 • Serious Flaws in SQL

These remarks have no effect on the relational model, since SOL is not part
of that model. Nevertheless, a discussion of SOL's major flaws may help the
reader acquire an improved understanding of the relational model.

23 .1 l I n t r o d u c t i o n t o t h e F l a w s

The criticisms of SQL in this chapter are certainly not intended to be inter-
preted as criticisms of the relational approach to database management. SQL

departs significantly from the relational model, and where it does, it is
clearly SQL that falls short. Neither are the criticisms intended to be inter-
preted as wholesale criticism of IBM's relational DBMS products DB2 and
SQL/DS. Although both of these products support SOL, they are good
products when compared with other products on the market today. The
flaws are serious enough to justify immediate action by vendors to remove
them, and by users to avoid the consequences of the flaws as far as possible.

What, then, are the flaws in SQL that have such grave consequences?
We shall describe just three:

1. SQL permits duplicate rows in relations;

2. it supports an inadequately defined kind of nesting of a query within a
query;

3. it does not adequately support three-valued logic, let alone four-valued
logic.

My position on these three "features" is as follows:

1. duplicate rows within relations ought to be prohibited;

2. even though I am not totally opposed to nesting, it requires precise
definition and extensive investigation before being included in a relational
language, so that a canonical form can be established for all requests;

3. four-valued logic should be fully supported within the DBMS and its
language.

Criticisms of SQL have been plentiful; many are cited in this book. See,
for example, [Date 1987]+ in which 20 or more serious errors are listed.
Date's article, however, does not deal with the three most serious flaws,
which are the main focus of this chapter.

23.2 m The First Flaw: Dupl icate Rows and Corrupted
Relat ions

When the idea was introduced that relations could be perceived as flat files
or tables; the converse notion was adopted by numerous people as a true
statement~namely, that any fiat file or table can be perceived as a relation.
This converse is totally incorrect. The flat files and tables of the past were

23.2 The First Flaw: Duplicate Rows and Corrupted Relations • 373

highly undisciplined structures. Frequently, not all of the rows (or records)
were required to have the same type, and duplicate rows were permitted.
Design of relations became corrupted by this false idea.

Relations in the relational model and in mathematics do not have
duplicate rows. There may, of course, be duplicate values within a column.
I shall refer to relations in which duplicate rows are permitted as corrupted
relations.

At first glance, permitting relations to have duplicate rows appears to
be a disarmingly simple and harmless extension. When this extension was
conceived, I indicated that, before any such extension was made, it would
be necessary to investigate the effect of duplicate rows on the definitions of
each and every relational operator, as well as on the mutual interaction of
these operators. It is worth noting that I originally defined the relational
operators and their mutual interaction assuming that relations had no du-
plicate rows (as in mathematics). In all of my subsequent technical papers
on database management, I have continued to take this position.

Research into the effects of duplicate rows was simply not done by any
prototype- or product-development group. Moreover, the problem was not
addressed by the ANSI committee X3H2. It is now clear that the conse-
quences are devastating.

2 3 . 2 . 1 T h e S e m a n t i c P r o b l e m

The first and perhaps most important concern is a semantic one: the fact
that, when hundreds (possibly thousands) of users are sharing a common
database, it is essential that they share a common meaning for all of the
data therein that they are authorized to access. There does not exist a precise,
accepted, context-independent interpretation of duplicate rows in a relation.

The contention that the DBMS must permit duplicate rows if its statis-
tical functions (such as SUM and AVERAGE) are to deliver correct answers
is quite incorrect. Clearly, duplicate values must be permitted within col-
umns. For example, it is impossible to rule out the following possibilities:

• two values of currency happen to be the same (for example, the cost of
two distinct investments);

• two employees happen to have the same birthdate;

• two employees happen to have the same gender (male or female);

• the inventory levels for two distinct kinds of parts happen to be identical.

Consider two or more rows in some corrupted relation that happen to
be duplicates of each other. One may well ask what the meaning of each
occurrence of these duplicate rows is. If they represent distinct objects
(abstract or concrete), why is their distinctiveness not represented by distinct
values in at least one component of the row (the primary key component)
as required by the relational model?

374 • Serious Flaws in SQL

If they do not represent distinct objects, what purpose do they serve?
A fact is a fact, and in a computer its truth is adequately claimed by one
assertion" the claim of its truth is not enhanced by repeated assertions. In
database management, repetition of a fact merely adds complexity, and, in
the case of duplicate rows within a relation, uncontrolled redundancy.

Consider how data in a database should be interpreted by users. The
main reason for establishing any database is that it is an organized (and
hopefully systematic) way of sharing data amongst many users (perhaps
hundreds, perhaps thousands). To make such sharing successful, it is nec-
essary for all users to understand exactly one common meaning of all of the
data they are authorized to access. " C o m m o n " in this context means com-
mon to all users, and shared by all of them. Now, if an operand or a result
contains duplicate rows, there is no standard conception of what the duplicate
rows mean. There may be some private (unshared) conception, but that is
just not good enough for the successful management of shared data.

23.2.2 Application of Statistical Functions

A second concern is the correct application of statistical functions. It is often
claimed that projection should not eliminate duplicate rows. To support this
claim, an example may be cited in which information about employees is
stored in a relation called EMP, and this relation has a SALARY column
that contains the present salary of each employee. To provide an analyst
with details of present salaries, but not the items that identify employees,
the projection of EMP onto SALARY is claimed to be necessary as the first
step. It is also claimed that, in this projection, duplicate salaries must not
be eliminated, since then the analyst is likely to deduce wrong answers to
those queries of a statistical nature.

Statistical functions in relational DBMS can and should operate in the
context of relations that do not have duplicate rows. This means that the
relation name as well as the column name are arguments for a statistical
function applied to that column.

Each of the statistical functions built into the DBMS should have two
flavors: one that treats each row as it occurs (just once) ignoring any degree-
of-duplication component (if such exists); the other that treats each row as
if it occurred n times, where n is the degree-of-duplication component of
that row (see Section 23.2.4 and Chapter 19).

23.2.3 O r d e r i n g o f t h e R e l a t i o n a l Operators

A third concern is the interchangeability in ordering of the relational oper-
ators. When manipulating non-corrupted relations (duplicate rows not per-
mitted) using the relational operators of the relational model, there is a high
degree of immunity to the specific ordering chosen for executing these
operators. To illustrate, let us consider the operators projection and equi-
join. Suppose that the projection does not discard any of the columns whose

23.2 The First Flaw: Duplicate Rows and Corrupted Relations • 375

values are compared in the join. Then, provided no duplicate rows are
allowed, the same result is generated whether the projection is executed first
and then the join, or the join is executed first and then the projection.

Note that, if as usual the projection cites the columns to be saved
(instead of those to be dropped), there must be a change of this list of
columns depending on whether the projection preceded or followed the join.
If, however, the projection cites the columns to be discarded, there need be
no change in the list of these columns. Both forms of projection are useful.

This degree of immunity to the sequence of operators is lost when
duplicate rows are permitted within relations. Consider an example involving
join and projection. Suppose that duplicate rows are allowed in the result
of projection, but not in the result of join. In SQL this means that the qualifier
DISTINCT is used in the join command only.

R (A B C) S (D E)

al 1 cl d l 1
a2 1 cl d2 1
a3 1 c2 d3 2
a4 2 c2
a5 2 cl

Taking the projection R [B,C] first and retaining duplicate rows, we
obtain the following result. Then let us take the equiojoin of this relation,
with S comparing column B with column E, permitting duplicate rows in
the operands, but not in the result.

R [B , C] (B C) R [B , C] [B = E] S (B C D E)

1 cl 1 cl d l 1
1 c l 1 cl d2 1
1 c2 1 c2 dl 1
2 c2 1 c2 d2 1
2 cl 2 c2 d3 2

2 cl d3 2

The final result has just six rows and no duplicate rows.
Now let us reverse the sequence of operators, executing the equi-join

first to generate relation T, and then executing the projection of T onto
B , C , D , E .

R [B = E I S (A B C D E) T (B C D E)

al 1 cl d l 1 1 cl d l 1
a2 1 cl d l 1 1 cl d l 1
a3 1 c2 dl 1 1 c2 d l 1
al 1 cl d2 1 1 cl d2 1
a2 1 cl d2 1 1 cl d2 1
a3 1 c2 d2 1 1 c2 d2 1

a4 2 c2 d3 2 2 c2 d3 2
a5 2 cl d3 2 2 cl d3 2

376 • S e r i o u s F l a w s in SQL

The final result has eight rows, including two cases of duplicate rows.
Clearly, when duplicate rows are permitted, the result obtained by executing
the projection first and then the join is different from that obtained by
executing the join first and then the projection. If duplicate rows had not
been permitted, the results would have been identical, whichever sequence
of relational operations was adopted. (The reader may wish to check this
himself or herself.) What this example shows is that changing the sequence
in which relational operations are executed can yield different results if the
DBMS permits duplicate rows within a relation.

It is useless for an advocate of duplicate rows to dismiss the difference
between these results as nothing more than two rows being dupl ica ted~
that suggests that duplicate rows are meaningless to the DBMS and to users.
If duplicate rows have no meaning (Case 1), they should certainly be
prohibited by the DBMS. If they have a meaning (Case 2), then this is
surely a private (unshared) meaning, applicable only in some special context.
There is no general meaning for duplicate rows that is accepted. Thus, once
again, duplicate rows should be prohibited by the DBMS.

Another possible argument from the advocates of duplicate rows is,
"Why not express the projection and join combined into a single SQL com-
mand? Then it will be impossible to use the qualifier DISTINCT on one of
the operators without it becoming effective on the other."

A first reply to this is that one operator may define a view and the
other a query on that view, and two users may have defined these items
independently of one another. When executing such a query, it is the DBMS
(and not a user) that combines the view definition with the query definition
to make the query effective on base relations. A second reply is that the
DBMS undoubtedly does not prevent a programmer from expressing these
operators in separate SQL statements, whether one of the statements is a
view definition or not.

It is worth noting here that, if the DBMS permits duplicate rows in
results, it must also permit duplicate rows in operands because of the
operational closure feature of relational database management systems: "The
principal relational language is mathematically closed with respect to the
operators it supports" (see Feature RM-5 in Chapter 12). This means that,
in the principal relational language, the results of manipulative operations
must always be legal as operands. If corrupted relations are permitted as
results, then they must also be permitted as operands. This closure feature
is intended to make it possible for users to make investigative inquiries in
which it is occasionally necessary to use as operands the results of previous
queries.

In case the reader thinks this is just an isolated example, let us look at
a quite different one (communicated to me by Nathan Goodman) involving
three simple relations, each concerned with employees~first their names,
second their qualifications, and third their ages:

E i (E # E N A M E) E 2 (E # Q U A L) E3 (E # A O E) .

23.2 The First Flaw: Duplicate Rows and Corrupted Relations • 377

As usual, E # stands for employee serial number. Using SQL, we can
find the names of employees who have the degree Ph.D. or whose age is at
least 50 (or who satisfy both conditions). One of the distinct ways in which
this query can be expressed in SQL involves using logical OR. Another way
involves using union on the serial numbers for employees that satisfy each
of the conditions. These two approaches should always yield the same resultm
but do they?

The answer is that, if SQL is used, it depends on when and in what
context the user requests that duplicate rows be retained or eliminated. If
union ALL is used in this context, the result contains the names of employees
duplicated whenever each employee satisfies both conditions (that is, he or
she has the Ph.D. degree and is at least 50 years old).

The reduction in interchangeability of the sequence in which relational
operations are executed can adversely affect both the DBMS and users of
the DBMS. As we shall see, it damages the production by the DBMS of
efficient target code (this process is usually called optimization) and sub-
stantially increases the user's burden in determining the sequence of rela-
tional commands, when the user chooses to make this sequence explicit.

Application programmers tell me they find it a confusing phenomenon
that some joins yield duplicate rows, while others do not. They also tell me
that for their applications it is both necessary and difficult to eliminate
duplicate rows efficiently.

Optimization by the DBMS A relational command usually consists of a
collection of basic relational operators. Part of the optimizer's job is to
examine the various alternative sequences in which these basic operations
can be executed. For each such sequence it determines the most efficient
way of exploiting the existing access paths. Finally, it determines which of
the alternative sequences consumes the least resources. Clearly, then, any
reduction in the interchangeability of ordering of the basic relational oper-
ations will reduce the alternatives which can be explored by the DBMS, and
this in turn can be expected to reduce the overall performance and efficiency
attainable by the DBMS.

User's Burden in Choosing an Ordering of Commands Occasionally, the
user may (for various reasons) express in two or more relational commands
what could have been expressed in just one. For example, he may decide
to express a projection in one command and a join in another command.
Because the sequence of these commands can affect the ultimate result when
duplicate rows are permitted, the user must give the matter much more
careful thought than would have been necessary if duplicate rows had not
been permitted. One consequence will be a proliferation of unnecessary
bugs in programs and terminal activities.

The extra thinking and the extra bugs will undoubtedly cause an unnec-
essary reduction in the productivity of users. A far more serious consequence
is that undiscovered bugs may lead to poor business decisions.

378 • Serious Flaws in SQL

Violation of the Fundamental Law #1 As discussed in Chapter 29, the
relational model is based on at least twenty fundamental laws. One of them
is as follows: each object about which information is stored in the database
must be uniquely identified, and thereby distinguished from every other
object. This fundamental law is violated if duplicate rows are permitted in
base relations. This is an important part of the job of maintaining the
database in a state of integrity. The DBMS must help the DBA in this
responsibility.

23.2.4 The Al l eged Security P r o b l e m

It has been alleged that duplicate rows are needed to support correct
statistical analysis of data in a relation that has a sensitive primary k e y ~
that is, a key that cannot be made available to the analyst. There are two
ways in which this alleged need for duplicate rows can be avoided.

The first approach is by use of the degree-of-duplication (DOD) quali-
fier, which the DBMS should support. This qualifier enables the DBA to
grant a user access to enough information from the database and enough
computed information (appended to each row, a count of the number of
occurrences of precisely similar rows) to enable him or her to make correct
statistical analysis without access to some primary keys that happen to be
sensitive. See Feature RQ-11 in Chapter 10 for more detail.

Each of the statistical functions built into the DBMS should have two
flavors: one that treats each row as it occurs (just once), ignoring any DOD
component (if such exists), the other that treats each row as if it occurred
n times, where n is the DOD component of that row (see Chapter 19,
"Functions").

In the second approach, the DBMS vendor changes the authorization
mechanism in the database management system. Suppose that a view is
defined as a suitable projection that includes the primary-key column(s).
The user is authorized to access all of the columns in this view, except the
primary-key column(s) that are blocked by the DBMS. See Chapter 18 for
further information on this topic, and on the approach the DBA and DBMS
can take, if this feature is supported.

23.2.5 The S u p e r m a r k e t C h e c k - o u t P r o b l e m

In 1988 I published my contention [Codd 1988b] that duplicate rows should
be avoided altogether in a relational database management system. Shortly
thereafter, attempted rebuttals began to appear. In one of these attempts
[Beech 1989], the example of checking out a customer at a cash register in
a supermarket was described. In this example, the customer had picked up
five cans of cat food, and the cashier registered each one separately and not
consecutively, a common occurrence in supermarkets.

In this supermarket all the cash registers were connected to a computer
with a database management system, so that all purchases were recorded in

23.3 The Second Flaw: The Psychological Mix-up • 379

the database. The rebuttal claimed that the purchase of the five cans of cat
food would have to be stored as five separate rows in the database, and that
these five rows would be duplicates of one another.

What Beech and others seem to have overlooked is that part of the
design of databases and rules concerning their use depends quite heavily on
what the business managers consider worth recording. In particular, some
semantic distinctions are beneficial to the business, while others are not. In
the supermarket example, the manager of the supermarket is not likely to
be interested in distinguishing one can of cat food from another if they are
of the same brand. That same manager is, however, likely to be interested
in determining the average number of cans of a particular brand purchased
by individual customers, because he or she can then determine how much
shelf space to allot to each brand. For this distinction it is necessary to
distinguish each customer check-out from every other customer check-out.

Does this distinction require that the customer present a unique iden-
tification (such as a Social Security number) to the cashier? Certainly not.
Does it require that each can be distinctly labelled even if it is of the same
brand? Certainly not. The distinction can be made if each brand is distinctly
labelled, and if each customer transaction (the purchase of all items by a
particular customer) is somehow distinguished from every other customer
transaction. This distinctiveness is easily achieved for transactions by means
of the following steps:

.

3.

The cash register must send its identifier automatically into the computer
at the beginning of each transaction.

At this point, the computer must append the date and time.

When each item is entered by the cashier, the system must examine
whether an identically identified item has been entered at some time
before within the current t ransact ion~if it has, the count of items of
that brand is increased by one in the row pertaining to that brand; if it
has not, a new row is recorded in the appropriate relation.

It is useful to refer to this kind of analysis as the analysis of semantic
distinctiveness. This is an aspect of the meaning of the data that is strongly
supported by the relational model. I have yet to encounter any other
approach to database management that supports this aspect adequately.

Considering all the adverse consequences and incorrect allegations just
cited, I still find that duplicate rows in any relation are unacceptable.

2 3 . 3 m The S e c o n d Flaw: T h e P s y c h o l o g i c a l M i x - u p

23.3.1 The Problem

As used here, the term "psychological" refers to what is often called the
human-factors aspects of a language. The term "logical" refers to the logical

380 • Serious Flaws in SQL

power of a language, especially the power achievable without resorting to
the usual programming tricks, such as iterative loops.

Normally, if proper relations are employed, a manipulative command
Or query expressed in terms of nesting and using the term IN can be re-
expressed in terms of an equi-join. Let us look, however, at an example
involving corrupted relations. Suppose we are given the relations EMP and
WAREHOUSE:

EMP (E# ECITY) WAREHOUSE (WNAME

E1 A W1 A
E2 B W1 A,
E3 C W2 D

W3 C
W4 E

WClTY)

In this example, EMP is intended to list all the employees by employee
serial number and city in which the employee lives; W A R E H O U S E is
intended to list all warehouses by serial number and city where located.
Suppose we wish to find each employee name and the city in which he or
she lives whenever that city is one in which the company has a warehouse.
One might reasonably expect that this query could be handled equally well
either by an equiojoin or by a nesting that uses the IN term as follows"

Equi-join Nesting

SELECT E#, ECITY SELECT E#, ECITY
FROM EMP, WAREHOUSE FROM EMP
WHERE ECITY -- WCITY WHERE ECITY IN

(SELECT WCITY
FROM WAREHOUSE)

The results, however, are not identical:

Equi-join Result Nesting Result

E# ECITY E# ECITY
E1 A E1 A
E1 A E3 C
E3 C

Once again, we have a problem that arises in part from permitting
duplicate rows. This case, however, is somewhat more complicated than the
ones considered earlier. Whenever the DBMS encounters a query in nested
form, it must transform such a query into a non-nested form in order to
simplify the task of the optimizer. Some excellent work on this transfor-
mation has been done [Kim 1982, Ganski and Wong 1987].

There appear, however, to be two major omissions from the works just
cited and from other related work. First, the question of duplicate rows is

23.3 The Second Flaw: The Psychological Mix-up • 381

not discussed. Second, even if duplicate rows were prohibited, the remaining
question is whether the coverage in the work is complete with respect to all
nested versions permitted in SOL.

My position on the nesting of SOL is that, when conceived in the early
1970s, it was an attractive idea, but one that needed careful scrutiny and
investigation. This nesting was advocated by its proponents as: (1) a replace-
ment for predicate logic in the relational world, and (2) a more user-friendly
language than the preceding relational database sublanguage A L P H A [Codd
1971a].

The first-cited reason is simply not true. As time has elapsed, it has
been found necessary to incorporate bits of predicate logic in the language,
although errors have been made in this activity. The second-cited reason
has some credibility, but would turn SOL into a curious mixture of the logical
and the psychological aspects of a relational language. There are two reasons
why these two kinds of aspects should be kept separate from one another:

1. a relational language must be effective both as a source language and
as a target language because of the myriad of subsystems expected on
top (e.g., application development systems, database design systems,
expert systems and natural-language subsystems);

2. the relational approach is intended to serve a great variety of users, and
therefore different users may have entirely different education, training,
and backgroundmthis means that just one approach to psychological
support is very unlikely to be adequate.

Accordingly, all of the statements in each of the several distinct lan-
guages providing psychological support should be translatable into the single
language providing logical support. Until that translatability is demonstrated
for SOL by means of a rigorous proof, serious problems in using that language
will continue to arise.

Even when the translatability problem is solved, published, and imple-
mented, there is the danger that a feature will be added to the nested queries
that will introduce non-translatability. Theoretical investigation is sorely
needed in this aspect of language definition.

While on the subject of nesting queries within queries, there are two
features of IBM's SQL that I feel drastically reduce both the comprehensi-
bility and the usability of that language. Let us illustrate these features by
making small modifications to the examples concerning employees and ware-
houses (introduced earlier in this section).

Some city names occur several times in the United States, but only once
in any selected state. For example, Portland occurs both in Maine and in
Oregon. Suppose that to each relation, EMP and WAREHOUSE, we add
a column pertaining to the state in which the city is located. Then let us try
the following query:

382 • Serious Flaws in SQL

SELECT E# , ECITY, ESTATE
FROM EMP
WHERE (ECITY, ESTATE) IN

(SELECT (WCITY, WSTATE) FROM WAREHOUSE)

The DBMS refuses to handle this query, even though it is just like the
original, except that in this case the IN clause involves a combination of
columns instead of a single column. To a user, this seems totally inappro-
priate behavior for a DBMS. The ability of DB2 to concatenate the name
of a city with the name of a state can be used to alter this query into one
that can be executed. However, this is neither a general nor a natural
solution to the problem.

Returning to the original relations, suppose that the query is altered to
elicit more columns of data:

SELECT E# , ECITY, WNAME, WCITY
FROM EMP, WAREHOUSE
WHERE ECITY IN

(SELECT WCITY FROM WAREHOUSE)

This time, the DBMS yields the Cartesian product of EMP with WARE-
HOUSE, except that rows that contain the cities that fail to qualify are
excluded. This result is clearly not what was requested. Like the previous
example, this kind of surprise is the hallmark of a poorly designed language.

23.3 .2 A d v e r s e C o n s e q u e n c e s

Optimization by the DBMS When the prototype System R [Chamberlin et
al. 1981] was passed from IBM Research to the product developers, the
question of whether SOL could be translated from a nested query to a non-
nested version had not been investigated. Subsequently, when the IBM
products DB2 and SQL/DS were built, the problem was found too difficult
to handle in the optimizer. As a result, the first three releases of DB2
perform poorly on nested queries compared with non-nested queries. This
is truly ironic, because SQL had been sold to IBM's management on the
basis of its alleged ease of use and power due to the nesting feature.

User's Burden in Choosing Nested versus Non-nested The difference in per-
formance between nested and non-nested versions of the same query puts
an unnecessary performance-oriented burden on users, one that will not
disappear until nesting is prohibited, or the translatability problem is com-
pletely solved and incorporated into DBMS optimizers. In nested as in non-
nested queries, duplicate rows must be prohibited to avoid the additional
burden of unexpected discrepancies in the results.

23.4 The Third Flaw • 383

2 3 . 4 • T h e T h i r d F l a w : Inadequate Support for Three-
and Four-Valued Logic

DB2 is one of the few relational DBMS products that represents missing
information independently of the type of the data that is missing--a re-
quirement of the relational model and a requirement for ease of use. DB2
uses an extra byte for any column in which missing values are permitted,
and one bit of this byte tells the system whether the associated value should
be taken seriously or whether that value is actually missing.

DB2, however, completely fails to meet one more requirement of the
relational model--namely, that missing information should be handled in a
manner that is independent of the type of the information that is missing,
and that the user should be relieved of the burden of devising three-valued
logic. Representation of missing information is one thing, but handling it is
quite another [Codd 1986a and 1987c]. Actually, three-valued logic is built
into DB2, but is used only to pass over values for which the condition
evaluates to MAYBE (neither true nor false). Thus, only one of the many
uses of the fact that a value is missing is supported by DB2. This is mainly
due to the weak treatment of missing values in SQL.

23.4.1 T h e P r o b l e m

How to Support Three-Valued Logic Usually the occurrence of cases of
missing information in a practical database is unavoidable~it is a fact of
life. I believe that, when interrogating a database for information, users
prefer the DBMS as its normal behavior to take a conservative position and
to avoid guessing the correct answer. Whenever the system does not know
some requested fact or condition, it should admit a lack of knowledge.

The DBMS should also support, as exceptional behavior explicitly re-
quested, the extraction of all the items that could satisfy a request if unknown
values were replaced by information that yielded as many values as possible
in the target list of the query.

A database retrieval may, of course, include several conditions like

DATE > 66-12-31,

where the DATE column has values of extended data type DATE, and

AMOUNT < 20,000,

where the AMOUNT column has values of extended data type U.S. CUR-
RENCY. The conditions may be combined in many different logical com-
binations (including the logical connectives AND, OR, and NOT and the
quantifiers UNIVERSAL and EXISTENTIAL). Suppose, as an example,
that both expressions just noted participate in some condition. Also suppose
that both columns are allowed to have missing database values. How does

384 • Serious Flaws in SQL

the DBMS deal with a query involving the following combination of
conditions,

(DATE > 66-12-31) OR (AMOUNT < 20,000),

where the date condition, the amount condition, or both may evaluate to
MAYBE? Clearly, the DBMS must know the truth-value of such combi-
nations as MAYBE OR TRUE, TRUE OR MAYBE, and MAYBE OR
MAYBE. This means that the DBMS must support at least three-valued
logic. If not, then the user must do the following:

1. request the primary-key values of those orders for which the DATE >
66-12-31 is TRUE;

2. request the primary-key values of those orders for which the AMOUNT
< 20,000 is TRUE; and

3. request the u n i o n of the two sets generated by Steps 1 and 2.

In the case of AND instead of OR, the user would have to request in
Step 3 the intersection of the two sets of primary keys. Users are liable to
make numerous mistakes if they are forced to support three-valued logic
mentally because the DBMS provides inadequate support. Who knows what
crucial business decisions might be made incorrectly as a consequence?

From this, it can be seen that, in any systematic treatment by the D B M S
of missing values, there is a clear need to extend the underlying two-valued
predicate logic to at least a three-valued predicate logic.

In the following truth tables for the three-valued logic [Codd 1979] of
the relational model RM/V1, the symbols P and Q denote propositions,
each of which may have any one of the following truth values: t for TRUE
or m for MAYBE or f for FALSE.

t

vn

f

N O T P P OR Q

f t
m P m
t f

Q

t In f P A N D Q

t t t t

t m m P m

t m f f

Q

t m f

t m f

m lm f

f f f

In the relational model, the universal and existential quantifiers are
applied over finite sets only. Thus, the universal quantifier behaves like the
logic operator AND, and the existential quantifier behaves like OR, both
operators being extended to apply the specified condition to each and every
member of the pertinent set.

When an entire condition based on three-valued, first-order predicate
logic is evaluated, the result can be any one of the three truth-values TRUE,
MAYBE, or FALSE. If such a condition is part of a query that does not
include the MAYBE qualifier, the result consists of all the cases in which
the complete condition evaluates to TRUE, and no other cases.

23.4 The Third Flaw • 385

If to the entire condition part of this query we add the keyword MAYBE,
then the result consists of all the cases in which this condition evaluates to
MAYBE, and no other cases. The MAYBE qualifier is used only for
exploring possibilities. Special authorization would be necessary if a user is
to incorporate it in a program or a terminal interaction.

Actually, the relational model calls for the DBMS to support the at-
tachment of the MAYBE qualifier to any truth-valued expression, since a
view is normally defined not Using this qualifier, while a query on the view
may involve it. The normal action of the DBMS is to combine the view
condition with the query condition using logical AND. This action, of course,
would give rise to a more comprehensive condition involving the MAYBE
qualifier attached to just one truth-valued expression within that condition.

One problem of which DBMS designers and users should be aware is
that, in rare instances, the condition part of a query may be a tautology. In
other words, it may have the value T R U E no matter what data is in the
pertinent columns and no matter what data is missing. An example would
be the following condition pertaining to employees (where B denotes a
DATE):

(B < 66-12-31) OR (B = 66-12-31) OR (B > 66-12-31).

If the DBMS were to apply three-valued logic to each term and it
encountered a marked value (i.e., a value marked as missing) in the date
column, each of the terms in this query condition would receive the truth
value MAYBE. However, MAYBE OR MAYBE yields the truth-value
MAYBE. Thus, the condition as a whole evaluates to MAYBE, which is
incorrect, but not traumatically incorrect.

To avoid this type of error, there are two options:

1. warn users not to use tautologies as conditions in their relational lan-
guage statements (tautologies are a waste of the computer's resources);

2. develop a DBMS that examines all conditions not in excess of some
clearly specified complexity, and determines whether each condition is
a tautology or not.

Naturally, in the latter case, it would be neCessary to place some limitation
on the complexity of each and every query, because with predicate logic the
general problem is unsolvable. It is my opinion that Option 1 is good enough
for now, because this is not a burning issue.

Treatment of Missing Values in SQL The only concession in SQL commands
to the existence of missing values is the clause IS NULL, which enables the
user to pick up from any column those cases in which there are missing
values. Flexible use of three-valued logic (let alone four-valued) is not

386 1 S e r i o u s F l a w s in SQL

supported. An example of inflexibility is the action of DB2 when the
condition part of a query is evaluated as unknown. It simply does not retrieve
the corresponding instances of the target data. Although in practice this is
one of the options that users need, they also need others. One such option
is the temporary replacement of missing values by user-specified values,
where "temporary" means just for the execution of the pertinent command.

Other DBMS products that fail to go beyond present SQL, whether it
be the IBM or the ANSI version, are unable to provide adequate support
of three-valued logic. As a result, we can expect users to make many errors,
some of which are bound to go undetected.

A somewhat separate problem is the effect of missing values on aggre-
gate functions. The relational model supports the following options: request
the missing items to be ignored, or temporarily replace each missing item
by a specified value, where "temporarily" again means just for the execution
of the pertinent command. SQL appears to support only one of these options:
it always ignores the missing items.

23.4.2 A d v e r s e C o n s e q u e n c e s

Overall, the SQL approach to handling missing values is quite disorganized
and weak. This will lead to disorganized thinking on the part of users, an
increased burden for them to bear, and many unnecessary errors. Errors
that are not discovered can lead to incorrect business decisions based on
incorrectly extracted data.

The SQL approach also causes some users to wish for the old approaches
like "default values" that were at least familiar, even if more disorganized.
Of course, the old approaches are completely out of place in any DBMS
based on the relational model.

In some cases of inadequate handling of missing information, the prob-
lem is incorrectly perceived to be a problem of the relational model. In fact,
the problem stems from the inadequacies of SQL and its non-conformance
to the relational model.

23 .5 • Corrective Steps f o r D B M S V e n d o r s

Let us discuss the three problems in turn. First, consider the problem of
duplicate rows.

23.5.1 C o r r e c t i v e S t e p s fo r D u p l i c a t e R o w s

This correction should be handled in three stages"

1. warn users that support for duplicate rows is going to be phased out in
about two years' time;

2. within the first year, install in some new release a "two-position switch"
(i.e., a DBA-controlled bit) that permits the DBMS to operate in two

23.6 Precautionary Steps for Users 1 387

.

modes with respect to duplicate rows: (1) accepting them and (2) re-
jecting them;

drop the support for duplicate rows within a relation altogether, and
improve the optimizer accordingly.

With regard to loss of integrity from databases, it is well-known that
prevention is much better than cure. For this reason, the DBMS should
check that duplicate rows are not being generated whenever an operator is
executed that could generate duplicate rows. Three of the operators that
are defined to remove duplicate rows are projection, union, and appending
rows to a relation, including initial loading. Most DBMS products today fail
to conform to the definitions of these operators.

To provide assistance in the loading of data into relations from tables
that may contain duplicate rows, the command CONTROL DUPLICATE
ROWS was introduced as Feature RE-20 in Chapter 7. Using this command,
the duplicate rows are removed without loss of information.

23.5.2 Corrective Steps for the Psychological Mix-up

The most recent version of IBM's SQL (even if the duplicate row concept
has been removed) should be treated as a language that stands or falls on
its psychological or ease-of-use properties. A new relational language should
be created with features that are highly orthogonal to one another. The
language should be readily extensible, include all of the logical properties
necessary to manage a relational database, be readily compilable, and be
convenient to use as a target language by all the software packages that
interface on top of the DBMS.

23.5.3 Corrective Steps in Supporting Multi-Valued Logic

DBMS vendors should start the work required to introduce support for four-
valued logic [Codd 1986a and 1987c]. The three-valued logic just cited is a
sublogic of the four-valued logic. Implementing the four-valued logic is not
noticeably more difficult or time-consuming than implementing the three-
valued. The four-valued logic treats information that is missing for a second
reason--namely, that a particular property happens to be inapplicable to
certain objects represented in the pertinent relation. With adequate support
for three or four-valued logic, the IS NULL clause in SOL becomes redundant
and should be phased out.

2 3 . 6 m P r e c a u t i o n a r y Steps for Users

While these three flaws are being corrected by the DBMS vendors, there
are several steps users can take to protect their databases and hence their
business. The first step is to avoid duplicate rows within relations at all times

388 • Serious Flaws in SQL

by insisting on continued adherence to the programming and interactive
discipline"

B exactly one primary key must be specified for each base relation;

• the DISTINCT qualifier must immediately follow the keyword SELECT
in every SQL command that includes SELECT;

• the ALL qualifier must never accompany any union.

The second step is to avoid nested versions of SQL statements whenever
there exists a non-nested version. The third step is to take extra care in
manipulating relations that have columns that may contain missing values,
and as fa r as possible separate the handling of missing information into
easily identifiable pieces of code that can be readily replaced later.

23.7 m C o n c l u d i n g R e m a r k s

Is it too extreme to call these SQL blunders serious flaws? I do not think so,
in view of the fact that more and more business and government institutions
are becoming dependent on relational DBMS products for the continued
success of their operations. In my view, the three flaws described in this
chapter must be repaired, even though the repair may cause some users to
have to change some SQL portions of their programs.

DBMS vendors should immediately begin putting the corrective steps
outlined in Section 23.5 into effect. Such action could easily give them a
substantial competitive advantage in the eyes of their prospective customers.

The proposed changes in SQL described in this chapter also represent a
great opportunity for ANSI to take the lead.

Users are strongly advised to take the precautionary steps outlined in
Section 23.6. Then,~the changes in subsequent releases of their DBMS will
prove to be far less traumatic.

How did SQL reach the undesirable state described in this chapter? I
believe that the reason can be traced to inadequate theoretical investigation.

Exercises

23.1 At first glance, SQL offers an attractive feature' the capability of
nesting a query within a query. What are the problems arising from
this feature of SQL. q

23.2 Most, but not all, relational DBMS products violate the very basic
property of the relational model that a relation, whether base or
derived, must not have duplicate rows. Why, and in what ways, does
this violation give rise to serious problems?

23.3 Consider the language SQL. It contains a feature called GROUP BY.
Treat SQL, with this feature dropped as SQLX. Are there any queries

E x e r c i s e s • 389

23.4

expressible in SQL that are n o t expressible in SQLX? If your answer is
yes, supply two examples. If your answer is no, supply a proof.

SQL has a nesting feature that permits a query to be nested within
another query. Treat SOL with this feature dropped as SQLz. Are there
any queries expressible in SQL that are n o t expressible in SQLz? If
your answer is yes, supply two examples. If your answer is no, supply
a proof.

• C H A P T E R 2 4 •

Distributed Database

Management

24.1 • R e q u i r e m e n t s

For many reasons, it is necessary to understand distributed database man-
agement clearly. Very few database management systems will survive in the
21st century if they are not capable of managing distributed databases with
the extensive capabilities described in this chapter and the next.

The first necessity is to be able to distinguish clearly distributed database
management from distributed processing. Some vendors claim support for
distributed database management, when their products actually support
nothing more than distributed processing. The relational model addresses
many of the problems associated with the management of distributed data-
bases, but offers very little help in distributed processing.

A simple, but superficial, way of distinguishing these two services is as
follows. Distributed database management is the coordinated management
of data distributed in various separate but interconnected computer systems.
Distributed processing, which is based on a collection of programs that are
distributed in various separate but interconnected computer systems, permits
a program at any site to invoke a program at any other site in the network
as if it were a locally resident subprogram.

There is no claim that it is a simple task to implement the level of
support for distributed database management in RM/V2. Such implemen-
tation, although quite a challenge, closely represents what users need. A
distributed database satisfies at least the following four conditions:

1. The database consists of data dispersed at two or more sites;

391

392 • D i s t r ibuted Database M a n a g e m e n t

2. the sites are linked by a communications network that may be as modest
as a local area network, as impressive as a satellite-based network, or
anything in between;

3. at any site X, the users and programs can treat the totality of the data
as if it were a single global database residing at X;

4. all of the data residing at any site X and participating in the global
database can be treated by the users at site X in exactly the same way
as if it were a local database isolated from the rest of the network.

Normally, these sites are geographically dispersed, and the communi-
cations network includes the telephone lines of at least one telephone
company. For convenience, the term network will often be applied to the
total collection of sites in a distributed database. In a widely dispersed
situation, the databases are located in different countries, possibly on dif-
ferent continents. At the other extreme, the database sites may all happen
to be located within a single city or even within a single building. It is
worthwhile to observe here that more and more companies are becoming
trans-nationals (the United Nations term for multi-nationals).

Condition 4 in the preceding list is required because some vendors have
DBMS products that support Condition 3 but violate Condition 4. To
understand this, suppose that R is one of the relations in the global database,
that F is a fragment of R, and that F is allocated to one of the sites, while
the remaining parts of R are stored at other sites. In the products that
violate Condition 4, but not Condition 3, fragment F is permitted to be a
non-relation, even though it is a table. More specifically, F consists of some
of the columns of R, but does not include the primary key of R, and, as a
result of the corrupted version of projection being used, F can contain
duplicate rows. The corrupted version of projection fails to eliminate dupli-
cate rows. The penalties for permitting duplicate rows were described in
Chapter 23.

It is reasonable to consider the chief responsibilities of the systems that
manage a distributed database. Perhaps the single most important respon-
sibility of such systems is support for distribution independence [Codd 1985].
This term means that a program developed to handle data that is distributed
in one way should continue to operate correctly without change when the
data is re-distributed. In an extreme case covered by this definition, a
program is developed to run successfully on data that is initially located
completely at one site (i.e., not distributed at all). Such a program must
continue to operate correctly without change when the data is dispersed to
multiple sites. This is an important step in protecting the investment by
DBMS customers in the development of application programs.

To support distribution independence, a necessary but not sufficient
condition is that it must be possible to retrieve data without referring to any
location or locations in which it may reside. This is sometimes called location
independence and sometimes location transparency, although I much prefer

24.2 The Optimizer in a Distributed DBMS • 393

the former phrase.This subject is dealt with in more detail in Sections 24.4
through 24.8.

For performance, fault tolerance, or other reasons, some of the data
may be duplicated at different sites. If so, end users and programs must be
insulated from this redundancy. This is sometimes called replication inde-
pendence. This topic is discussed in more detail in Section 24.4.5.

A third requirement for adequate support of distribution independence
is that it must be possible for a single relational command to operate on data
located at two or more sites. This falls naturally within the scope of relational
DBMS, since the optimizer breaks down each command into basic relational
operators even if the data is not distributed. Note that this requirement is
more stringent than merely supporting any single transaction operating upon
data located at two or more sites.

R X - I M u l t i - s i t e A c t i o n f r o m a S i n g l e R e l a t i o n a l

C o m m a n d

In a distributed database, a single relational command, whether
query or manipulative, can operate on data located at two or more
sites.

Some of the older pre-relational DBMS products that were claimed by
their vendors to support the management of distributed databases could
transmit a transaction to a remotely located site, but the whole transaction
had to be executable at that site on data located entirely at that site. This
capability is called transaction routing, and is, of course, far less than what
is needed for supporting distribution independence. In fact, the present
situation is that the only prototypes and products that have been able to
demonstrate the capability of supporting distribution independence are re-
lational DBMS.

2 4 . 2 m T h e O p t i m i z e r i n a D i s t r i b u t e d D B M S

As we have seen, within a relational DBMS there is a component called the
optimizer. This component is responsible for ' translating the high-level re-
lational commands into the most efficient target code. NOW, an optimizer
may be adequate for managing local databases, but, if that is its only
capability, it is likely to be quite inadequate for managing distributed
databases.

Nevertheless, it is a simple task to extend a local-only optimizer to
handle the distributed case. Whether a database is totally local or distributed,
managing it efficiently entails finding an ordering of the basic operators
within whatever relational command is to be executed (an ordering that may

394 • Distributed Database Management

include concurrent execution of these operators), together with access paths
for each operator, so as to develop efficient target code.

In managing local databases only, the goal is minimal use of processing
power, on the one hand, and of input-output devices, on the other hand.
In managing distributed databases, the consumption of inter-site communi-
cation power is a third factor that must be considered, because it may be
quite significant. In fact, when the sites are far apart, this third factor is
likely to be dominant.

There is likely to be a wide variation between the requirements of any
two companies or institutions using a distributed DBMS. For this reason,
the usual approach in DBMS products is to request the DBA at each site
to insert three coefficients: one for the local processing load, one for the
local input'output load, and one for the inter-site communication load. The
optimizer can then calculate a single rating for each ' combination of a
sequencing of operations and access paths.

2 4 . 3 • A D B M S a t E a c h S i t e

One of the goals in managing distributed data is to promote local autonomy
to the extent that is compatible with distribution independence and with the
necessary inter-site integrity constraints. When one or more sites are expe-
riencing malfunction of the hardware or software, the other sites must be
able to continue to execute all of their workloads, except those portions
that involve the sites that are temporarily out of action.

Why is the adjective "necessary" used to qualify the phrase "inter-site
integrity constraints" in the preceding paragraph? One reason is that, even
if the initial deployment of data across sites does not require such constraints,
the deployment will undoubtedly evolve and require a growing number of
such constraints as it evolves. A second reason is that the options in re-
deployment would be severely restricted if all integrity constraints had to
affect local data Only.

R X - 2 L o c a l Autonomy

In distributed database management, whenever the DBMS at any
site goes down, each site X that is still functioning must be capable
of continuing to operate successfully and in a relational mode on
data at each and every site that is still functioning, including X,
provided X is still in communication with that site.

One clear consequence of Feature RX-2 is that there is no reliance on
a single site in a distributed relational DBMS, whether that site be labeled
"central" or not.

24.4 The Relational Approach to Distributing Data • 395

One aspect of this feature is that the system must support continued
access to all of the data at site A by users at site A, even if the inter-site
communications network is either completely or partially out of action. A
more precise phrase for this subgoal is local management of local data.

To attain local management of local data by means of a relational DBMS,
the first requirement is that, at every site, all of the data stored at that site
must be perceived by end users and application programmers as a relational
databasewthat is, a collection of proper relations of assorted degrees. As
indicated in Chapter 1, a proper relation is one that has no duplicate rows.
This requirement corresponds to Condition 4 cited earlier.

The second requirement is that there be a relational database manage-
ment system at each and every site. During most of this chapter, the ho-
mogeneous case is assumed for simplicitymthat is, at each site there is the
same hardware and software, including the DBMS software. At the end of
this chapter, a few remarks are made about the difficulties encountered in
the heterogeneous case. The optimizing capability in a distributed DBMS
should itself be distributed. Every site must be capable of controlling every
request entered at that site, so that there is no reliance on a central coor-
dinator. Every site has to be capable of (1) global planning and optimization;
and (2) local planning and optimization.

An important factor in organizing the distribution of data over several
sites is that the communication channels between sites be sufficiently redun-
dant that the failure of one or two channels does not reduce all sites to
managing locally resident data only. When the channel organization avoids
this catastrophic behavior, it is called fault-tolerant. A channel organization,
of course, can exhibit a high degree of fault tolerance, a modest degree, or
none at all.

For example, if there were eight sites and the communication channels
were unidirectional only, then the channel organization shown in Figure
24.1(a) would not be fault-tolerant at all. On the other hand, if the channels
were bidirectional, this organization would be fault tolerant to a small
degree. The organization shown in Figure 24.1(b) is fault-tolerant to a much
higher degree, assuming that the channels continue to be bidirectional.

. .

2 4 . 4 • T h e R e l a t i o n a l A p p r o a c h t o D i s t r i b u t i n g D a t a

There are several widespread but false notions concerning the initial planning
of how to distribute data. One false notion is that a collection of relational
databases that already exist in diverse locations can simply be inter-connected
by means of communications lines, and that the result is a distributed
database. Unfortunately, there is more to this problem than meets the eye.
An example of a potentially serious problem that is quite likely to arise is
the case in which two columns, one from one relation, and one from a
second, are homographs having a different meaning. See Section 6.2 for
more detail.

396 • Distr ibuted Database M a n a g e m e n t

Figure 24.1 (a) S imple N e t w o r k w i t h Eight Sites. (b) More
Stable N e t w o r k w i t h Eight Sites

A B A B / /
C D C D

E F E F

/ /
G H G H

(a) (b)

Another false notion is that, once the initial plan is put in place, re-
distribution of the data will never be necessary.

When deciding how to distribute data between various sites, it is con-
venient to think of the totality of data initially--and, as a matter of fact, at
all later times also--as a single collection Z of relations. This totality is
called the global database. It is the importance of this concept that strongly
suggests employing a global database administrator (GDBA), who is re-
sponsible for the global database, as well as a local database administrator
(LDBA) for each site.

Since the global database is really a virtual database (an abstract con-
cept), it could be said that the GDBA has a "virtual job," but I doubt
whether he or she would appreciate such a comment because of the multiple
meanings attached to the English word "virtual." Nevertheless, this job
might well be one of the most important positions in any company or
institution. The title "chief information officer" seems quite appropriate.

In any distributed relational network, the GDBA needs as a tool for
his or her job a description of the entire global database. Such a description
is contained in what I call the global catalog. This catalog is, of course,
distinct from the on-line catalogs at each site, and more comprehensive,
since the local on-line catalogs tend to concentrate on local data only. One
of the reasons for having a global catalog is that it is a vital tool in conceiving
and declaring integrity constraints, views, and authorization that straddle
sites.

R X - 3 Global D a t a b a s e and Global Catalog

Associated with each distributed database is the concept of a global
database that covers all the data stored at each site. Associated with

24.4 The Re la t iona l A p p r o a c h to Dis tr ibut ing Data • 397

the global database is the global catalog. This catalog contains three
parts:

GC1 The declarations for every domain, every base relation, every
column, every view, every integrity constraint, every author-
ization constraint, and every function in the global database
as it is actually distributed, including the sites at which they
are stored.

GC2

GC3

A concise description of this totality of information as if it
were a single, non-distributed database cast in fifth normal
form with minimal partitioning.

Expressions for each relation located at each site defining
how that relation is defined in terms of the relations declared
in GC2.

It is more useful to call GC1 the composite global catalog and GC2 the
normalized global catalog.

The source code of application programs can contain local names, but
these are converted by the DBMS at bind time into global names as found
in GC2. It is this globalized source code that is retained in the system and
remains unaffected by redeployment of the data, partly because it contains
no local names.

R X - 4 N C o p i e s o f G l o b a l C a t a l o g (N > 1)

The network contains N copies (N > 1) of the global catalog, in the
form of N small databases at N distinct sites to avoid too much
reliance on whichever site is normally used by the global database
administrator. These N sites can also be N of the sites in the network
for regular data and the corresponding local catalogs. At these sites
(at least two of them), the power supply should be mutually in-
dependent; that is, failure of electric power at one site does not
normally mean failure at the other.

In a distributed relational database and, in particular, in its global
database Z, it is necessary to have names for domains, relations, columns,
views, integrity constraints, and functions that (1) conform to the standard
naming rules for relational databases (see Chapter 6), and (2) apply to the
totality of data in the network as if it were a single database. These names
are called global names to distinguish them from any names in use locally
at each of the sites. Names that are continued in local use are called local
names.

398 • Distributed Database Management

R X - 5 S y n o n y m R e l a t i o n in E a c h Loca l C a t a l o g

To support the continued use at each site of names local to that
site, each local catalog should include a synonym relation containing
each local name, the type of object named by it, and the corre-
spondence between the local name and the global database (see
RX-7).

The job of interpreting global names used in relational commands is not
the sole responsibility of the N global catalogs, because they would then
become major bottlenecks. That job is dispersed throughout the network
by means of the birth-site concept, which is discussed here and also in
Section 24.8. This concept is due to Bruce Lindsay [1981] of the System R*
team of IBM Research [Williams et al. 1981]. One of the advantages of the
birth-site concept is that it does not require a centralized dispenser of names
that are unique within the network. However, this concept is not a complete
solution to the problem of decentralizing all resolution of names. Frequently,
redeployment is not confined to simple movement of entire relations from
one site to another. Redeployment can include decomposing some relations
and recombining others. Then, the name of a relation on which a program
operates may have to be transformed into a relation-valued expression.

Each DBMS in the network has the responsibility of keeping its portion
of the global catalog consistent with the global catalog itself. The many
DBA sites, each of which contains a copy of the global catalog, must send
a message to whatever sites are affected whenever the GDBA makes a
change in the global catalog. These messages are requests to the sites to
bring their catalogs up-to-date and consistent with the global catalog. The
sending of these messages can be, and should be, automatically triggered
by the DBMS at the GDBA site.

Ideally, of course, any changes made by the GDBA in the global catalog
should be wholeheartedly supported by the local database administrators.
Similarly, any changes made by a LDBA should be wholeheartedly approved
by the GDBA.

Therefore, the DBMS must support changes in a database at a specific
site that are initiated by the DBA at that site, assuming he or she has been
granted that privilege. Such changes cause the local DBMS to send a message
immediately to the global catalog to make it consistent with these changes,
along with a confirming message to the GDBA.

24.4.1 N a m i n g Rules

Although there is every reason to believe that the naming rules introduced
here actually work and would satisfy most users' needs, a distributed data-
base management system can support alternative features, provided it can

24.4 The Relational Approach to Distributing Data • 399

be shown that these features are at least as powerful, flexible, and compre-
hensible. The first and most obvious feature follows.

R X - 6 U n i q u e N a m e s for S i t e s

Whenever an object is c r e a t e d ~ w h e t h e r it be a domain, base
relation, view, integrity constraint, or func t ion~i t is asigned a five-
part name:

1. the name or identification of the user creating that object;

2. the name of the object as if it was a local object;

3. the name of the site at which the object was created (called
its birth site);

4. the formula or command that translates from the global da-
tabase to the local object;

5. the inverse formula or command (see RX-8).

The next feature is explained partly below and partly in Section 24.8,
which deals with the distributed catalog.

R X - 7 N a m i n g O b j e c t s in a D i s t r i b u t e d D a t a b a s e

Whenever an object is c rea tedmwhether it be a domain, base
relation, view, or funct ionmit is assigned a three-part name: (1) the
name or identification of the user creating that object, (2) the name
of the object as if it were a local object, and (3) the name of the
site at which the object was created, called the object's birth site.

If the object is a domain, considerable care should be taken to determine
whether that domain already exists somewhere in the network. Even if
exactly the same domain does not exist elsewhere, it may be possible, and
is probably preferable, to expand the range of some existing domain to
cover the one now needed, and introduce some column constraints that will
keep the old definition applicable to those columns already existing.

Of course, an object created at a site X may at some later time be
moved to site Y. Later still, it may be moved again to site Z. Therefore,
there is one more name associated with each objec t - -namely , the name of
the site at which that object is residing at present. The association of this
sixth name component with the first five is maintained by the DBMS at the
birth site, and by the N copies of the global catalog at the G D B A sites. The
goal is to protect users, programmers, and application programs from having
to know this sixth name component.

400 • D i s t r ibuted Database M a n a g e m e n t

In establishing a distributed database, the starting point may be several
databases that have been operated independently up to that time. Then, the
first step is to take a copy of the description of each database from its
catalog, and examine the consequences of putting all these descriptions
together as the description of one global database. This examination should
include the complete naming scheme, about which the following questions
should be asked:

• Is it devoid of the kind of duplication of names that would give rise to
ambiguity? (For example, is the name CAP at one site given to a relation
that represents the capabilities of suppliers in supplying parts, while at
another site that same name is used for a relation with an entirely
different meaning~say, for actual shipments made by suppliers?)

• Are there any instances of an object, such as a domain or a relation,
common to two or more sites, and having two or more distinct names?
(For example, is a relation that describes shipments at one site given a
different name at another site, even though the two relations have the
same meaning and are union-compatible?)

The DBMS provides considerable help in resolving these naming prob-
lems by supporting in the catalog at each site (as noted earlier) a synonym
relation that contains global names or relation-valued expressions as syn-
onyms for all the local names. This facility must be applicable to at least
the names of domains, base relations, columns, views, integrity constraints,
and functions.

After naming problems are resolved, the following question arises: are
the databases that are being coalesced into a single global database inter-
related? This problem was discussed in Section 3.1, but not in the context
of distributed database. However, the approach was based on the use of
domains by relations, and this is clearly applicable without change to the
global database Z. If any one of the databases being coalesced is not inter-
related by domains to any of the other databases, one may reasonably
question the reason for coalescing~perhaps there is a plan to add new
relations to one or more sites in order to inter-relate the databases at these
sites, where previously they were not.

The information in the global database Z is to be distributed in some
way to a collection of sites, with a collection of relations at each site. Thus,
at first glance, it appears necessary to consider as candidate relations all of
the relations derivable from the given collection using the relational operators.

The class of all derivable relations, however, is quite large; for a large
commercial database, it may run into the millions. Thus, it is necessary to
find some sensible means of reducing the options. Fortunately, there are
two important concerns that quickly narrow down the options to be considered.

Perhaps the most obvious concern is that data should be distributed
according to the frequency of its use. To express it another way, data should
be local with respect to the users who need to access it most frequently and
with the shortest response time.

24.4 The Relational Approach to Distributing Data • 401

For example, consider a bank that has branches in several cities, and
customers who execute most of their transactions with the bank at a partic-
ular branch selected by each customer. When establishing a distributed
DBMS, the usual decision by the bank is to require the data stored in each
major city to be precisely that which reflects the customer accounts estab-
lished in the branches of the bank in that city.

A second concern is reversibility of the transformations applied to the
global database Z (the totality of data at all sites) in determining which of
these relations (or, alternatively, which of the relations derivable from them
by means of the relational operators only) are stored at which sites. This
reversibility is in many ways similar to that used in deciding the ways in
which a view can be updated (see Chapter 17). As shown in the discussion
of decomposition in Section 24.4.3, this second requirement can also narroW
down the options significantly.

As far as users are concerned, reversibility is needed primarily to facil-
itate re-distribution of data at some later time. DBMS vendors are advised
to make this a requi.rement in distributing data because it simplifies the
design of the optimizer. Even then, however, there is no claim that designing
the optimizer is easy.

R X - 8 R e v e r s i b i l i t y a n d R e d i s t r i b u t i o n

In assigning part of the global database Z to a particular site, each
relation assigned to that site must be derivable from the relations
in Z by a combination of relational operators that has an inverse.
In other words, each relation at each site is reversibly derivable
from Z.

It is quite common for managers of data processing and information
system to claim that, if the job is done correctly when first introducing a
distributed DBMS, there will be no need to redistribute the data. This can
be true only if the business or institution remains unchanged forever! How-
ever, there is one thing in life that is inevitable for everyone, and that is
change.

24.4.2 A s s i g n m e n t o f R e l a t i o n s f r o m t h e G l o b a l D a t a b a s e Z

The most elementary distribution is to assign some of the relations in Z
without any transformation to site A, to assign other relations in Z without
any transformation to site B, and so on until all the relations have been
assigned to sites. In some cases of database distribution, this simple approach
may be adequate, but in other cases it will not be adequate. In the next two
sections, other options in distributing data are considered.

402 [] Distributed Database Management

24.4 .3 D e c o m p o s i t i o n o f R e l a t i o n s f r o m t h e G l o b a l
D a t a b a s e Z

Notice that, in the simple distribution just discussed, no relation in Z is
decomposed into two or more pieces, and the pieces then scattered to two
or more distinct sites. It is this step of decomposition that now must be
discussed.

When a relation is decomposed into pieces for distribution of the pieces
to various sites, the term fragmentation is often applied. I shall not use this
term, however, because it is often used and interpreted as the breaking up
of a table by rows and columns, without concern as to whether the objects
resulting from this break-up are proper or corrupted relations. At least two
distinct distributed DBMS prototypes--IBM's R* and Relational Technol-
ogy's INGRES STAR--and one distributed DBMS product--Tandem's
NonStop SQL--support vertical fragmentation of any kind, without concern
regarding whether each fragment is a proper relation or not. To paraphrase
Woody Allen, this bug is as big as a Buick!

In applying relational technology to the management of a distributed
database, it is essential that only the relational operators be used to decom-
pose relations in the global database into relations for the various sites. One
important reason is the goal of preserving the correctness of programs when
the data is re-distributed.

Consider the example of a relation R with columns A1, A2, A3, A4.
Suppose that the primary key of R is A1. The fragmentation approach would
permit R to be split into two tables S and T, where S has the columns A1
and A2 of R, and T has the columns A3 and A4 of R. It is assumed here
that, from the standpoint of the values found in R, the columns are preserved
intact. Notice that the primary key of R (i.e., A1) is now a column in S,
and that this very column is now the primary key of S. Therefore, the rows
of S are all distinct and S is a proper relation. The same cannot be said of
T. Because the primary key of R has not been preserved in T, there is no
guarantee that the rows of T are all distinct. Thus, T may be a corrupted
relation. The difficulties stemming from this kind of table are described in
Chapter 23.

What kind of column-oriented decomposition is considered correct ac-
cording to the relational model? The relational operator to apply is project.
Each projection to be stored at some site, possibly remote, must include
the primary key of the relation from which the projection is made. Then,
each and every projection is a proper relation with no duplicate rows, and
it will be managed at the pertinent site by the DBMS at that site. Thus, the
relation R just examined could be split into two or three projections, each
of which includes column A1. The three-fold split would be as follows"

S (A 1 A 2) T (A 1 A 3) U (A 1 A 4)
at site B at site C at site D

24.4 The Relational Approach to Distributing Data • 403

Note that, at any time, the original relation R can be recovered from
relations S, T, and U by using equi-join with respect to the primary keys of
the relations being joined. For each relation in this example, the primary
key is A1. This recovery capability permits the relation R to be re-distributed
in an entirely different way at some later time, without causing any appli-
cation program to be damaged logically.

There are bound to be complaints about the duplication of keys across
sites that stems from the preservation of the primary key at each site that
receives a projection. This duplication is a small price to pay for the power
from retaining keys (e.g., non-traumatic re-distribution of the data when
needed). The power is especially cheap because primary keys are seldom
updated.

R X - 9 D e c o m p o s i t i o n b y C o l u m n s

f o r D i s t r i b u t i n g D a t a

When some columns of a relation R in the global database Z are
assigned to one site, and some to one or more other sites, the
pertinent operator is project (as defined in Section 4.2), and the
primary key of R must be included in each and every projection.

An alternative or additional decomposition is by rows. Here again,
however, the selection of rows cannot be arbitrarymsuch as, store the first
50 at site B, the next 50 at site C, and so on. Relational DBMS are
intentionally not aware of the meaning of "the first 50" and "the next 50."
These concepts are leftovers from the days of file-management systems and
early pre-relational DBMS products, in which the user's perception of the
data was very close to the way the data happened to be stored.

A selection of rows must be made using the select operator. For example,
one may store at site B those rows of relation R whose numeric values in
column A3 range from 557722 to 999999. Another, quite distinct, example
is the selection of those rows of R whose alphanumeric values in column
A4 range from HHH12JJ to N N N l l K K as a relation to be stored at site C.
It may be worth noting that alphanumeric ordering must be based on either
a declared or a standard collating sequence such as ASCII or EBCDIC.

When a relation R is partitioned by rows into several subrelations, each
to be stored at distinct sites, it is possible to recover the original relation R
by means of the operator union. The union ALL of SOL is not usable in this
context because it is a non-relational operator, one that generates a result
that may contain duplicate rows.

If, as is usually the case and as is recommended, relation R is partitioned
into several disjoint subrelations (i.e., no pair of subre|ations has any rows
in common), then it will not be necessary to update the mutually redundant

404 • D i s t r i b u t e d D a t a b a s e M a n a g e m e n t

rows at two or more sites (because there will be no such rows) whenever
an update is requested on one row.

R X - I O D e c o m p o s i t i o n b y R o w s

for D i s t r i b u t i n g D a t a

When some rows of a relation R in the global database Z are
assigned to one ~site, and other rows to other sites, the pertinent
operator is select (see Section 4.2), using ranges of values applied
to a simple or composite column of R. The ranges should not
overlap, which means that no row is assigned to more than one site.

Why is the capability of recovering the original relation important? This
recovery is needed if at some later time a decision is made to re-distribute
the data in a different way, possibly using different decompositions and/or
different combinations. For example, the initial distribution of the sample
relation might be by rows based on values in column A3. Later a re-
distribution might be necessary; it might be by rows, but based on values
in column A4. Still later, it might be by columns instead of by rows.

24.4.4 C o m b i n a t i o n o f R e l a t i o n s f r o m t h e G l o b a l D a t a b a s e Z

While the project and select operators can be used to split a single relation
from Z into several relations, the join, union, relational intersection, rela-
tional difference, and relational divide operators can be used to combine
several relations from Z into one relation, Clearly, if the transformations
performed On relations from Z are to be reversible, these operators must
be applied With considerable care. For example, just as every projection of
relation R must include the primary key of R, so every join should involve
the following in the comparand columns:

• the primary key on domain D (say) of one relation; and

• either a primary key on domain D of the other relation, or a foreign
key on domain D of the other relation,

R X - I 1 G e n e r a l T r a n s f o r m a t i o n

for D i s t r i b u t i n g D a t a

Any combination of relational operators (whether of the decom-
posing or the combining type) is applicable to determining how the
data should be distributed, provided that the total transformation is
reversible.

24.4 The Relational Approach to Distributing Data • 405

24.4.5 Repl icas and S n a p s h o t s

Sometimes, two or more sites need frequent access to common information
in certain relations in the global database, and the GDBA may be tempted
to assign copies of these relations to these sites. The type of copy that is
kept up-to-date by the distributed DBMS whenever any modification (in-
sertion, update, or deletion) is executed on one of the copies is called a
replica. The type of copy that is not kept in such a high state of accuracy,
but is merely refreshed from time to time (either by a specific DBA request
or by a DBA request to refresh at specified time intervals), is called a
snapshot. An example of a DBA command for this purpose is

CREATE SNAPSHOT R REFRESH EVERY 7 DAYS

where R denotes an expression that evaluates to a relation (including the
simple special case that it is the name of a base relation).

The GDBA should decide whether a copy is to be held as a replica or
a snapshot. This decision should be made with great care because replicas
are significantly more expensive than snapshots in terms of performance. If
only two sites are involved in the decision, and one is oriented toward
production and the other is oriented toward planning, the choice is clear:
accurate on-line data for the production site and snapshots for the planning
site; no replicas are needed. Then, the GDBA must decide how frequently
these snapshots must be refreshed.

R X - 1 2 R e p l i c a s a n d S n a p s h o t s

The DBMS must support all declared replicas by dynamically main-
taining them in an up-to-date state. End users and application pro-
grams can operate independently of whether these replicas exist and
how many there are. The DBMS also supports snapshots that are
updated to conform to the distributed database with a frequency
declared by the DBA.

Why are replicas significantly more expensive in performance than snap-
shots? The root of the performance problem with replicas is that application
programs must be protected from the burden of explicitly modifying all
replicas of a given relation. This protection is necessary in order to achieve
replication independence. In other words, these application programs must
continue to be logically correct when a new replica of an old relation is
introduced or when an old replica is discontinued. The programs must
therefore modify just one copy, and the DBMS must assume responsibility
for modifying the remaining copies of the pertinent relation in exactly the
same way.

i

: ~ ! : : E

406 • Distributed Database Management

24 .5 • D i s t r i b u t e d I n t e g r i t y C o n s t r a i n t s

One more reason to perceive the totality of distributed data as a single
global database is to establish all the integrity constraints that happen to be
appropriate. Since certain types of integrity constraints are subject to change
over the years (especially those that are DBA-defined), there must be a
G D B A m a database administrator who maintains the global perspective and
is responsible for the global database.

Some of the integrity constraints in a distributed database can be en-
forced completely at just one site, but many will straddle the data at multiple
sites. These straddlers require inter-site cooperation of two kinds:

1. between DBAs to establish appropriate declarations;

2. between DBMS at the various sites for their enforcement.

R X - 1 3 I n t e g r i t y C o n s t r a i n t s t h a t S t r a d d l e T w o

or M o r e S i t e s

The DBMS must support both referential integrity and user-defined
integrity constraints when they happen to straddle two or more sites.
Inter-site cooperation for enforcement must not involve any special
action by users, but rather must be built into the DBMS at each
site. The support for integrity constraints that straddle sites must
protect users from having to be aware of the straddling in any way,
even after one or more redeployments of the d a t a .

24 .6 • D i s t r i b u t e d V i e w s

One more reason to perceive the totality of distributed data as a single
global database is to establish all of the views needed by application pro-
grammers and terminal users. Views are still defined in terms of the base
relations and other views, but some of these relations may be located at
distinct sites. In addition, the actual views that are needed may change over
the years. Thus, once again a database administrator (the GDBA) who
maintains the global perspective, and who is responsible for the global
database, is needed.

All view definitions applicable to the entire database are stored in each
of the global databases for use by the DBA. However, this collection of
definitions is not used by the DBMS at individual sites to handle each
relational request successfully.

To avoid the global databases becoming a traffic bottleneck, view def-
initions are scattered around the sites with whatever degree of duplication
is necessary to provide good performance. One possibility is to store at each

24.7 Distributed Authorization • 407

site X only those views that refer to one or more relations stored at X. Such
definitions can, of course, refer to relations at sites other than site X also.

Full support of views that straddle the data at multiple sites requires
inter-site cooperation of two kinds:

1. between people to establish appropriate declarations;

2. between DBMS at the various sites.

The second kind of inter-site cooperation is required due to the fact that it
is not normally true that the view definitions for the entire distributed
database are stored in each and every catalog.

R X - 1 4 V i e w s t h a t S t r a d d l e T w o or M o r e S i t e s

The DBMS must support views when they happen to straddle two
or more sites. Inter-site cooperation for this support must not involve
any special action by users. It must be built into the DBMS at each
site. The support for views that straddle sites must protect users
from having to be aware of the straddling in any way, even after
one or more redeployments of the data.

Support of inter-site views is essential to full support of distribution
independence.

2 4 . 7 • D i s t r i b u t e d A u t h o r i z a t i o n

One more reason to perceive the totality of distributed data as a single
global database is to establish all of the authorization needed by application
programmers and terminal users. Authorization is still defined in terms of
the base relations and views, but some of these relations may be located at
different sites. In addition, the authorization that is needed may change over
the years. Thus, once again there needs to be a database administrator (the
GDBA) who maintains the global perspective, and who is responsible for
the global database.

All declarations of authorization for the entire database are stored in
each of the global databases for use by the global DBA. However, this
collection of definitions is not used by the DBMS at individual sites to handle
each relational request successfully.

To avoid the global databases becoming a traffic bottleneck, declarations
of authorization are scattered around the sites with whatever degree of
duplication is necessary to provide good performance. One possibility is to
store at each site X only those declarations that refer to one or more relations
stored at site X.

408 • Distributed Database Management

Full support of declarations of authorization that straddle the data at
multiple sites requires inter-site cooperation of two kinds:

1. between people to establish appropriate declarations;

2. between DBMS at the various sites.

The second kind of inter-site cooperation is required due to the fact that it

is no t true that every declaration of authorization for the entire distributed
database is stored in each and every catalog.

R X - 1 5 A u t h o r i z a t i o n t h a t S t r a d d l e s T w o

o r M o r e S i t e s

The DBMS must support declarations of authorization when they
happen to straddle two or more sites. Inter-site cooperation for this
support must not involve any special action by users. It must be
built into the DBMS at each site. The support for authorization
constraints that straddle sites must protect users from having to be
aware of the straddling in any way, even after one or more rede-
ployments of the data.

Support of authorization that straddles two or more sites is essential to full
support of distribution independence.

2 4 . 8 • T h e D i s t r i b u t e d C a t a l o g

Every site has its own relational DBMS. Therefore, every site has its own
catalog. What does this catalog contain in the case of a distributed database?

At each site, there must be a catalog that includes at least the description
of all of the data stored at that site. If nothing more is done, then, when
any DBMS at one site attempts to find data located at other sites, this
may entail searching the catalog at each and every site. This task is unne-
cessarily burdensome for both the particular DBMS, which does the search-
ing, and for the network, which must support a heavy amount of inter-site
communication.

One solution that is unacceptable is to store the complete description
of the global database Z at just one central site, and use this description to
determine which sites are involved for every reference to data in the network.
If this solution were adopted and the central site goes down, then the entire
distributed database network would become inoperable. Further, the catalog
at this central site would be a continual bottleneck in all database activities.
Thus, there can be no dynamic dependence upon a single site that happens
to have a catalog that describes the global database Z and indicates at which
site each part of Z is stored.

24.8 The Distributed Catalog • 409

At the other extreme, however, the catalog at each and every site would
contain the description of the entire global database Z. In this case, there
is a very high degree of redundancy between the catalogs. Any change in
the database at just one site would involve making changes in the catalog
at each and every site. These changes would have to be coordinated so that
all the catalogs remained at all times consistent with one another and with
respect to each transaction. This consistency would probably entail locking
up all catalogs until any requested catalog change had been received by each
and every site, and completed by each and every DBMS. This, in turn,
means that virtually all the other traffic on the network would have to be
stopped for however long would be required to get these catalogs into
synchronism with the global catalog.

A compromise between the two extremes was invented by the R* team,
then located at the IBM research laboratory in San Jose (most team members
are now located a t the IBM Almaden Research Center). Suppose that a
relation is created at site X. Then, site X is called its birth site. From the
user's perspective, the name of the relation has only two parts: the local
name at the time of creation, and the name of the birth site. Although the
local name alone is temporarily adequate for any interactive user who
happens to be at the site where the relation is stored, one fact of life must
be faced: the pertinent relation might at some future time be moved from
its birth site to some other site; then, the local name is inadequate.

In contrast, there is a significant advantage to combining the local name
with the name of the birth site to form the global name; this combined name
permanently identifies the relation uniquely, no matter at what site the
relation happens to be stored. Consequently, to develop application pro-
grams that need not be changed whenever a relation is moved from one site
to another, it is necessary to use the global name for each relation.

R X - 1 6 N a m e R e s o l u t i o n

w i t h a D i s t r i b u t e d C a t a l o g

Each base relation stored at each site has a global name that is a
combination of its local name at that site, together with the name
of its birth site. The catalog at its birth site includes the name of
the site at which it may now be found.

An inexpensive tool for gaining improved performance is a global-name
cache at each site. This cache can be conceived as an extension of the
synonym relation described in Section 24.4. For items in the global database
that are not stored at site X, but are frequently accessed from site X, the
synonym relation at site X is extended to include the global name of each
such item, along with the identification of the site where the corresponding
object is now located.

410 m Distributed Database Management

24 .8 .1 I n t e r - s i t e M o v e o f a R e l a t i o n

When a relation is moved from one site to another, the user making such
a request must be appropriately authorized. Such a user is likely to be the
global DBA or someone on his or her staff. Four sites are involved in such
a move: the F R O M site, the TO site, the BIRTH site, and the G D B A site.
Of course, either the F R O M site or the TO site (but not both) may be
identical to the BIRTH site, and the G D B A site may be identical with any
one of the other three sites.

Thus, when an inter-site move of a relation is requested, four sites are
normally involved, each of which makes changes to its catalog contents.
These changes reflect not only the fact that one or more relations have been
moved, but also the changes in local and inter-site integrity constraints that
result from that move. Normally, in the case of the global catalog, there
are no resulting changes in integrity constraints.

The DBMS at the birth site of the pertinent relation (say R) is respon-
sible for ensuring that its catalog contains identification of the present site
of R along with its birth site. Thus, using the global name of the relation R
enables any DBMS in the network that happens to be the source of a request
on R to ask of its birth site where that relation is now located. The DBMS
at any site can find every relation in the network by querying the catalog at
exactly one or two sites: one site only if the relation happens to have
remained at its birth site; otherwise, two sites.

R X - 1 7 I n t e r - s i t e M o v e o f a R e l a t i o n

A user who moves a relation from one site to another must be
authorized to do so, or else the authorization mechanism will not
permit the move to be executed. In the MOVE command, the user
must specify the global name. By this means the DBMS at the birth
site can and does update its catalog to record the new site for this
relation.

24.8 .2 I n t e r - s i t e M o v e o f O n e or M o r e R o w s o f a R e l a t i o n

As indicated in Section 24.8.1, a relation in the global database can be
dispersed to several sites by rows using the range of values in a simple or
composite column. As an example, consider a relation R that has a column
drawing its values from the currency domain. Suppose that the rows of R
are distributed by assigning to sites A, B, C those rows that have values in
this currency column within the following ranges:

Site A" 0 to 999
Site B: 1,000 to 9,999
Site C: 10,000 to 99,999

24.8 The Distributed Catalog • 411

Suppose that a suitably authorized user at some site requests an update
on a row of R that happens to be located at site A, because it happens to
have a currency value in the range 0 to 999. Suppose also that this update
is an increment that takes the currency value into the range for site B (i.e.,
1,000 to 9,999). Then, this row is automatically moved from site A to site
B, and the initiative for this action is taken by the DBMS at site A.

R X - 1 8 I n t e r - s i t e M o v e s o f R o w s o f a R e l a t i o n

Suppose that rows of a relation R are distributed according to the
range of values in some simple or composite column of R, and that
an update is applied to this column of a row at site X1. Suppose
also that this update takes the value out of the range of values
pertaining to site X1, and into the range pertaining to site X2. Then,
if a n indicator in the catalog signals that moving a row can be
triggered by such an update, the DBMS automatically moves the
row from site X1 to site X2. A single updating relational command
may result in zero, one, two or more inter-site moves of rows of a
relation.

In one sense, inter-site moves of rows are simpler for the DBMS to
handle than inter-site moves of relations. No changes are necessary in any
catalog. Authorization for inter-site moves triggered by updates can be
handled by means of the N-person turn-key Feature RA-5 (see the remarks
following Feature RA-6 in Chapter 18).

24.8.3 M o r e C o m p l i c a t e d R e - d i s t r i b u t i o n

Now, it is reasonable to ask, "What if a re-distribution of data is more
complicated than the move of an entire relation from one site to another?
What if a relation in the global database Z is decomposed or combined with
some other relation in a new way--by using different operators, by using
different columns as comparand columns, or by both means?"

Clearly, the one object that remains constant in such a change i~ the
global database Z. Therefore, to protect application programs from damage
under these circumstances, they should be developed to operate upon data
in the global database or upon views that are defined on that database,
making use of the information in the global catalog. The burden of using
global names can be assumed to a large degree by the DBMS if it supports
globalization of the source code as defined shortly after Feature RX-3. Local
names can be used by end users when interacting at terminals with a local
database. In all other cases, however, local names should not be used.

412 • D i s t r i b u t e d Da tabase M a n a g e m e n t

24.8.4 Dropping Relations and Creating New Relations

What if the global database changes because some kinds of data in the
network have been dropped entirely? This type of change is similar to the
dropping of information from a non-distributed database. Those application
programs that make use of the dropped information are very likely to become
inoperable unless some changes in them are made. The other application
programs will remain unaffected. The global catalog must be contracted so
that it no longer includes any mention of the kinds of items that have been
removed. Those local catalogs that are affected by the drop must also be
changed to be consistent with the global catalog.

R X - 1 9 D r o p p i n g a R e l a t i o n f r o m a Si te

When a suitably authorized user drops a relation R stored at site
X, the following catalogs are adjusted to reflect the loss of infor-
mation from the entire distributed database" (1) the local catalog at
site X, (2) all copies of the global catalog, and (3) the birth-site
catalog. The only application programs adversely affected are those
that use the data in R.

Now, suppose that instead of dropping certain kinds of data, new kinds
of data are added to one or more sites in the network. The description of
the global database must be enlarged to cover the new domains, new
relations, new columns, new views, new integrity constraints, new authori-
zation constraints, and any new functions. All the application programs
developed before these new additions should be capable of operating cor-
rectly without any changes whatsoever. Once again, those local catalogs that
are affected by the new items introduced must also be changed to be
consistent with the global catalog.

R X - 2 0 Creat ing a N e w R e l a t i o n

When a suitably aUthorized user creates a new relation R at site X,
the following catalogs are adjusted to reflect the new information
in the network: (1) the local catalog (X is declared to be the birth
site), and (2) all copies of the global catalog.

2 4 . 9 • A b a n d o n i n g an Old S i t e

Occasionally, because of business or institutional conditions, one of the sites
managed by a distributed database system must be either abandoned, or

24.9 Abandoning an Old Site • 413

detached from the network. Two cases must be considered. In the simpler
case, all of the data at that site is to be abandoned or detached also. In the
more complicated one, some or all of the data at that site is to be retained
in the network, but moved to other sites in that network.

24.9 .1 A b a n d o n i n g t h e D a t a as W e l l as a n O l d S i t e

Suppose that site X is being abandoned, along with all the data stored there
now. In this case, the G D B A must remove from the N copies of the global
catalog all references to the relations at site X, except references to X as
the birth site of any relation that happens to be located now at some site
other than X. These references must remain viable if application programs
are to remain as logically correct as possible.

A site other than X m o n e that is surviving in the ne tworkmmust be
chosen by the G D B A to act as if it were the birth site X. This places a
responsibility on the chosen site to behave as if it were (1) the birth site of
relations created at that site, and (2) the birth site of relations actually
created at site X. Each DBMS at each site in the network must have the
capability of assuming this kind of additional responsibility.

24.9 .2 R e t a i n i n g t h e D a t a a t S u r v i v i n g S i t e s

Together with the local database administrators, the G D B A must determine
how the data now stored at site X (the site being abandoned) is to be re-
distributed. In the simplest case of re-distribution, each relation currently
stored at X is moved in its entirety to some new site. Several sites may be
involved as recipients. The more complicated case of re-distribution involves
the following:

• decomposition of relations presently stored at X; or

• combination of these relations with others in the network; or

• both decomposition and combination.

This task is similar to that of establishing the distributed database in the
first place. When this is done, the G D B A must select one of the surviving
sites to act as the virtual birth site X for all of the relations created at X
that are still in the network. (This process was discussed in more detail in
the previous section.)

R X - 2 1 A b a n d o n i n g a n O l d S i t e a n d P e r h a p s

I t s D a t a

A suitably authorized user (usually the global database administra-
tor) may detach a site X completely from the network, and also

414 • Distributed Database Management

abandon the data stored at that site. Some other site must be
designated to carry on the duties of X in keeping track of the present
whereabouts of relations created at X (birth site = X), but already
moved from X to some other sites. If some or all of the data is to
be retained at other sites, then the GDBA should be involved, and
the N copies of the global catalog and the local catalogs at receiving
sites must be adjusted to reflect the re-distribution of the data
formerly at site X.

In both the cases discussed in Section 24.9 and this section, application
programs remain logically correct, except if they refer to data that has been
abandoned or detached altogether from the network.

2 4 . 1 0 • I n t r o d u c i n g a N e w S i t e

It must be possible to introduce a new site without adversely affecting the
logical correctness of any of the application programs. The tasks for the
GDBA and the local DBA for the newly introduced site are similar to those
involved in establishing the distributed database in the first place.

Suppose that the new site is site X. If there is no DBMS at site X, one
must be selected and installed. Care must be taken in selecting it to ensure
that it is compatible with the rest of the network. Today's advertisements
by DBMS vendors contain many false claims concerning compatibility.

If there is no database at site X, it will be necessary to create some
domains and relations there; data may be re-distributed from other sites.
As these domains and relations are created, the local catalog at site X is
kept up-to-date by the DBMS at that site. Changes will also be necessary
in all N copies of the global catalog and these changes are made by DBMS.

R X - 2 2 I n t r o d u c i n g a N e w S i t e

A suitably authorized user, usually the GDBA, can attach a new
site X, to the network. The GDBA must decide whether data that
is already in the network is now to be moved to X, or what new
data is to be stored at X. The N copies of the global catalog, together
with the local catalog at site X and possibly the local catalogs at
other sites also, must be adjusted to reflect these decisions. Intro-
duction of a new site does not adversely affect any existing appli-
cation programs.

Occasionally, local DBAs and the global DBA may have to make a
combination of changes in their catalogs. This is facilitated by the following
feature.

Exercises • 415

R X - 2 3 D e a c t i v a t i n g a n d R e a c t i v a t i n g I t e m s

i n t h e C a t a l o g

A suitably authorized user can deactivate any selected items in the
catalog under his or her control. Later, and possibly within the same
CAT block, this user can reactivate the deactivated items.

For details concerning the CAT block, see Feature RM-7 in Chapter 12.

Exercises

24.1 What is the optimizer supposed to do in a non-distributed DBMS?
State three stages. What additional action is expected if the DBMS
is claimed to manage distributed databases? (See Chapter 25.)

24.2 A distributed database has been in operation for a while. Assume
that the data is distributed according to RM/V2. Because of changes
in the business, it is now necessary to discontinue some sites, introduce
others, and generally redistribute the data in a non-loss way. Will it
be necessary to change the application programs in order to ensure
that these programs operate correctly on the redistributed data? Pro-
vide reasons for your answer.

24.3 Assume you have a distributed DBMS that supports replication in-
dependence. In determining how data should be distributed to various
sites, what is the problem in deciding whether some data should be
replicated at two or more sites? What are the alternatives to replicas?

24.4 In distributed database management, suppose that you are determin-
ing how data should be deployed to the various sites, and that you
have decided to use decomposition by rows based on specified ranges
of values in some column. Why is it desirable to ensure that the range
of values for any one site does not overlap the range of values
applicable to any other site?

24.5 Consider the reversibility condition applied by RM/V2 to whatever
transformations are used on the global database in planning the de-
ployment of data in a distributed database. Consider also the revers-
ibility condition applied in defining views that are intended to be
updatable. Are these two conditions identical? If not, what are the
differences and why? All parts of your answer should be precise. (See
Chapter 17.)

24.6 A single relational command happens to refer to data located in
several sites. Assume that it has not been compiled yet. Supply a list
of three inter-site activities that the DBMS must support if the pre-
execution stage is to be completed correctly. Make no special as-
sumptions about the command.

416 • D i s t r ibuted Database M a n a g e m e n t

24.7 Supply one or more reasons why is it important that the DBMS retain
the source code for every relational request in distributed database
management. These reasons must not include those applicable to non-
distributed data.

• C H A P T E R 2 5 •

M o r e on D i s t r i b u t e d

D a t a b a s e M a n a g e m e n t

25.1 • O p t i m i z a t i o n in Dis tr ibuted
Database M a n a g e m e n t

To provide high performance on a variety of query and manipulative com-
mands, the optimizer is an important component, even in a non-distributed
version of a relational database management system. The optimizer is even
more important in a distributed version. In fact, I would describe it as a
sine qua non.

It is not hard for a user to devise tests that show how good an optimizer
is in any given relational DBMS product. The basic idea is as follows. A
query is created that makes use of several of the basic relational operators:
for example, one or two joins, a union, a selection, and one or two projections.
Using the relational language supported by the product, the query is cast in
at least two distinct forms, which can be expected to give markedly different
performance if the optimizer is not doing its job.

These forms differ primarily in the ordering of terms within them. If
the DBMS yields quite different performance on these two forms, then it is
not executing the first important step in optimization~namely, converting
each query into a single canonical form so that the performance attained
does not depend on how the user expressed the request in the relational
language.

A question that arises is' Why is the optimizer so important in handling
distributed databases? The following example should answer this question.
It demonstrates the radical difference in performance that can be achieved
depending on the quality of the optimizer in a distributed database man-
agement system.

417

418 • More on Distributed Database Management

25.1.1 A F i n a n c i a l C o m p a n y E x a m p l e

Consider a sample distributed database that includes relations concerning
customers, investments that are offered by the company, and investments
held by the customers:

CUSTOMER C (stored at site X)

C# Customer serial number

CN Customer name

CC Customer city

CS Customer state

CUSTOMER-INVESTMENT CI (stored at site Y)

C# Customer serial number

I# Investment serial number

CV Value in U.S. dollars

INVESTMENT I (stored at site Y)

I# Investment serial number

IT Investment type

IU Unit of investment

Suppose that the following assumptions hold:

• 100,000 customers in relation C.

• 2,000 distinct types of investments in relation I.

• 200,000 customer-investments in relation CI.

• 2,000 bits per row (in any relation).

• 10,000 bits per second over the communications links, a rate equivalent
to five rows per second.

• 1-second delay in gaining access to the communications links.

• 10 type-G investments.

• 4,000 customers in Illinois.

Consider a sample query, to be expressed in SQL: find the identifiers
and names of customers in the state of Illinois who have investments of type
G. One way of expressing this in SQL is as follows:

SELECT C#, CN
FROM C, CI, I
W H E R E C.CS = 'Illinois'
AND C.C# = CI .C#
AND CI . I# = I . I#
AND IT = 'G'

25.1 Optimization in Distributed Database Management • 419

There are at least six alternative methods that can be used in executing
this SQL command; only these six are presented. In what follows, only the
load on the inter-site communicat ions lines is computed for each case, since
this is likely to be the dominant factor. An adequate optimizer would, of
course, go further and calculate processing loads at each site and input-
output loads at each site.

Method 1" Move C to site Y
100K rows @ 5 per sec = 20K seconds

= 5 hours 33 mins 20 secs

Method 2: Move CI and I to site X
202K rows @ 5 per sec = 11 hours

G R E A T E S T C O M M U N I C A T I O N T I M E

Method 3" Execute (CI * I)[IT = 'G'] at site Y,
where * denotes natural join using I # as the comparand
For each row, check site X to see if customer state = 'Illinois'
2 messages for each type-G investment held

= 200 messages at 1 sec delay and 0.2 sec transmission
= 240 secs = 4 minutes

Method 4: Execute C[CS = 'Illinois'] at site X
For each row, check site Y to see if customer has investment of
type G
2 messages for each Illinois customer

= 8K messages at 1 sec delay,
and 0.2 sec transmission

= 9600 secs = 160 minutes
= 2 hours 40 mins

Method 5- Execute (CI * I)[CT = 'G '] [C# , I#] at site Y,
where * denotes natural join using I # as the comparand
Move result to site X to complete the query
1 row for each type G investment held

= 100 × 0.2 secs
(ignoring single delay of 1 sec)

= 20 secs ~ L E A S T C O M M U N I C A T I O N TIME

Method 6: Execute C [CS = 'Illinois'] at site X
Move result to site Y
1 row for each Illinois customer

= 4000 x 0.2 secs = 800 secs
(ignoring single delay of 1 sec)

= 13 mins 20 secs

420 • M o r e o n D i s t r i b u t e d D a t a b a s e M a n a g e m e n t

Of these six methods, Method 2 consumes the most communication
time 11 hours while Method 5 uses up the least 20 seconds. A high-
quality optimizer, together with adequate statistics on the database, would
select Method 5.

Exercise 25.2 at the end of this chapter requests the reader to (1)
construct a sample database that is distributed to only two sites, (2) construct
a sample query that requires information be retrieved from both sites and
combined by means of a join, and (3) show that the longest time in com-
munication across the network is N days and the shortest time is N seconds.

This exercise is not particularly difficult and demonstrates the importance
of designing a high-quality optimizer in each DBMS of a distributed database
management system. Such an optimizer normally selects the approach with
the least communication time, since this time dominates the loading on all
resources when a command happens to involve two or more sites. If the
communication happens to be trans-Atlantic or trans-Pacific, the differences
in communication time mean very large differences in communication cost.

These examples suggest that, if the optimizer in a distributed database
management system is either weak or missing entirely, there is a serious
risk that certain commands will consume an unacceptable time on the
communication lines and will also make the costs of communication too
heavy. In other words, a distributed relational DBMS with a weak or non-
existing optimizer is a DBA's nightmare.

The examples also suggest the following question: What is an adequate
collection of statistics about the database? The DBMS should occasionally
generate, and use in every optimization, at least a minimal collection of
statistics. This collection consists of the number of rows in each base relation,
together with the number of distinct values in every column of every base
relation. From these statistics and the assumption that within every column
the distribution of values is uniform, the DBMS can calculate for every
column the expected number of occurrences of each distinct value within
that column.

It is important to realize that statistics about a database do not normally
change significantly whenever a single insertion, deletion, or update is
executed. Therefore, the DBMS need not modify the statistics whenever an
insertion, deletion, or update is executed. There would be a severe loss of
performance if the DBMS attempted to keep the statistics as up-to-date as
that. In many situations, it is quite adequate if the DBMS (1) generates
statistics about a base table when that table is created and loaded, and
(2) updates the statistics either once every week, or only when they have
changed significantly.

It is known that the usual assumption of uniform distribution within
each column of the distinct values in that column is quite often far from the
actual distribution. Adoption of this assumption, however, is a significant
step in the right direction.

25.1 Optimization in Distributed Database Management • 421

R X - 2 4 M i n i m u m S t a n d a r d f o r S t a t i s t i c s

The DBMS must maintain at least simple statistics for every relation
and every distinct column stored in a distributed database. The
statistics should include the number of rows in each relation and the
number of distinct values in each column, whether or not that column
happens to be indexed.

In early versions of relational DB2 products, statistics were generated
for only those columns that happened to be indexed. Thus, statistics on non-
indexed columns were simply not available to the optimizer. This serious
design flaw was corrected in later versions.

To appreciate the seriousness of this flaw, suppose that one is given the
description of a distributed database, including which columns of the base
relations are indexed. It is then possible to conceive sample queries whose
performance is heavily dependent on statistics being available concerning
non-indexed columns. This exercise demonstrates the total inadequacy of a
DBMS that does not maintain statistics on every column, and whose opti-
mizer fails to make full use of these statistics.

25.1.2 M o r e o n O p t i m i z a t i o n in t h e D i s t r i b u t e d C a s e

Assume that the DBMS is receiving query and manipulative commands
expressed in a relational language in a logic-based style. Optimization in-
volves the following five steps.

1. Convert the given command into a canonical form based on first-order
predicate logic.

2. Convert the command into a sequence of relational operators, a se-
quence that is simply and directly related to the canonical form.

3. Examine all the ways in which this sequence can be altered without
altering the final result of the command.

4. Deduce, for each viable sequence of operators,

a. which of the operators can be concurrently executed at different
sites, and

b. which access paths provide the shortest execution time for each
operator.

5. Calculate for each viable sequence of operators, in combination with
the best access paths for that sequence, the consumption of resources
using a linear combination of processing load at each site involved,
input-output load at each site involved, and communication load on the
network. The coefficients in this linear combination are those established
(and seldom changed) by the DBA.

422 m M o r e o n D i s t r i b u t e d D a t a b a s e M a n a g e m e n t

R X - 2 5 M i n i m u m S t a n d a r d f o r t h e O p t i m i z e r

The optimizer in a distributed DBMS must be capable of estimating
the resources consumed in executing a relational command in a
variety of ways. To generate the most effective target code, the
optimizer must combine the three main components (processor time,
input-output time, and time on the communication system) using a
linear function in which these times appear with coefficients selected
initially by the system, but alterable by the DBA.

It should be noted that relational algebra plays a significant role in the
second step in optimization. My work in the period 1968-1972 [Codd 1969-
1971d], during which I developed both the algebra and the logic (and,
incidentally, their inter-relatedness) for querying and manipulating relations
of arbitrary degree, lays the foundation for this step.

The semi-theta-join operator was described in Section 5.2.2. This oper-
ator can prove useful in efficiently executing joins between relations that
happen to be stored at different sites, but it is not always the most efficient
technique, because in some cases it can involve an increased amount of
inter-site communication. This fact, however, should not discourage DBMS
vendors from incorporating semi-theta-join into their designs. At present, I
do not know of any distributed DBMS product that uses it.

A final note on performance distinguishes the site at which a relational
request is entered from the site or sites at which it is executed. The following
feature was suggested by Professor Michael Stonebraker of the University
of California at Berkeley.

R X - 2 6 P e r f o r m a n c e I n d e p e n d e n c e i n

D i s t r i b u t e d D a t a b a s e M a n a g e m e n t

In a distributed relational DBMS, the performance of a relational
request is to a large extent independent of the site at which the
request is entered.

25 .2 [] O t h e r I m p l e m e n t a t i o n C o n s i d e r a t i o n s

Two types of concurrency must be supported by a relational DBMS. The
first kind, called intra-command concurrency, consists of treating various
portions of a single relational command as independent tasks, and executing
these tasks concurrently. The second kind, called inter-command concur-
rency, consists of executing two or more relational commands concurrently.

25.2 Other Implementa t ion Considerations • 423

R X - 2 7 Concurrency Independence in
Distributed Database Management

The DBMS supports concurrency of execution of relational opera-
tors between all of the sites in the network. Application programs
and activities by end users at terminals must be logically independent
of this inter-site concurrency, whether the DBMS supports intra-
command concurrency or inter-command concurrency or both. These
programs and activities must also be independent of the controls
(usually locking) that protect any one action from interfering with
or damaging any concurrent execution.

As previously mentioned, execution of a single relational command can
involve activity at multiple sites. Therefore, the execution of a single trans-
action can certainly involve activity at multiple sites. Aborting such a trans-
action would therefore involve recovery at multiple sites.

R X - 2 8 Recovery at Multiple Sites

If it is claimed that the DBMS provides full support for distributed
database management, then without user intervention the DBMS
must support and coordinate recovery involving multiple sites when-
ever it has been necessary to abort a transaction at multiple sites.
Application programs and activities by end users at terminals must
be independent of this inter-site recovery.

The locking scheme implemented in the DBMS must detect deadlocks
that may occur between actions at distinct sites. These are often called global
deadlocks, but a better term is inter-site deadlocks.

R X - 2 9 Locking in Distributed
Database Management

The DBMS detects inter-site deadlocks, selects one of the contend-
ing activities, backs it out to break the cycle of contention, and
forces it to wait until a fresh occurrence of the deadlock is avoided
as a result of one contender completing or absorbing its transaction.
Relational languages contain no features specifically for the handling
of deadlocks.

424 • M o r e o n D i s t r i b u t e d D a t a b a s e M a n a g e m e n t

For further information on the intricate controls needed to support the
management of distributed data safely and reliably, see [Williams et al.
19811 .

25.3 • H e t e r o g e n e o u s D i s t r i b u t e d
Database M a n a g e m e n t

Today, many companies make use of several computer systems in their
business. It is quite likely that these systems were acquired from different
vendors, and that each is operated independently of the others. There is a
growing demand for software that supports the sharing of data across these
systems.

In database terms, the software needed is called a heterogeneous dis-
tributed database management system. Ideally, such a system should be able
to support all the user-oriented features of the homogeneous case. This
means that the system must be able to translate correctly, and in a single
uniform way, any statements expressed in a single relational language, with
the following additional kinds of independence:

• hardware independence;

• operating-system independence;

• network independence;

• DBMS independence; and

m catalog independence.

Today, there exists a great diversity in the hardware and software of
the various vendors, in spite of all the effort that has gone into creating
information processing standards. For example, no two versions of SQL from
different vendors are completely compatible. Sometimes this is even true of
any two versions from a single vendor. Another example" no two versions
of the DBMS catalog from different vendors are compatible with one another.

The lack of appropriate and enforced standards, and the non-conformity
of products with respect to existing standards, make the heterogeneous
distributed DBMS an extremely ambitious goal. Except in quite simple cases
of heterogeneity, the products that emerge are likely to have an extremely
large number of cases of user-unfriendly exceptions, which make some of
them impractical and unacceptable.

As an aside, the occurrence of duplicate rows within a relation in either
the homogeneous or heterogeneous case presents a quite unnecessary ad-
ditional problem.

Occasionally, one hears that a non-relational DBMS, such as IMS, is to
be in the same network as a relational DBMS. Unless the non-relational
DBMS is very simple, the problems encountered in trying to make this work
are enormous [Date 1984].

25.5 Concluding Remarks • 425

2 5 . 4 • S t e p b y S t e p I n t r o d u c t i o n o f N e w K i n d s
o f D a t a

There are several ways in which new kinds of data can be introduced into
a distributed database. The following example stresses initiative at a partic-
ular site (site X), and how that initiative can be introduced step by step into
the network using the features that have been described in Chapters 24 and

25.
In this example new kinds of data are introduced in a sequence of six

steps. The abbreviations I, V, A mean integrity constraints, view definitions,
and authorization constraints respectively.

The six steps for introducing new kinds of data into site X are:

1. create the necessary domains and relations--an addition to the local
catalog at site X;

2. load some test data in these relations;

3. create whatever I,V,A in the local catalog are needed for purely local
use, principally for testing, and make the tests;

4. obtain clearance from the global DBA for some users at site X to make
read-only use of data in the network to participate in conditions for
relational requests that confine their modifying activities to the new data

only;

5. load regular (non-test) data into the new relations;

6. negotiate with the global DBA the introduction of these new relations
into the network as site X participants.

6.1

6.2

6.3

6.4

6.5

The negotiation in Step 6 can be broken down into five parts"

examine whether any new domains created at site X can be identified
as domains that already exist on the network--if so, use the global
domain name and definition;

determine the correspondence between the local names newly introduced
at site X and the existing collection of global names;

define necessary views] these may straddle

define integrity constraints I new and old data and

define authorization constraints possibly several sites

25 .5 • C o n c l u d i n g R e m a r k s

The relational model represents the best existing technology for supporting
distributed database management. So far, it is the only approach that sup-
ports a language of adequate level, a language in which the user is able to
issue a request without dictating to the system how it is tO be carried out.
To quote Dr. Bruce Lindsay Of. IBM Almaden Research Center, San Jose:

426 • M o r e o n D i s t r i b u t e d D a t a b a s e M a n a g e m e n t

Single-record-at-a-time DBMS products (the old approach) in which
the user or programmer has to navigate his way through the database
are the kiss of death in managing distributed databases.

The level of language is more than a matter of how many records or
rows can be retrieved using a single command. It is also more than the
complexity of the logical condition that can be expressed in a single command
to determine which pieces of information are to be retrieved. Comprehen-
sibility of statements expressed in that language represents an extremely
important concern. This applies not only to end users, who may be nonpro-
grammers, but also to application programmers, who often must maintain
programs written by people other than themselves. In such a task, compre-
hensibility of the statements in those programs is a sine qua non.

Here are some more specific reasons why the relational model lends
itself to the management of distributed data. The first reason, decomposition
flexibility, is applicable to two important tasks: (1) the task of distributing
a large database to multiple sites (discussed at length in Section 24.4), and
(2) the task of decomposing logically expressed relational commands into
sequences of operators of the relational algebra.

From the discussion in Section 24.4, it should be obvious that the
relational operators provide an extremely flexible tool for carving up the
information for distribution purposes. A single relational command can touch
many columns scattered over many relations. Such a command can be
decomposed into the basic relational operators that are involved. The power
of decomposition of relational commands should also be obvious from the
discussion of optimization in Section 25.1.

The second reason why the relational model lends itself to the manage-
ment of distributed data is recomposition power. After a relational command
has been decomposed into basic relational operators acting on data at various
sites, these sites return data in the form of derived relations to the requesting
site. This site now has the task of recombining these returned relations into
the single relation that is the overall result that was requested. All the
relational operators are available for specifying this recombining activity.

The third reason is economy of transmission. As discussed earlier, upon
receipt of a relational command, a distributed DBMS decomposes it into
several basic relational operators that can be applied to the relations stored
at various sites. These operators, expressed as simple relational commands,
are sent as messages to the appropriate sites. Each command may involve
the processing of hundreds, thousands, or possibly millions of rows in
relations. If the DBMS had been an old single-record-at-a-time product, a
message across the network would have been necessary for each one of the
hundreds, thousands, or millions of records involved. Thus, a relational
distributed database management system can be orders of magnitude cheaper
than a non-relational DBMS in terms of inter-site communication costs, as
well as orders of magnitude faster.

25.5 Concluding Remarks • 427

The fourth reason is analyzability of intent and optimizability. A query
or manipulative command expressed in a relational language tells the DBMS
what kinds of information the user wants and under what conditions, but
does not specify how the system is to find and extract this information. It
is therefore reasonable to say that (1) such a command expresses the user's
intent, and (2) the methods used by the system to satisfy this intent are left
entirely up to the system. These facts give the DBMS a very wide choice of
methods from which to make a selection.

Thus, the scope for optimization is significantly wider than that of any
other approach known today. In turn, this means that, with respect to the
management of distributed data, it is very difficult for any non-relational
DBMS to compete in combination of cost and performance with a relational
DBMS that is equipped with a well-designed optimizer. Note that it is
essential for an optimizer to be able to re-optimize commands in a transaction
that touches parts of the database where the statistics have changed signif-
icantly. Then the DBA can feel confident that the system is really helping
him or her to meet the DBA's responsibilities.

The fifth reason, distribution independence, was explained in Chapter
20 as one of the means by which a user's investment is protected if a
relational DBMS is acquired. First of all, application programs can be
developed for a non-distributed version of a relational DBMS. A distributed
version of that same DBMS (if it is completely language-compatible with
the non-distributed version) can then be installed. The database can be
distributed to multiple sites that are geographically separated. The appli-
cation programs that were originally developed for the non-distributed ver-
sion will, without change, run correctly on the distributed version.

Also, the data may be re-distributed across these sites and possibly
others. Once again, application programs will continue to run correctly,
without changing them. This ease of redistribution is an important require-
ment for every company that acquires a distributed database management
system, a requirement that companies often overlook.

It has been proved that distribution independence is supportable by the
relational model by means of prototype relational database management
systems, such as System R (non-distributed) and System R* (distributed)
[Williams et al. 1981]. Not one of the non-relational database management
systems has been proven to be effective in this respect. The principal reasons
for this superiority in the relational approach are (1) the very high level of
relational languages, and (2) the sharp separation between the user's per-
ception and manipulation of the data, on the one hand, and the storage
representation and access methods used by the DBMS, on the other.

To recapitulate, the five reasons why the relational approach lends itself
to the interrogation, manipulation, and control of distributed data are as
follows:

1. decomposition flexibility;

2. recomposition power;

428 • More on Dis tr ibuted Database M a n a g e m e n t

3. economy of transmission;

4. analyzability of intent; and

5. distribution independence.

Exercises

25.1

25.2

Why does a DBMS need any statistics about the database? Why does
a DBMS need statistics about each column of each relation in the
database? Why is it insufficient for the DBMS to have statistics about
indexed columns only? What are the minimum statistics required by
RM/V2, and where are they stored?

Construct a sample database which is simple (three relations are
adequate) and which is distributed to only two sites (two of the
relations at one site, one at the other site). Construct a sample query
that requires information be retrieved from both sites and then com-
bined by means of a join. Select a set of realistic parameters for the
communication rate across the network, the time to access the network
for each message, and the number of bits per row of a relation. For
some integer N of your own choosing, show that"
1. If the optimizer does a bad job, the time spent in communication

across the network is approximately N days.
2. If the optimizer does a good job, the communication time is

approximately N seconds.

25.3

25.4

Hints:
1. The three relations can be the usual suppliers S, parts P, and

capabilities C.
2. S and C can be stored in site # 1, and P in site # 2.
3. Consider the query: Which suppliers are based in London and

can supply instruments for airplanes?
4. An example of parameters and their values that may be assumed:

• Network access time for each message = 1 second.

• Transmission speed - 10,000 bits per second.

• Each record consists of 10,000 bits.

Note that there are 86,400 seconds in a 24-hour day.

What does it mean to assert that application programs and terminal
activities must be independent of inter-site concurrency?

Suppose that a transaction T straddles two or more sites. Consider
the following five assertions:
1. T must involve retrieval only;
2. T must involve insertion only;
3. T must involve update only;

E x e r c i s e s • 429

25.5

4. T must involve deletion only;
5. T can involve any combination of retrieval, insertion, update, and

deletion commands.

Which of these five assertions is true, andwhich is false? Which of
the currently available relational DBMS products supports such multi-
site execution of a transaction?

Is it possible for the execution of a single relational command to
straddle two or more sites? Supply an example showing the need for
this. Which of the currently available DBMS products supports such
multi-site execution of a single command? Are there any constraints
on the type of command?

a C H A P T E R 2 6 •

Advantages of the

Relational Approach

The advantages of the relational approach over other approaches to database
management are so numerous that I do not claim that the 15 advantages
discussed in this chapter constitute a complete list. My opinion regarding
the various pre-relational approaches is that the only advantage they enjoy
is that some large-scale users have a very large investment in those systems--
not only in the form of large quantities of company data represented in a
way peculiar to the pertinent DBMS, but also in the form of application
programs that appear to work correctly against that data. Such programs
are very difficult to translate into the corresponding programs needed on a
relational database, a difficulty largely due to the lack of a discipline in the
design and use of pre-relational DBMS products.

Even though the conversion from pre-relational to relational DBMS
products is very labor-intensive and costly, I believe that users should start
now to plan such a conversion, and execute the plan step by step. In this
way, users can realize at an earlier time the benefits in cost, efficiency, and
integrity of managing their databases by means of a more modern, relational
DBMS.

When a company postpones conversion to a relational DBMS, it incurs
the cost of conversion sometime in the future, when the cost will be signif-
icantly higher because of the labor-intensive nature of conversion. During
the period of delay, the company also loses the productivity, safety, and
security of the relational approach.

431

432 m Advantages of the Relational Approach

26 .1 • P o w e r

The relational approach is very powerful and flexible in access to information
(by means of ad hoc queries from terminals) and in inter-relating information
without resorting to programming concepts (e.g., iterative loops and recur-
sion). The power stems from the fact that the relational model is based on
four-valued, first-order predicate logic.

26 .2 • A d a p t a b i l i t y

Errors are often made in both logical and physical database design. When
a database is created, it is virtually impossible to predict all the uses that
will be made of it. With regard to changes in use of the data and changes
in the database traffic, the relational approach is much more forgiving than
any other approach. (There is no claim, of course, that it is totally forgiving.)

The features that make the relational approach more capable of accom-
modating change are the immunity of the application programs and terminal
activities to the following types of changes:

1. the storage-representation and access methods;

2. the logical design of base relations;

3. integrity constraints;

4. the deployment of data at various sites.

Database design is still necessary. When it becomes necessary to change
either the logical or the physical design, however, a relational database is
much more adaptive to the changes because of these four features.

26 .3 m S a f e t y o f I n v e s t m e n t

How safe is an investment in a relational DBMS? Will the relational ap-
proach be replaced by some new, incompatible approach in the near future?

Many people attach considerable importance to the fact that the rela-
tional model has a sound theoretical foundation. It is based on predicate
logic and the theory of relations, parts of mathematics that have taken about
two thousand years to develop. Thus, it is highly unlikely that the theoretical
foundation will be replaced overnight. This observation makes the relational
approach a reasonably safe investment on the part of DBMS vendors and
DBMS users.

Furthermore, the relational approach is the only one to offer the four
important investment-protection features cited in Chapter 20: (1) physical
data independence, (2) logical data independence, (3) integrity indepen-
dence, and (4) distribution independence. The kinds of investments pro-
tected by these features include investments in the development of application

26.5 Round-the-Clock Operation • 433

programs and in the training of the programmers and end users. In acquiring
any new DBMS produc t~whether relational or not, and whether hardware,
software, or both are involved~a company is likely to invest more money
in application programming and training than in actually purchasing the
DBMS product.

2 6 . 4 m P r o d u c t i v i t y

Early users of relational DBMS products report a substantial increase in the
productivity of their application programmers. This advantage can be traced
to several facts:

• Application programs developed to run on top of a relational DBMS
contain significantly fewer database statements than corresponding ap-
plication programs developed to run on a non-relational DBMS,

• These statements convey intent, and are therefore easier to understand
by people responsible for the maintenance of the programs, who may
not be the original developers.

• The database statements are clearly separate from the non-database
statements, and can be separately developed and speedily debugged
using terminals.

• The burden of achieving the best performance is largely removed from
the application programmer and interactive user, and is instead assumed
by the DBMS.

These early users also report that end users on their systems are able
to make extensive use of the information in relational databases (including
the generation of requested reports) without requiring help from application
programming staff. This is mainly because, in constructing the relational
model, I rejected the need for users to have programming skills in retrieving
and modifying data in the database (skills such as designing iterative and
recursive loops and creating I/O channel commands).

This ability of end users to make direct use of information in relational
databases without assistance is undoubtedly the primary reason why the
relational DBMS market has expanded so quickly. In just a few years, it
has overtaken the market for all its predecessors. One of the many reasons
that users need substantially increased productivity is that it enables them
to plan and launch new products much more rapidly.

26 .5 • R o u n d - t h e - C l o c k Operation
The relational approach is designed for round-the-clock operation of the
database management system. Pre-relational DBMS products often required
the traffic on the database to be brought to a halt if changes were to be

. . . . 2 - =

4 3 4 • Advantages of the Relational Approach

made in the access methods or access paths, or in any aspect of the database
description (e.g., the record types in the database).

In a relational DBMS, this interruption of service is unnecessary for the
following reasons:

• the sophisticated nature of the locking scheme;

• the automatic recompiling of just those database manipulation com-
mands adversely affected by any changes in the database description;

• the inclusion of both data-definition commands and data-manipulation
commands within any relational language.

Indexes may therefore be dynamically created and dropped. New col-
umns may be introduced dynamically into a base relation. Old columns may
be dynamically dropped. Authorization may be dynamically granted and
dynamically revoked. Domains, views, integrity constraints, and functions
may be dynamically created and dropped.

26.6 • P e r s o n - t o - P e r s o n C o m m u n i c a b i l i t y

One of the many problems with pre-relational DBMS products was that the
application programmers had to have extensive training of a very narrow
kind, training oriented toward the particular DBMS installed. This meant
that it was virtually impossible for a company executive to find out for
himself or herself what kind of information was stored in the database. To
do so, the executive had to ask a database specialist to interrogate either
the system or manually prepared documents related to the particular data-
base, and then translate his or her discovery into terms comprehensible to
the executive.

With the relational approach, an executive can have a terminal on his
or her desk from which answers to questions can be readily obtained. He
or she can readily communicate with colleagues about the information stored
in the database because that information is perceived by users in such a
simple way. The simplicity of the relational model is intended to end the
company's dependence on a small, narrowly trained, and highly paid group
of employees.

It is important to note that, if the relational approach is being used, end
users and application programmers can at last talk to one another about
both the content of the database (because of its simple structure) and
database actions (because end users and application programmers employ a
common database sublanguage).

26.7 • D a t a b a s e C o n t r o l l a b i l i t y

The relational model was designed to provide much stronger machinery than
any pre-relational DBMS for maintaining the integrity of the database. The

26.9 F l ex ib l e A u t h o r i z a t i o n • 435

motivation was that many companies store in their databases information
that is vital to the continued success of the company. The accuracy of this
information is therefore of great concern. Now, it is well-known that pre-
venting the loss of accuracy or integrity is much more readily mechanized
than is the cure of such loss.

As explained in Chapters 13 and 14, the relational model not only
supports the two types of integrity (entity integrity and referential integrity)
that apply to every relational database, but also supports domain integrity,
column integrity, and user-defined integrity. In this last category, the model
provides the power of four-valued, first-order predicate logic in the creation
by users (principally the database administrator, of course) of integrity
constraints that chiefly reflect the company policy, governmental regulations,
and certain semantic aspects of the data used in designing the database.

The environment in which the company operates is bound to change as
time passes. Therefore, it is unrealistic to expect that company policy,
government regulations, and the semantics of data will somehow remain
unchanged. For this reason, the relational model supports integrity inde-
pendence, which permits integrity constraints to be changed without chang-
ing application programs. This integrity independence makes it much less
costly to implement changes in integrity constraints, and therefore makes
the company much more adaptable to environmental changes.

Of course, in many of the relational DBMS products on the market
today, support for the integrity features of the relational model is quite
weak. This weakness reflects irresponsibility on the part of DBMS vendors.

26 .8 • R i c h e r V a r i e t y o f V i e w s

Pre-relational DBMS products were quite weak in their support of views.
For example, the CODASYL-proposed DBTG standard I of the 1970s sup-
ported nothing more than those views that just one of the relational operators
project can generate. The relational model, on the other hand, supports the
full power of four-valued, first-order predicate logic in defining views.

Unfortunately, the relational DBMS products available today do not yet
possess the strength of the relational model in regard to defining views.
Within the next decade or two, however, we can expect the necessary product
improvements.

26 .9 • F l e x i b l e A u t h o r i z a t i o n

Pre-relational DBMS products were embarrassingly weak in their support
for permitting or denying access to parts of the database. Usually the access
control was based on explicit denial of access by specified users to specified

tFrom the Report of Data Base Task Group of CODASYL Programming Language Committee,
April 1971. Available from ACM, BCS, and lAG.

436 • Advantages Of the Relational Approach

record types or specified fields. Usually these DBMS products also failed
to support access control that is dependent on values encountered in the
database.

The relational model, on the other hand, uses view definitions based on
four-valued, first-order predicate logic to determine the portions of the
database to which access will be permitted; these portions can easily be
defined to be value-dependent. A user is then permitted by the system to
access one or more specified views only, and to use certain specified rela-
tional operators only on each view.

2 6 . 1 0 • I n t e g r a t a b i l i t y

On top of a DBMS, a user is likely to need products such as application
development aids, report generation support, terminal screen painting sup-
port, graphics support, support for the creation and manipulation of business
forms, and support for logical inference. Pre-relational DBMS products
offered nothing more than a low-level, single-record-at-a-time interface to
such products.

Relational DBMS products, on the other hand, offer a powerful, mul-
tiple-record-at-a-time language for this purpose, making it significantly easier
to develop the products on top. As a result, we can expect to see a vast
proliferation of products that interface with relational DBMS products and
make use of the data supported in the databases.

Those products that support logical inference (e.g., a few of the so-
called expert systems) can easily exploit the relational language interface,
since'a ~ language for logical inference must be closely related to predicate
logic, which is the most powerful known tool for making precise logical
inferences.

2 6 . 1 1 • Distributability
Now that vendors have discovered the relational aPProach to database
management, numerous systems capable of managing distributed databases
are beginning to appear on the market. One DBMS product supports not
only retrieval from remote sites, but also insertion, update, and deletion at
remote sites, as well as full-scale transactions, each of which may straddle
multiple remote sites without the user being aware of which sites were
involved.

In Chapter 25, I discussed five principal reasons why the relational
approach has been far more successful than any non-relational approach in
managing distributed databases:

1. decomposition flexibility;

2. recompositi0n power;

3. economy of transmission;

26.13 Concurrent Action by Multiple Processing Units • 437

4. analyzability of intent; and
5. distribution independence.

2 6 . 1 2 • O p t i m i z a b i l i t y

The ability of a DBMS to assume a large portion of the burden of achieving
good performance on all database interactions depends on its ability to
generate the best quality target code from the source code in which the user
expresses these interactions. This translation from source code to efficient
target code is usually called the optimization problem.

Although present relational DBMS products differ significantly in their
abilities to handle the optimization problem, almost all of them have far
superior capabilities in this area when compared with pre-relational DBMS
products. This is because of both (1) the high level of relational languages
and (2) the sharp separation of the user's perception of the data from the
representation of this data in storage and from the access methods presently
in effect.

There are several reasons why companies should avoid depending on
their application programmers, however skilled, for obtaining good perform-
ance from the DBMS for their application programs. Even the most highly
skilled programmers sometimes find it difficult to concentrate on the job at
hand. In addition, the DBMS is in a far better position than the programmer
to keep track of DBMS performance, and know when it is necessary to
make changes in access methods and access paths and to recompile certain
relational commands to cope efficiently with these changes.

These remarks apply whether the database is distributed or not. In the
distributed case, however, the DBMS can provide an additional service. It
can help determine at appropriate times whether and how the database
should be re-distributed. I do not know of any current product that provides
this service. Perhaps the problem will be a good subject for one or more
doctoral dissertations.

2 6 . 1 3 • C o n c u r r e n t A c t i o n b y M u l t i p l e P r o c e s s i n g
U n i t s t o A c h i e v e S u p e r i o r P e r f o r m a n c e

For many years, people in the computer field have been aware of the vast
difference in speeds of processing units, on the one hand, and secondary
storage such as disks, on the other. There have been suggestions that what
was needed in commercial data processing was a high-level language for
input and output, but no such proposal has been forthcoming. Now, the
relational approach to database management offers vast new opportunities
to exploit concurrent action by multiple processing unitsmnot just 2, 4, or
6 units, but 50, 100, or more. For example, Tandem has shown that, by

438 • Advantages of the Relational Approach

adding processing units, it is possible to obtain an improvement in speed of
the whole system that is linear with cost.

Tandem's NonStop SQL is more powerful in speed than any non-rela-
tional DBMS products because automatic concurrent actions are made pos-
sible by the relational approach, and Tandem exploits this concurrency
opportunity to the hilt. By "automatic," I mean that the concurrency is not
programmed by either the user or the application programmer.

Incidentally, Tandem's announcement and the audited benchmark finally
laid to rest the ill-conceived notion that the relational approach would never
be accepted because it "performed poorly." No other architectural approach
is known for achieving very high performance on database management: for
example, over 1000 simple transactions per second, coupled with fast re-
sponse (e.g., less than 2 seconds per transaction). The IBM product IMS
Fastpath, once considered a leader in performance among database man-
agement systems, has been overtaken by Tandem's NonStop SQL coupled
with Tandem's NonStop architecture. Moreover, IMS and IMS Fastpath
cannot catch up in this race, since they are single-record-at-a-time systems,
in which opportunities for concurrent action are quite limited.

It is worthwhile to distinguish between two types of concurrency:

inter-command concurrency~concurrency between the execution of dis-
tinct relational commands;

. intra-command concurrency~concurrency between tasks that are part
of a single relational command.

The present release of Tandem's NonStop SQL concentrates on the first
type, while the Teradata DBMS product concentrates on the second type
of concurrency.

2 6 . 1 4 • C o n c u r r e n t A c t i o n b y M u l t i p l e P r o c e s s i n g
U n i t s t o A c h i e v e F a u l t T o l e r a n c e

Today, as more and more companies become international in scope, they
must operate effectively in multiple time zones. Such companies tend to
need continuous, round-the-clock operation of their complete systems. Thus,
if a processing unit, channel, or disk unit fails, the system as a whole should
continue to function, even though its performance may be reduced.

Tandem Corporation has shown that this fault tolerance can be achieved
in data processing through its NonStop architecture (hardware and software),
and in database management through its NonStop SQL (software). Thus, it
is clear that one advantage of the relational approach is that it lends itself
to a high degree of concurrent action, which, with an appropriate architec-
ture, in turn leads to a high degree of fault tolerance.

In scientific computing, arrays and matrices offer significant opportun-

26.16 Summary of Advantages of the Relational Approach • 439

ities for concurrent execution; this has been exploited to obtain performance
improvements. In commercial data processing, relations offer similar op-
portunities. The need in commercial data processing is greater, however, in
that not only must performance improvements be obtained, but also signif-
icant improvements in fault tolerance must be achieved.

2 6 . 1 5 • Ease o f C o n v e r s i o n

If and when the relational approach to database management becomes
obsolete, it will be much easier to convert to whatever approach replaces
the relational model. There are two chief reasons:

1. all information in a relational database is perceived in the form of values;

2. the language used in creating and manipulating a relational database is
much higher in level than the languages used in pre-relational database
management.

2 6 . 1 6 • S u m m a r y o f A d v a n t a g e s
o f t h e R e l a t i o n a l A p p r o a c h

To recapitulate, the relational approach is the leading approach to database
management today because of its sound theoretical foundation plus the
following 15 major advantages it has over other approaches.

1. powerful approach;

2. adaptability;

3. safety of investment;

4. productivity;

5. round-the-clock operation:

• dynamic tuning

• dynamic change of database description;

6. person-to-person communicability;

7. control capability, especially integrity constraints;

8. richer variety of views;

9. flexible authorization;

10. integratability;

11. distributability;

12. optimizability;

13. radically increased opportunities for concurrent action by multiple pro-
cessing units to achieve better performance;

440 • Advantages of the Relational Approach

14. radically increased opportunities for concurrent action by multiple pro-
cessing units to achieve fault tolerance; and

15. ease of conversion to any new approach.

E x e r c i s e s

26.1

26.2

26.3

26.4

26.5

26.6

26.7

The introduction of relations into the management of large databases
has spurred the development of commercial computer systems with
large numbers of processing units capable of executing many com-
mands concurrently. Identify two types of concurrency, and give two
practical reasons why the multiplicity of processing units means im-
proved service to users.

A designer of DBMS products wrote a lengthy memorandum in the
mid-1970s asserting that data models were a waste of time. He asserted
that all that any vendor needed to supply were access methods. Take
a position on this and compare"

• the old access methods (SAM, ISAM, PAM, DAM, etc.);

• the old database management systems (IMS, IDMS, ADABAS);

• the relational model.

Cite four ways in which RM/V2 is adaptable to change.

Cite four reasons why a relational DBMS yields substantial increases
in productivity.

What capabilities does RM/V2 provide to help the DBA keep the
database well-controlled and accurate?

Cite five reasons for expecting the relational model to be more capable
in managing distributed databases than any single-record-at-a-time
DBMS.

Why were pre-relational DBMS products unable to support optimizing
as part of the translation from source language into efficient target
language?

• C H A P T E R 2 7 •

P r e s e n t P r o d u c t s

and Future

I m p r o v e m e n t s

The extent of support of the relational model (even Version 1) in present
DBMS products is disappointingly low. In Chapter 27 we discuss the major
errors of omission and errors of commission in these products. These errors
have a negative impact not only on the DBMS products themselves, but
also on products developed to run on top of these DBMS products. We will
discuss the future of these products on top from two viewpoints:

1. The future if logically based.

2. What is to be expected.

The next subject to be discussed is the relatively new area of exploiting
the many opportunities for concurrency offered by the relational approach
in order to achieve top performance and fault tolerance. The last topic is
the ability to communicate between machines of different architectures,
including IBM's SAA (Systems Application Architecture) strategy.

27 .1 • F e a t u r e s : t h e P r e s e n t S i t u a t i o n

Present relational DBMS products and languages, including the language
SQL, support at most only half of the relational model, and consequently
fail to provide some of the significant benefits of the relational approach. I
have encountered among the staff of vendors a curious tendency to continue
supporting obsolete methods because they are familiar. To some, familiarity
appears more important than technical progress.

44I

442 I Present Products and Future Improvements

27 .1 .1 Errors o f O m i s s i o n

The most important errors of omission in present versions and releases are
domains as extended data types, primary keys, and foreign keys. The IBM
product DB2 is one of the few that provides partial support for the keys.
DB2, however, still fails to require exactly one primary key for each base
R-table on a mandatory basis. It does not support the existence in the entire
database of two or more primary keys on a single primary domain. These
keys, of course, would necessarily occur in distinct R-tables. One conse-
quence of two or more primary keys on a common domain is that a given
foreign key may have two or more target primary keys.

Finally, updating a primary key with the same update being applied to
all corresponding foreign keys (1) requires the participation of the host
language, (2) is far too complicated, and (3) depends on some application
programmer knowing on an up-to-the-millisecond basis the state of the
foreign keys for a given primary key. If the DBMS is relational, only the
system can hold such knowledge.

Additional features that are not supported in present versions of most
relational DBMS products include referential integrity (although this is
partially supported in DB2 Version 2), user-defined integrity constraints,
and user-defined functions.

Because of the inextricably interwoven features of the relational model,
each of these omissions negatively impacts numerous benefits of relational
DBMS. In particular, since domains are part of many features of the model,
none of these features can be fully supported without first supporting do-
mains. To cite just three examples"

1. The DBMS should require that each foreign key be subjected to refer-
ential integrity with respect to all of the primary keys with the same
domain as the foreign key. To manage this on a highly dynamic basis,
the system must know all the keys that draw their values from a common
domain, and this knowledge must be current on a millisecond basis.

2. Each pair of comparand columns in joins, relational division, and certain
selects should be based on a common domain. The DBMS should always
check this safety feature, unless the user requests the rarely used DO-
MAIN CHECK OVERRIDE.

3. A DBMS should check whether a requested union is meaningful or not.
To do this, the system must be able to check the domains of all columns
involved in the union. The same applies, of course, to relational differ-
ence and intersection.

Finally, view updatability in present products is extremely weak and
inadequately investigated. Consequently, logical data independence is hardly
supported at all.

27.2 Products Needed on Top of the Relational DBMS • 443

27.1.2 Errors of Commiss ion

In present DBMS products, there are not only numerous errors of omission,
but also significant errors of commission, only three of which are discussed
here. Among the errors of this type, SQL allows duplicate rows within a
relation, whether base or derived. (See Chapter 23 for the resulting penal-
ties.) Apparently, many vendors and ANSI have not noticed this and other
flaws in SQL.

A second major flaw in SQL is the inadequately investigated nesting of
queries within queries. It should always be possible for the DBMS to
translate a nested version into a non-nested version. One important reason
is that the optimizer can then do an equally good job, no matter which
version is presented by the user. Failure in this regard places a major part
of the performance burden right back in the user's lap, just as in pre-
relational DBMS products~and this is n o t what I intended. Clearly, there
must exist a canonical form into which all relational requests can be cast.

A third major flaw lies in the way that present DBMS represent and
treat missing database values. In RM/V2, both the representation of the fact
that a database value is missing and the treatment of each missing value are
independent of the type of value that is missing (see Chapter 8). Several
relational DBMS products fail the representation requirement by repre-
senting the fact that a numeric value is missing differently from the fact that
a character-string value is missing. A few relational DBMS products satisfy
the representation requirement, but fail the treatment requirement.

The only feature in SQL related to the treatment question is the clause
IS NULL. This feature is clearly inadequate, Moreover, four-valued logic
should be provided under the covers in any relational DBMS product; the
logic supported by most relational products today is not even three-valued.

27 .2 • P r o d u c t s N e e d e d o n Top
of t h e R e l a t i o n a l D B M S

It is clear that the rapidly expanding market for relational DBMS products
opens up a substantial market for products that operate on top of these
systems. Such products must interface with relational DBMS; they do so by
using whatever relational language the relational DBMS supports, usually
SQL. Thus, in recent years vendors, especially software vendors, have an-
nounced many new products that operate on top of the more popular
relational DBMS products.

Examples of such products follow:

dictionaries forms support
database design aids screen painting
application development aids graphics support
expert-system shells natural-language support

444 • Present Products and Future Improvements

computer-assisted software
engineering (CASE) tools

re-engineering tools

27 .3 • F e a t u r e s o f t h e R e l a t i o n a l D B M S
a n d P r o d u c t s o n Top A s s u m i n g t h a t t h e F u t u r e
is Log ica l ly B a s e d

If a relational DBMS is to provide all of the benefits of the Relational
Model, it is important that the errors of omission and commission be fixed
first. This is the only way to avoid giving these errors a permanence that
results from the substantial investment users make on the assumption that
the features of a system will continue to exist.

Then, it Will be possible for both vendors and users to proceed on a
secure foundation with (1) all the products on top and (2) distributed
relational DBMS products.

27.4 • Fea tures of R e l a t i o n a l D B M S a n d P r o d u c t s o n
Top, A s s U m i n g t h a t V e n d o r s C o n t i n u e to T a k e
a Very S h o r t - t e r m V i e w

Vendors, however, are forging ahead with both products on top and dis-
tributed relational DBMS products, disregarding errors in present relational
DBMS products. All the evidence indicates that they will continue to do so.

An inevitable result is that existing errors will become more difficult to
fix, because more products and more users will be affected. Over time, the
defects and deficiencies in the present versions of SQL will become totally
embedded in relational DBMS products.

It is important to be aware that, first, the language SOL is not part of the
relational model. Second, the defects and deficiencies in SOL correspond closely
to the various departures of SOL from the relational model.

27.5 • P e r f o r m a n C e a n d Faul t T o l e r a n c e

Many relational DBMS products offer excellent performance; some can
outperform n0n-relational DBMS pr0ducts. Improvements in performance
are being introduced rapidly as each new version or release comes to market.

Today's leader in general fault tolerance, including DBMS fault toler-
ance, is Tandem, with its NonStop architecture and NonStop SQL. Moreover,
the adaptable performance of the NonStop architecture will prove attractive
to many comPanies. If a user's workload grows, he or she can cope with
the growth by adding onto the installed system several closely coupled
processing units and additional disk-storage units. The user need not replace
the entire installed system with a completely new, higher-performance system.

27.8 communication between Machines of Different Architectures • 445

27.6 m P e r f o r m a n c e a n d F a u l t T o l e r a n c e A s s u m i n g
t h a t t h e F u t u r e Is L o g i c a l l y B a s e d

As more and more companies become international and operate in multiple
time zones, there is a greater need for improved fault tolerance. There is
also a growing need for very high transaction rates. Therefore, DBMS
vendors can be expected to recognize the growing market for increased
DBMS performance and fault tolerance. Eventually, they will also recognize
that relational DBMS, coupled with architecture that exploits concurrency,
can exceed the performance and fault tolerance of non-relational DBMS by
a wide margin.

It would be reasonable for each DBMS vendor eventually to exploit
both inter-command and intra-command concurrency in its DBMS products
(see Section 26.13 for an explanation of these terms).

27.7 • P e r f o r m a n c e a n d F a u l t T o l e r a n c e A s s u m i n g
t h a t t h e V e n d o r s C o n t i n u e to T a k e a V e r y
S h o r t - t e r m V i e w

Why can we expect a logically based future in performance and fault tol-
erance? Competition will force this, and vendors seem more comfortable in
competing in this arena than in any questions related to the services provided
by their products.

Relational DBMS vendors will gradually see the advantages of exploiting
the concurrency opportunities offered by the relational approach~specifi-
cally, performance (usually measured in simple transactions per second),
performance adaptability, and fault tolerance.

2 7 . 8 • C o m m u n i c a t i o n b e t w e e n M a c h i n e s
o f D i f f e r e n t A r c h i t e c t u r e s

It is not easy to design effective communication links between machines of
different architectures. Two major problems are (1) the concise represen-
tation of control messages and (2) the representation of large blocks of data.
Clearly, standards are needed in both areas. Some work has been done on
the first, but it appears that no attention is being given by standards com-
mittees to the second.

The relational model offers a partial solution to the representation of
large blocks of data--namely, how those blocks should be organized and
structured. In addition, however, we need standards dealing with the bit-
level representation of the various types of atomic data. I believe that the
standards committees should have considered the communication of large
blocks of data before trying to standardize on the relational language SOL.

446 • Present Products and Future Improvements

IBM has introduced a much-needed standard for its own systems of
different architectures. The IBM term is the systems application architecture
(abbreviated SAA). A major part of this IBM standard is communication
between databases managed on these different architectures. This commu-
nication involves relational commands and relational blocks of data, an
approach I advocated in 1970 in an internal memorandum addressed to a
senior IBM manager in Poughkeepsie, New York.

Communication concerning databases between machines acquired from
different vendors involves numerous problems of substantial difficulty.
Nevertheless, some software vendors are beginning to work on these prob-
lems. If they are successful in solving them, the market for their products
will be very substantial. The relational approach to database management
appears to be the cornerstone of every current attempt to solve this com-
munication problem.

Exercises

27.1 Present relational DBMS products fail to support numerous features
of the relational model. List six such features. For each omitted
feature, cite two benefits that users lose as a result.

27.2 Many relational DBMS products violate a very fundamental feature
in the relational model (a part of that model from its conception 20
years ago). What is this feature, and what harm does this violation
create?

27.3 Why will vendors probably be slow to correct the infidelities to the
relational model in their products, but will improve their architectures
rapidly to support concurrent processing of data from databases?

27.4 What kinds of products are needed on top of a relational DBMS? In
what ways is SQL an inadequate database-oriented language for these
products to use in communicating with the DBMS?

• C H A P T E R 2 8 m

Extending the

Relational Model

28.1 • R e q u e s t e d E x t e n s i o n s

I am frequently asked how the relational model can be extended to handle
(1) very large quantities of image data, (2) very large quantities of text, and
(3) computer-aided engineering design.

These kinds of data appear to require specialized user-perceived rep-
resentation and specialized kinds of retrieval capability. In other words, the
representation and retrieval are different from those of the relational model.
At present, I believe that the details of handling these kinds of data should
not be explicitly incorporated in the relational model, because (at present
and in the foreseeable future) only a minority of businesses and other
institutions are concerned with these three kinds of data.

Note, however, that the version support required in computer-aided
engineering is provided to a limited degree by the library check-out and
return features, Features RM-19 and RM-20 (see Chapter 12).

Instead of expanding the relational model to handle every specialized
need, the interfacing features of the relational model should be exploited
so that the usual kinds of data handled by the model can be enriched by
developing specialized invokable functions. It then becomes unnecessary to
introduce new, specialized features into the model. With respect to the
relational language, this means the ability to incorporate data extracted from
image bases, text bases, or design bases into the target part, the condition
part, or both of a relational query. Note also that each image base, text
base, and engineering base is likely to have descriptive data associated with
it that is relational in character.

447

448 • Extending the Relational Model

What are these interfacing features? First, Features RF-4-RF-7 in Chap-
ter 19 support user-defined functions that can be exploited in both the target
part and the condition part of a relational request. Second, if necessary, the
names of these functions, the names of the built-in functions, the names of
their arguments, and the values of the arguments can all be stored as regular
data in a relational database. Numerous other features of the model are
user-defined. Two of the most important are user-defined integrity con-
straints and user-defined extended data types.

Incidentally, the term "user" in "user-defined" includes database ad-
ministrators and even hardware and software vendors. Such vendors are
quite likely to offer a package of functions for use with a relational DBMS
in accessing image data.

2 8 . 2 • G e n e r a l R u l e s i n M a k i n g E x t e n s i o n s

Now let us discuss the introduction of new features into the relational model.
When extending the representation, manipulative, or integrity aspects of
either a DBMS or a relational language beyond the capabilities of RM/V2,
I strongly recommend that the problem be examined first at the level of
abstraction of the relational model. This means treating the relational model,
together with any necessary and relevant extensions, as a tool for solving
the problem.

This approach is recommended because it is more likely to yield an
extension that is minimal in complexity with respect to (1) user comprehen-
sion and (2) implementation. It is also more likely to yield an elegant solution
that avoids an unwarranted number of exceptions, each of which must be
handled by additional pieces of code in the DBMS, and many of which
burden users with exceptions that must be remembered. Such exceptions
require different cases to be handled in quite different ways.

Suppose that a simple extension to the relational model (e.g., adding a
new authorization feature) will suffice. Then, the extension should be made
unless in its present form it runs counter to other features of the relational
model. If and when this inconsistency is discovered, a revised version should
be created that is not inconsistent.

When examining the usefulness of the model together with any necessary
extensions for more complicated types of applications, the following 15
questions should be answered:

1. What is a precise statement of the general problem?

2. What mathematical tools are known to be relevant, and, using examples,
how can these tools be used?

3. Does any collection of these tools solve the whole problem without the
need for programming skill?

4. Is a collection of relations of the relational model an adequate, simple
representation tool for the problem?

28.2 G e n e r a l R u l e s m 449

5. Can a combination of relations, relational operators, and functions solve
the manipulative aspects of the problem, while avoiding programming
concepts such as pointers and iterative loops? Are any new operators
needed? If so, which ones?

6. Even though the functions may have to be coded by a programmer in
one of the host languages, can the interface between the functions, their
arguments, and the relational language protect the user from program-
ming concepts?

7. Is there any need for the names of invokable functions to be part of the
database? Can Feature RF-9 in Chapter 19 (repeated next) be helpful?

RF-9 D o m a i n s a n d C o l u m n s C o n t a i n i n g N a m e s

o f F u n c t i o n s

One of the domains (extended data types) that is built into the
DBMS is that of function names. Such names can be stored in a
column (possibly in several columns) of a relation by declaring that
the column(s) draw their values from the domain of function names.
Both RL and the host programming language support the assemblage
of the arguments together with the function name, followed by the
invocation of that function to transform the assembled arguments.

8. Is there any need for the names of arguments for these functions to be
part of the database? Can Feature RF-10 in Chapter 19 (repeated next)
be helpful?

RE-tO D o m a i n s a n d C o l u m n s c o n t a i n i n g N a m e s

o f A r g u m e n t s

One of the domains (extended data types) that is built into the
DBMS is that of argument names. Such names can be stored in a
column (possibly in several columns) of a relation by declaring that
the column(s) draw their values from the domain of argument names.
These arguments have values that can be retrieved either from the
database or from storage associated with a program expressed in
the HL.

9. Which integrity constraints must be supported?

10. Can a combination of relations, relational operators, and functions solve
the integrity aspects of the problem, while avoiding programming con-
cepts such as pointers and iterative loops? Are any new operators
needed? If so, which ones?

450 m Extending the Relational Model

11.

12.

13.

14.

15.

From the standpoint of (a) end users, (b) application programmers, and
(c) the DBA, what are the advantages and disadvantages of the relational
approach?

From each of these standpoints, what are both the manipulative and
integrity aspects of the problem?

How does this approach compare with other approaches (e.g., hierarchic
and network-structured approaches)?

Does a relational language that includes the extensions to support DBA-
defined integrity constraints (described in Chapter 14) require even more
extensions? If so, what are these extensions, and can programming
concepts such as iterative loops be avoided?

From the standpoint of the DBA, what are the advantages and disad-
vantages of the relational approach to solving the integrity aspects of
the problem when compared with other approaches?

With regard to Question 6, it is neither necessary nor desirable to require
that any functions that are involved be coded entirely in the relational
language, Such a requirement would necessitate extending the relational
language to become just another programming language that supports the
coding of all computable functions. The functions can be coded in the host
language, in the RE, or 8. combination.

In executing these steps, it is very important to use proper relations
(e.g., no duplicate rows), and to avoid the ordering of rows in any relation
whenever the ordering represents information that is not also represented
by values in the operand or result relations. It is also important to make
sure that the extensions comply with the mathematical closure feature,
Feature RM-5 (see Chapter 12). If any one of these recommendations is
ignored, the extensions will be incompatible with the relational model.

In this chapter, a bill-of-materials (BoM for brevity) type of problem is
used from time to time as an example. This problem is of significant scope
because it is a problem of wide ranging application. It is also a good example
to use as an illustration of how the model can be extended because there is
a very large market for a sound solution, and hence the extensions described
for this example are very likely to be made.

In 1987, I developed extensions of the relational model to handle the
BoM-type of problem, both from the manipulative point of view and from
the integrity preservation point of view. In 1988, I prepared a rather complete
technical paper on this subject. One of my motivations for this work was
that many people were glibly and falsely claiming that the relational model
was incapable of solving this kind of problem. Although I have solved the
BoM problem within the relational approach, the emphasis here is not on
the solution, but instead on the method by which the solution was created.
(The solution will be published elsewhere at a more appropriate time.)

28.4 Constructing Examples • 451

In tackling the BoM problem, I bring to bear the powerful tools of the
relational model and propose extensions to this model, especially additional
manipulative techniques and integrity-preservation operators. It should be
noted that the relational model requires that at least three aspects be
covered: structural, manipulative, and integrity. These aspects are now
discussed in turn.

28.3 • I n t r o d u c t i o n to t h e B i l l -o f -Mater ia l s P r o b l e m

In dealing with the BoM problem and similar problems, it is necessary to
establish a precise theoretical foundation, allowing the methods developed
to be handled correctly by computers. Therefore, relevant mathematical
tools should be selected, such as graphs, matrices, and relations, along with
their various operators.

The main purpose of using these tools is to understand the problem and
then invent commands to solve it. However, such commands should be
usable by people who do not understand either regular programming or the
underlying mathematics.

As in Chapter 5, the terms "graph" and "network" are used to denote
a set of points (called nodes) together with lines (called edges) that connect
pairs of these points. When every edge of the graph has an associated
direction, the graph is called a directed graph (or digraph, for brevity). It is
then possible to speak of the starting node of each edge and the terminating
node of that same edge. In the bill-of-materials problem, it is appropriate
to make the following assumptions:

• No edge has a single node that is both the starting node and the
terminating node of that edge.

• The number of edges that start at any selected node and provide an
immediate link to any other single node is either zero or one (no other
number is either necessary or acceptable).

A principal aim is to extend the relational model so that it can manage
a databasethat happens to contain (but not necessarily exclusively) the kind
of information to which the BoM-type of problem can be applied. Of the
tools just mentioned, if software packages for presentation purposes are
ignored, users will continue to see relations only. Graphs and matrices are
used to explain the relational operators and the integrity constraints, as well
as to show that implementation is feasible and potentially very efficient.

28.4 u C o n s t r u c t i n g E x a m p l e s

To attack the problem and later to explain the solution, it is necessary to
devise one or more examples that are simple enough to be readily under-

452 [] Extending the Relational Model

stood, but sufficiently complicated to contain the most serious problems
encountered in finding the solution. Even when, for explanatory reasons,
the examples are relatively simple, the methods described should be appli-
cable to very large relations such as would pertain in the industrial world.

In the connectivity part of the BoM type of problem, an example of this
type is the product-structure graph shown in Figure 28.1. This acyclic graph
represents the structure of several products by showing which parts are
components of which. For the sake of simplicity, single letters are used as
identifiers of distinct kinds of parts as they are assembled (including final
products). An edge of the graph indicates that a certain part is an immediate
component of some other part. The nodes labeled "product" represent
products that are constructed within the company and then shipped out to
customers. The nodes labeled "base" represent parts that are not constructed
in the company. Base parts are likely to be purchased from outside sources
and shipped in.

Whenever product structure for two or more products is represented by
a directed graph, each node represents a component and each edge repre-
sents the fact that one component is an immediate component of another.
That graph is certainly acyclic, but it is very unlikely to be hierarchic. Even
in the unlikelY case that it begins life as a pure hierarchy, it is unlikely to
remain that way. Thus, a general solution to the bill-of-materials problem
should not assume the hierarchic structure.

I claim to have a solution to the general bill-of-materials problem, one

Figure 28.1 The S truc ture of Severa l P r o d u c t s

A product B product

c

D E product
\ /

F

Jbase % N /

\
× base

M base

28.5 Representation Aspects • 453

that is very concise, that protects the user from iterative and recursive
programming, and that provides pertinent integrity constraints as well as
manipulative power. However, the recursive join described in Chapter 5 is
not a complete solution to this problem. (The more complete solution will,
of course, be published later.)

2 8 . 5 a Representation Aspects
The problem should be carefully examined to determine if the relations of
the relational model are adequate as a representation tool. If a hierarchy
or network is involved in the problem, it is not necessarily true that a
hierarchic or network data structure is essential, or even necessarily best.

In the BoM problem, the representation issue is how to represent
product structure; such structure is often treated as if it were a pure hier-
archy. Many observers draw the immediate conclusion that a DBMS is
needed that exposes hierarchically structured data to users. Each hierarchic
link would represent the fact that one type of part is an immediate component
of another. Recent proposals to ANSI are clear evidence of this.

A hierarchy may be an adequate representation in a few manufacturing
environments, but in manymprobably most- - i t is not adequate. In these
latter environments, a particular type of part may be an immediate com-
ponent of several types of parts, not just one. A second, all-too-rapid
conclusion is that a DBMS is needed that exposes network-structured data
to users.

In fact, in 1970 I presented [Codd 1970] an extremely simple represen-
tation of product structure in the relational model by means of the COM-
PONENT relation:

COMPONENT (S U B _ P # S U P _ P # Q1 Q2 ... Qn),

where SUB___P# denotes subordinate part number, S U P _ P # denotes su-
perior part number, and Q1, Q2, ..., Qn denote immediate properties of
each particular subordination.

Note that the columns SUB__P# and S U P ~ P # draw their values from
the same domain, that of part numbers. Incidentally, if (pl, p2, ql, q2, ...,
qn) is a row of the COMPONENT relation, then part pl is an immediate
component of part p2. The fact that part p is a non-immediate component
of a part p7 (say) is not directly represented in the COMPONENT relation.
m fact of this type can be easily derived by the recursive join operator (see
Feature RZ-40 in Chapter 5 and [Codd 1979]).

The following relational representation of product structure represents
the structure illustrated in Figure 28.1. To save space, the COMPONENT
relation is abbreviated AG (for acyclic graph), the relation is listed "on its
side," and the immediate properties of each edge are represented by a single
lowercase letter.

i

454 • Extending the Relational Model

Name of Column Names
e l a t i o n /

AG SUP A B C C
SUB D C D E
P a b c d

Typical Row

D E IF IG G B F H H H K L N
F F I gGI J N H H K L M N N X
e f h i j k 1 m n o p q

In a computer-oriented sense, this kind of representation in a relation
is adequate for all kinds of networks, whether they happen to be pure
hierarchies, acyclic nets, or nets in which cycles may occur. It is also a very
simple representation for a computer to manage. For the product-structure
network, the acyclic net is adequately general.

In the preceding paragraph, I use the term "computer-oriented sense"
because the relational representation is probably not the best for use by
human beings, for whom graphs drawn as pictures appear to be more
comprehensible and suitable. However, that subject can be discussed sep-
arately, and handled by separate code, when presenting data to people in a
form more consumable by people (e.g., the formatting of reports)~i t has
very little relevance to mechanizing the management of data.

28 .6 l M a n i p u l a t i v e A s p e c t s

It was clear at least 10 years ago [Codd 1979] that extensions to the relational
model would be required to handle the manipulative and integrity aspects
of the BoM application. This application involves manipulating relations
that represent acyclic directed graphs. Such manipulations usually involve
transitive closure. In the context of relations, transitive closure is expressed
in the form of recursive join. Feature RZ-40 in Chapter 5 is a simple version
of this type of join.

A slightly more complicated version of recursive join is needed for the
BoM application. This is because this application has a connectivity aspect
that deals with the path finding, and a computational aspect that deals with
machine times, personnel times, and costs of assembling each batch of
superior parts from a batch of subordinate parts. These two aspects should
be handled together in as few passes as possible over the COMPONENT
relation and other relations.

Whatever new operators are introduced, they should have relations as
both their operands and their results, in compliance with the operational
closure feature, Feature RM-5 (see Chapter 12). The attempt by the Oracle
Corporation to extend SQL to handle the BoM application is quite inadequate
in that the total effort is represented by the CONNECT command. This
command not only violates the closure feature, RM-5, but also fails to
handle many aspects of the BoM problem, including the integrity aspects.
Finally, in early releases the CONNECT command failed to work on views.

28.7 Integrity Checks • 455

2 8 . 7 m I n t e g r i t y C h e c k s

Normally, it is necessary to establish the kinds of integrity constraints that
are pertinent to the problem at hand. If these integrity constraints cannot
be expressed in terms of those types already supported in RM/V2, it becomes
necessary to invent extensions of RE and algorithms to support these exten-
sions under the covers of the DBMS.

In the case of the BoM example, RE extensions are needed, along with
sample algorithms for supporting these extensions. When a database contains
one or more relations, each of which happens to represent an acyclic graph,
certain types of integrity checking are needed. Three of these types are
discussed here: maintaining the acyclic constraint, checking for isolated
subgraphs, and, when applicable, checking hierarchic structure. However,
the discussion does not include the RM/V2 extensions or sample algorithms.

28.7.1 C h e c k i n g for U n i n t e n d e d Cyc le s

If, as a result of insertions or modifications, a relation that represents an
acyclic graph changes in such a way as to reflect a cycle in the graph, this
indicates that one part p is a component (not necessarily immediate) of
another q, and that q is at the same time a component (not necessarily
immediate) of p. This condition is normally deemed unacceptable.

Hence, an overall method of checking the whole relation is needed to
see whether it is acyclic. Furthermore, it is desirable to have a more localized
method of establishing incrementally that any insertion into or modification
of an acyclic relation does not introduce a cycle. In this way, the DBMS
can efficiently ensure that a graph that is initially acyclic remains acyclic.

28.7.2 I s o l a t e d S u b g r a p h s

Let us take the following definition: a subgraph of a graph G is any collection
of edges all of which occur in the graph G. In the relational representation
of graph G, each and every subset of that relation represents a subgraph of
G.

The two extremes are the largest subgraph (i.e., G itself) and the smallest
subgraph (i.e., the empty graph with no edges). If g and G are graphs, then
the complement of g in G is the set of edges in G but not in g; it is denoted
G - g. Note that G - g is a subgraph of G.

An isolated subgraph of G is any subgraph g of G that has no edges
connecting it to the complement of g in G, namely, G - g. Therefore, in
this case, the graphs g and G - g have no nodes in common. Clearly, an
isolated subgraph may itself contain an isolated subgraph. Hence, one may
sensibly speak of decomposing any given graph into a collection of minimal
isolated subgraphs, each of which has no isolated subgraph itself. Two kinds
of programs are needed: one intended merely to detect whether any subgraph

456 • Extending the Relational Model

of G is isolated, and a second that identifies all the isolated subgraphs of
G.

Actually, when a graph G has an isolated sUbgraph g, then G has at
least two isolated subgraphs: g and its complement with respect to G. In
practice, from a purely logical standpoint, it may not be necessary to separate
the isolated subgraphs by casting them into distinct relations. However, such
separation may yield a noticeable performance advantage if large amounts
of data are involved.

28.7.3 S t r i c t H i e r a r c h y

A strict hierarchy is not only free from cycles, but also has the property that
each node has exactly one parent, except for the topmost node which has
no parent at all. Occasionally, it may be necessary to check whether the
strict hierarchic structure has been maintained.

2 8 . 8 [] C o m p u t a t i o n a l A s p e c t s

A general requirement is that a user be able to supply some of the arguments,
that the database supplies the others, and that the DBMS invokes the
appropriate DBA-defined functions. It should be possible to execute this
activity by the user, together with the development of function definitions
by the DBA, without programming tricks such as loops. This can be achieved
within relational operators that scan graphs, whether these graphs are acyclic
or not.

The main requirement in the BoM application is to compute the cost,
the time, or both for manufacturing one quantum of the kind of part at the
terminating node, where a quantum is the smallest number of such parts
built in a single run. The result should be a relation that indicates not only
the previously cited cost, time, or both, but also the contribution to these
amounts from each of the edges that must be traversed in manufacturing
the pertinent part at node k. Then, the cost or time for N quanta can be
computed by a simple final computation.

Since each edge in the product structure graph is represented by a single
row in the COMPONENT relation, it is easy to arrange for appropriate
functions and arguments to be available for the edge-based computations
by including as columns in this relation the names of pertinent functions,
together with the names and/or values of arguments for these functions.
This represents an exploitation of Features RF-9 and RF-10 (re-introduced
in Section 28.2).

It may also be necessary to exploit node-based functions and their
arguments. This can be arranged similarly by including as columns in a
PART relation the names of pertinent functions, together with the names
and/or values of arguments for these functions. The PART relation has part
number P# as its primary key. This column contains at least all of the
distinct part numbers that occur in the COMPONENT relation.

Exercises a 457

28.9 a C o n c l u d i n g R e m a r k s

Once again, there has been no attempt in this chapter to give a full account
of the extensions of the relational model planned for the bill-of-materials
application. Instead, the focus was on the general task of making extensions,
using the BoM as an example.

To make sensible and acceptable extensions of the relational model, it
is necessary to be thoroughly familiar with the model. It is also necessary
to make a thorough mathematical investigation of the problem that these
extensions are designed to solve. One purpose of such an investigation is to
determine whether any extensions are needed at all. Thus, it should be clear
that, if a brilliant idea concerning an extension suddenly comes to mind,
there remains a substantial piece of work before an extension should be
proposed.

E x e r c i s e s

28.1 What are the 15 questions that should be answered when extending
the relational model to handle a particular type of problem?

28.2 Discuss whether conserving the mathematical closure of the relational
operators is (1) crucial, (2) fairly important, or (3) of no concern
whatsoever.

28.3 It has been claimed that the bill-of-materials problem involves the
processing of purely hierarchic data, and that therefore a hierarchic
DBMS (such as IBM's IMS) is ideally suited to the problem. Take a
position on this and defend it.

28.4 In what specific way does the CONNECT command of the Oracle
Corporation fail to satisfy the operational closure feature, Feature
RM-5? In what additional respect is the Oracle approach to solving
the bill-of-materials problem inadequate?

28.5 Supply two reasons why mathematical tools other than relations should
be explored whenever a significant extension of the relational model
is being contemplated.

a C H A P T E R 2 9 •

F u n d a m e n t a l Laws

of Database M a n a g e m e n t

This chapter could be regarded as summarizing in a new framework what
has been presented earlier. Actually, however, it is an attempt to generalize
upon the relational approach by stating concisely some 20 principles with
which any new approach to database management should comply. My de-
velopment of these principles was motivated by various object-oriented
approaches to database management.

What impressed me the most in these proposals was the clear lack of
knowlege of the relational model on the part of their authors. In any attempt
to invent an approach that is superior to the relational model, the first step
must be to learn about that model. Moreover, one should not assume that
the relational DBMS products of today or the corresponding manuals fairly
represent the model. As a corollary, it is highly unlikely that anyone who
has learned to use a relational DBMS solely from the vendor's manual really
knows how to use it.

The fundamental laws outlined in this chapter are principles to which
the relational model adheres. Any new approach to database management
intended to compete with the relational model should adhere to these
principles. It appears unlikely that any competitor will seriously challenge
the dominant position of the relational model today, because the model is
based on first-order predicate logic. Predicate logic took 2,000 years to
develop, beginning with the ancient Greeks who discovered that the subject
of logic could be intelligently discussed separately from the subject to which
it might be applied, a major step in applying levels of abstraction.

459

i

460 • Fundamental Laws of Database Management

This chapter attempts to discourage the outrageous claims that have
been made regarding "semantic data models." It is also an attempt to
encourage researchers to direct their attention to the overall problem of
database management, instead of considering only one small part, such as
data structures.

The fundamental laws are as follows:

.

2.

3.

4.

5.

6.

7.

8.

9.

i0.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

object identification;

objects identified in one way;

unrelated portions of a database;

community issues;

three levels of concepts;

same logical level of abstraction for all users;

self-contained logical level of abstraction;

sharp separation;

no iterative or recursive loops;

parts of the database inter-related by value-comparing;

dynamic approach;

extent to which data should be typed;

creating and dropping performance-oriented structures;

adjustments in the content of performance-oriented structures;

re-executable commands;

prohibition of cursors within the database;

protection against integrity loss;

recovery of integrity;

re-distribution of data without damaging application programs;

semantic distinctiveness.

Now, let us consider each of these laws in turn.

1. Object identification

A database models a micro-world. Each object about which information
is stored in the database must be uniquely identified, and thereby
distinguished from every other object. The DBMS must enforce this
law.

The unique identifier in the relational model is the combination of the
relation name and the primary-key value.

2. Objects identified in one way

Both programming and non-programming users perceive all objects to
be identified in exactly one way, whether these objects are abstract or
concrete and whether they are so-called entities or relationships.

Fundamental Laws of Database Management [] 461

So far, no one has come forward with definitions for the concepts in the
"whether" clauses that are reasonable, objective, precise, non-overlapping,
and unambiguous. It is extremely doubtful that the task is worthwhile
pursuing. In the relational model, such distinctions are avoided altogether.

3. Unrelated portions of the database

If the database can be theoretically split into two or more mutually
unrelated parts without loss of information, whether stored or derived,
there exists a simple and general algorithm, independent of access paths,
to make this split.

The database-splitting algorithm that is part of the relational model was
described in Chapter 3. It is heavily based on the domain concept.

4. Community issues

All database issues of concern to the community of users (except, for
the time being, performance goals and advice) should be:

a. Removed from application programs, if incorporated therein;

b. openly and explicitly declared in the catalog or in some part of the
database to which all suitably authorized users have access; and

c. managed by the DBMS. Such management includes enforcement in
the case of integrity constraints and authorization.

Much of the relational model is based on Fundamental Law 4. Such support
is clearly visible in the techniques used for the retention of database integrity
and in the authorization mechanism.

5. Three levels of concepts

Three levels of concepts must be distinguished: (1) psychological (the
user's level), (2) logical and semantic (the logical level), and (3) storage-
oriented and access-method (the physical level).

A data model should address the requirements of the logical level first
and foremost. Any attempt to define Level 1 or Level 3 must be accompanied
by transformations of concepts, structure, data, and actions upon data from
Level 2 to and from whatever level is added to Level 2. For a single logical
Level 2, there may be many instances of psychological Level 1 and many
instances of physical Level 3. Levels 1 and 2 do not represent different levels
of abstraction.

The relational model specifies the properties required at the logical level
(Level 2), and in such a way as to leave to the DBMS vendors how to treat
the physical level (Level 3) and the psychological level (Level 1). This model
defines the boundaries between the three levels very sharply; and it may be
the only existing approach that does this.

6. Same logical level of abstraction for all users

The level of abstraction supported by the DBMS for end users must be
the same as that supported for application programmers.

462 • Fundamental Laws of Database Management

This law runs counter to the practices of the past, when end users were
offered query products that were defined separately and packaged separately
from the DBMS. The designers of these query products tried to offer end
users a higher level of abstraction than the DBMS offered to application
programmers.

7. Self-contained logical level of abstraction

The logical level must be sufficiently complete that there is no need to
proceed to a lower level of abstraction to explain how a command at
the logical level works.

An example of an unsuccessful departure from this law was a DBMS product
that required those users with the responsibility of defining views to know
how the information was represented at a lower level of abstraction. In
effect, the product limited the defining of views to the DBA staff. While
these people should have the specialized skills for this job, they would
rapidly become overloaded with work that users should be able to do for
themselves.

8. Sharp separation

In the services offered by the DBMS, there must be a sharp separation
between aspects of Type 1 (the logical and semantic aspects), and those
of Type 2 (the storage-representation and performance aspects, including
access methods).

It is this sharp separation that makes the relational model a standard that
vendors can live with, while not restricting their freedom and inventiveness
to design competitive products. This separation is also of great value to
users since it protects their investment in training and in the development
of application programs.

9. No iterative or recursive loops

In order to extract any information whatsoever in the database, neither
an application programmer nor a non-programming user needs to de-
velop any iterative or recursive loops.

This law significantly reduces the occurrences of bugs in programs, and
sharply improves the productivity of application programmers and end users.
Great care has been taken to uphold this law in developing the relational
model, more than in any other approach.

10. Parts of the database inter-related by value comparing

All inter-relating is achieved by means of comparisons of values, whether
these values identify objects in the real world or indicate properties of
those objects. A pair of values may be meaningfully compared if and
only if these values are of the same extended data type. Inter-relating

Fundamental Laws of Database Management • 463

parts of the database is n o t achieved by means of pointers visible to
users.

It is safe to assume that all kinds of users understand the act of comparing
values, but that relatively few understand the complexities of pointers. The
relational model is based on this fundamental principle. Note also that the
manipulation of pointers is more bug-prone than is the act of comparing
values, even if the user happens to understand the complexities of pointers.

11. Dynamic approach

Performance-oriented structures can be created and dropped dynami-
cally, which means without bringing traffic on the database to a halt.
Automatic locking by the DBMS permits such activities without damage
to the information content of the database and without impairing any
transactions.

With pre-relational DBMS products, there was a significant dependence on
utilities--programs that changed the performance-oriented structures and
access methods, but that could be executed in the off-line mode only. In
other words, execution of any one of these utilities required that the database
traffic be brought to a complete halt. In contrast, the relational approach,
which is highly dynamic, can support the kind of concurrency architecture
designed to cope with non-stop traffic on the database and provide various
degrees of fault tolerance.

12. Extent to which data should be typed

The types of data seen by users should be strict enough to capture some
of the meaning of the data, but not so strict as to make the initially
planned uses and applications the only viable ones.

When a new database is created or when new kinds of information are
incorporated into an already existing database, the creator is almost always
unable to foresee all the uses to which the new kinds of data will be applied.
While suited to the development of programs, the object-oriented approach
probably imposes too many restrictions on the use of data through its typing
of data.

13. Creating and dropping performance-oriented structures

Performance-oriented structures, such as indexes, must be capable of
being created and dropped by either the DBA or the DBMS without
adversely affecting the semantic information, all of which should be in
the database or in the catalog.

At some time in the future, probably early in the next century, even the
DBA will be eliminated from this law as an acceptable agent for creating
and dropping performance-oriented structures. DBMS vendors will have
invented ways in which performance-oriented structures can be automatically

464 a Fundamental Laws of Database Management

adjusted to support changes in the database traffic, changes that last for a
reasonable time.

14. Adjustments in the content of performance-oriented structures

When data is inserted into a database, updated, or deleted from a
database by a user, it must not be necessary for that user or any other
user to make corresponding changes in the information content of
performance-oriented structures. It is the responsibility of the DBMS
to make these adjustments dynamically.

Most existing index-based relational DBMS products comply with this law
by adjusting the content of their indexes automatically whenever an insert,
update, or delete occurs on the data in the database.

15. Re-executable commands

Every command at the logical level of abstraction must be re- executable
and yield exactly the same results, provided the data operated upon by
the command remains unchanged in information content (i.e., un-
changed at the logical level). This means that results must be indepen-
dent of the data organization and access methods that are in effect at
lower levels of abstraction.

Most of the relational operators comply with this law. None of them is
affected in its results by the data organization and access methods that are
in effect at the time of execution.

16. Prohibition of cursors within the database

At the logical and psychological levels, users are not required to ma-
nipulate cursors that traverse data within the database. However, cursors
that traverse data extracted from the database are acceptable as a means
of providing an interface to single-record-at-a-time host languages.

Cursors within the database, a nightmare in the CODASYL approach to
database management, are the source of severe bugs that are very hard to
track down. In the debate in 1974 [Codd 1974], I used an example developed
by members of the CODASYL DBTG committee that was intended by
them to show off their approach. I demonstrated how the manipulative
activity in this example could be reduced from eight pages of DBTG and
COBOL code to just one statement in a relational language. It is interesting
to note that, five years later, someone discovered that there were two bugs
in the CODASYL program that were directly related to cursor manipulation.

Cursors that traverse data extracted from a relational database are much
easier to manage correctly. Such cursors are supported in several DBMS
products to enable single-record-at-a-time host languages such as FORTRAN,
COBOL, and PL/1 to interface with relational DBMS. However, these cursors
are troublesome in the management of distributed databases. The file is a

Fundamental Laws of Database Management m 465

more promising package for a relational DBMS to use in delivering data to
programs written in these languages.

17.

18.

Protection against integrity loss

With the help of the DBA, the DBMS must provide strong protection
against loss of data integrity.

Recovery of integrity

The support provided for correction of any integrity loss actually expe-
rienced must include an audit log that is readily transformable into a
database of the same kind as that handled by the pertinent approach.

Laws 17 and 18 reflect the fact that it is easier to prevent loss of database
integrity than to correct such loss. Even with an audit log, trying to correct
loss of integrity is often a painful task. Without such a log, it is an impossible
task in most cases. Much of the emphasis in the relational model is on
prevention of such loss.

19. Re-distribution of data without damaging application programs

In a DBMS capable of managing distributed data, it should be possible
to re-distribute the data in a highly flexible manner without affecting
the logical correctness of any application programs.

The relational model appears to be the only approach known today that is
capable of supporting this law. For details, see Chapters 24 and 25.

20. Semantic distinctiveness

Semantically distinct observations, whether derived or not, must be
represented distinctly to the users. In any database, all of the data
redundancy that is made visible to the users must be both introducible
and removable by those users who are authorized to do so, without
affecting the logical correctness of any application programs and the
training of interactive users.

In all base and derived relations of the relational model, duplicate rows are
prohibited. Note that data may superficially appear to be redundant, but
still not be redundant. The crucial question is' If the data were removed,
would information be lost?

By now, the reader should be in a good position to counter the frequently
held opinion that the relational model is nothing more than its structures,
and that these structures are merely tables. How could the single concept
of tables comply with all 20 of the principles just outlined? A thorough
reading of the preceding 28 chapters should enable the reader to determine
exactly how the relational model adheres to each and every one of these
laws.

466 • Fundamental Laws of Database Management

Exercises

29.1 Taking each of the 20 fundamental laws in turn, list the features of
RM/V2 that ensure compliance with the law.

29.2 Choose any approach to database management other than the rela-
tional model. Repeat the same 20 exercises for the approach selected.
Then compare this approach with the relational model.

• C H A P T E R 3 0 •

C l a i m e d A l t e r n a t i v e s

to t h e R e l a t i o n a l M o d e l

After the publication of my papers on Version 1 of the relational model in
the period 1969-1973, numerous articles began to appear proposing new
approaches to database management. Frequently, the articles began with
the false claim that the relational model contains no features for representing
the meaning of the data.

Often these new approaches were no more than new kinds of data
structure or data typingmoften new to the database management field only.
In other words, the authors overlooked the need to specify query and
manipulative operators, integrity constraints, authorization, commands for
the DBA, a counterpart to the catalog, distributed database management,
user-defined data types, and user-defined functions. That is why I call each
of them an "approach," and avoid using the term "data model."

Occasionally, mistakes of the past are revisited, apparently by authors
who have no knowledge of the DBMS products of the past. Examples of
such mistakes are repeating groups and representing information in many
distinct ways. These mistakes add complexity but not generality.

In this chapter, only five kinds of approaches are discussed:

1. the universal relation approach (UR);

2. the binary relation approach (BR);

3. the entity-relationship approaches (ER);

4. the semantic data approaches (SD);

5. the object-oriented approaches (OO).

467

468 • Claimed Alternatives to the Relational Model

The main objective of this chapter is to improve understanding of the
relational model, and especially to indicate why the relational model is the
way it is. A lesser objective is to review these approaches as replacements
for or alternatives to the relational model. The purpose is not to dismiss all
the ideas contained in these approaches. Each one, except ER, contains
some good ideas, some of which are quite eligible to be attached to the
relational model.

My comments about UR and B R tend to be quite precise becausethese
approaches are precisely defined. On the other hand, my comments about
ER, SD, and OO tend to be quite imprecise because at present these
approaches are imprecisely defined with respect to database management.

30.1 • T h e U n i v e r s a l R e l a t i o n a n d B i n a r y R e l a t i o n s

These two approaches to database design and management represent op-
posite extremes. UR takes all the relations in a regular relational database
and glues them together by means of one operator (e.g., natural join based
on primary and foreign keys) to form a single relation of very high degree
that is claimed to contain all the information in the given database. BR
splits every relation into a collection of binary relations (i.e., relations of
degree two) Thus, the universal relation can be regarded as a "macro"
approach; the collection of binary relations, as a "micro" approach.

Both approaches are examined with the principal aim of shedding more
light on Why the relational model is based on a middle-of-the-road ap-
proachmnamely, a collection of relations of assorted degrees. This means
that any base or derived relation of the relational model can be of any
degree n, where n is a strictly positive integer (n > 0).

In contrast to the relational model, UR requires just one relation of a
very large degree (the degree must be large enough to accommodate all of
the information in the database). BR requires relations, each of which is of
degree one or two only.

As is apparent from the referenced papers (and perhaps this chapter),
it is questionable whether either UR or B R is really comprehensive enough
in tackling the total problem of database management to be treated as a
data model. In the case of UR, it is also questionable whether the approach
deserves the label "universal."

In what• follows, I point out claims that are clearly false. In doing so,
my aim is not to discourage university researchers from pursuing their lines
of investigation, but rather to clarify these approaches and their relationship
to the relational model.

30.2 • W h y t h e U n i v e r S a l R e l a t i o n W i l l N o t R e p l a c e
t h e R e l a t i o n a l M o d e l

The "universal relation" is just One of the very many views Supported by
the relational model. For detailed information, see [Maier, Ullman, and

30.2 W h y t h e U n i v e r s a l R e l a t i o n Wil l N o t R e p l a c e . . . • 469

Vardi 1984]. The assertion has been made [Vardi 1988]~and the very title
of [Maier, Ullman, and Vardi 1984] makes this same c la im~tha t the uni-
versal relation can replace the entire relational model. This assertion is quite
preposterous. I now present eight solid reasons for stating this.

In [Vardi 1988], the author complains about the need for users to
"navigate" through the logical parts of a relational database, and proposes
the Stanford University "universal relation" as a means of protecting users
from this burden. The "universal relation" fails completely to provide an
alternative to the relational model. I am not arguing, however, that Stanford
University should never have undertaken research into the "universal rela-
tion"; there may be some useful by-products of this research. Nevertheless,
I do think that the term "universal" is a complete misnomer-- the reason
why it is enclosed in quotation marks in this chapter.

In [Codd 1971d], I proved that collectively the algebraic operators of
the relational model are as powerful as first-order predicate logic in retrieving
information from a relational database. Indeed, if the several relations in a
relational database are transformed into a single relation, the resulting
relation, together with operators that can interrogate a single relation only,
is not as powerful as the relational model. In the following subsections, eight
reasons are presented for asserting that UR will not replace the relational
model.

3 0 . 2 . 1 T h e O p e r a t o r s

First, let us look at an ordinary relational database containing several
relations, and consider how it might be transformed into a single "universal
relation." Vardi and others suggest the use of either natural join or equi-
join (it does not matter which is chosen) as the "connecting function." This
function is presumably key-based~in other words, it joins by comparing a
primary key with a foreign key. Immediately, we are struck with the notion
that there are 10 distinct kinds of theta-joins based on the following 10
comparators:

o

2.

3.

4.

5.

6.

7.

8.

9.

10.

EQUAL TO

NOT EQUAL TO

LESS THAN

LESS THAN OR EQUAL TO

G R E A T E R THAN

G R E A T E R THAN OR EQUAL TO

GREATEST LESS THAN

GREATEST LESS THAN OR EQUAL TO

LEAST G R E A T E R THAN

LEAST G R E A T E R THAN OR EQUAL TO

470 • Claimed Alternatives to the Relational Model

In constructing the "universal relation" using equi-join, what happened
to the nine other kinds of theta-joins? Moreover, what happened to relational
division, the algebraic counterpart of the universal quantifier?

30 .2 .2 J o i n s B a s e d o n K e y s

The construction of a "universal relation" from a given relational database
involves the repeated application of either natural join or equi-join based
on the keys of the relational model. The "universal relation" is based on
the false assumption that two classes of entities (e.g., suppliers and types of
parts) have only one relationship between them. This assumption is proved
false by citing just one counter-example: each supplier can be related to
each type of part by its capability of supplying that part; each supplier can
also be related to each type of part by its possibly several, actual deliveries
of that part in response to a sequence of orders for the part.

30 .2 .3 J o i n s B a s e d o n N o n - k e y s

If only key-based joins are used in constructing the "universal relation,"
then it is possible that hundreds of joins that are not based on keys have
been overlooked. An example would be the query: "Find the employees
who reside in a city in which the company owns one or more warehouses."
Assume that this query is applied to a frequently encountered database in
which city is not a primary key because of the company's lack of interest in
cities as objects whose properties need to be recorded. In the relational
model, this query then involves an equi-join based on a non-key. I fail to
see how a user would make this request against a "universal relation" without
applying equi-join as an operator to two parts of the allegedly "universal
relation."

Vardi claims the "universal relation" reduces the burden on users of
choosing which operators to apply, and choosing the relations and attributes
to which these operators should be applied. This claim may be true when
only one operator is involved and it happens to match the one used in
constructing the "universal relation." However, when there may be several
operators involved in a single query and at least one of them does not match
the construction operator, the user is faced with significantly more com-
plexity than with the relational model.

30.2.4 Cycl ic K e y S t a t e s

It is not at all clear how the "universal relation" copes with what are often
called cyclic key states. Suppose that a relation R1 has a primary key PK1,
while a relation R2 has a foreign key FK1 drawing its values from the same
domain as PK1. Suppose also that the primary key of R2 is PK2, and that
R1 contains a foreign key FK2 drawing its values from the same domain as

30.2 Why the Universal Relation Will Not Replace . . . • 471

PK2. Then, R1 and R2 participate in a cyclic key state, in which the cycle
is of size two.

An example may clarify this situation. Suppose that we are using the
relational model and we have the following two relations"

EMP (E # . . . DEPT# . . .),

with primary key E# , and

DEPT (DEPT# . . . M G R # . . .),

with primary key DEPT#. EMP identifies and describes employees, E # is
the employee serial number, DEPT# is the department identifier, DEPT
identifies and describes departments, and M G R # is the employee serial
number of the department manager.

Suppose that (1) DEPT# in EMP is a foreign key with respect to the
primary key DEPT# of the DEPT relation, and that (2) M G R # in DEPT
is a foreign key with respect to the primary key E # of the EMP relation.
Then, these two relations have a two-step cyclic key state.

Clearly, such cycles can be of size greater than two. Cycles are not only
possible, they occur rather frequently. Any solution to this problem in the
context of the "universal relation," which requires data to be repeated in
different parts of such a relation, is unacceptable as a confusing and unnec-
essary form of redundancy.

30.2.5 Insertion, Deletion, and Updating

As a vehicle for inserting information, deleting, and updating, the "universal
relation" is replete with problems. It is a relation that is not even in third
normal form, let alone fifth. One can therefore expect to encounter update
anomalies galore [Codd 1971b]. If the connecting function used in construct-
ing the "universal relation" were other than a key-based join, there would
be the serious possibility that it could not be updated at all.

30.2.6 Coping with Change

The ability of a data model to cope with change must be taken into account.
Nothing is as certain as change in requirements as time goes on. A particular
relation in the relational model may become obsolete through lack of use
or for other reasons (perhaps it is going to be replaced by two or more new
relations with different descriptions).

The relation may then be simply dropped, and all remaining users of
that relation warned of the drop. Unless that relation happens to be a
boundary member of the "universal re la t ion"~which is improbable~the
data will have to be extracted from some non-boundary position of the
"universal relation" and it will be necessary to reconstruct this relation

472 • Claimed Alternatives to the Relational Model

completely. A similar remark applies to the counterpart in the "universal
relation" of a newly introduced relation in the relational model. In either
case, does this reorganization impair the application programs?

30.2 .7 N o C o m p r e h e n s i v e D a t a M o d e l

No data model has been published for the UR approach. To be compre-
hensive, such a data model must support all of the well-known requirements
of database management. Until this occurs, companies intending to acquire
a DBMS product should be concerned about the risk of investing in the
"universal relational" approach.

As an aside, Vardi's use of the term "access path" is a complete
departure from the usual use of this term. Usually, it can be assumed that,
when two or more alternative access paths can be used to extract certain
data from a database, the only difference between those access paths is
performance. There is no semantic distinction between the paths. In a
relational DBMS, it is the optimizer that selects access paths with the
objective of good performance. Vardi's "access paths" are quite different
because distinct paths yield distinct results (all of the paths to which he
refers are semantically distinct).

30.2 .8 U R N o t E s s e n t i a l for N a t u r a l L a n g u a g e

The allegation in [Vardi 1988, page 85] that a "universal relation" is essential
as a natural-language interface is quite incorrect. Curiously, advocates of
the binary relational approach make the same claim. Certainly, at least one
of the claims must be incorrect. It is my belief that both are incorrect.

During the period 1974-1977, I led the development of a prototype
translator from English to a relational language, and from the relational
language back into precise English. This two-way translator was accompanied
by a third component that supported clarification dialogue. Incidentally, I
believe that it is very risky to use a natural-language package with any l~ind
of database unless the package supports (1) clarification dialogue, and (2)
before database access, a routine check by the system that it understands
the user's request by telling the user in the same natural language precisely
its interpretation of the user's request.

All three components were based on the relational model and on pred-
icate logic. The prototype, called Rendezvous [Codd 1978], was successfully
tested in 1977 against 30 subjects with wide variations in their knowledge
of computers and of English. Some subjects tried as hard as they could to
beat the system, but failed. This evidence suggests that the natural-language
claims of both the UR and the B R approaches are false.

30.3 Why the Binary Approach Will Not Replace . . . • 473

30.2.9 Concluding Remarks Regarding UR

In conclusion, I would not rule out the "universal relation" as one of the
many views that should be supported in a relational DBMS, but I consider
it incapable of replacing the relational model. I also believe that for many
purposes it is too complicated as a relational view, and it is not likely to be
popular even in that restricted role. The question remains: What does the
'universal relation' accomplish that simpler views in the relational model do
not?

30.3 • Why the Binary Relation Approach Will Not
Replace the Relational Model

In Chapter 1, a false claim found in many mathematical textbooks was
briefly discussed--namely, the assertion that every problem expressed in
terms of relations of degree higher than two can be reduced to an equivalent
problem in which the relations are of degree either one or two. This false
idea has appealed to several people doing research in database management.
Why not perceive and manipulate the information in the database as a
collection of unary and binary relations?

I believe that this approach was first proposed in the IBM Hursley
Laboratory in England; a prototype [Titman 1974] was built there about
1973. The approach recently re-surfaced at the University of Maryland [Mark
1988]. One attractive feature is that it is easy to get a prototype into
operational state because relatively few operators must be implemented,
and these few are quite simple to implement.

Users are faced with serious problems, however, if the approach is
applied to the kind of large-scale databases encountered in the commercial
and industrial world. If the binary relations are perceived as tables, they are
two-column tables.

In what follows, nine reasons are discussed for the assertion that the
binary-relation approach cannot replace the relational model. For this pur-
pose, it is useful to have two examples, each representing just a portion of
a database.

Consider a simple example: if an insurance-policy relation in the rela-
tional model has a single-column primary key (usually the policy number),
together with 100 columns each containing a simple immediate property of
the policy, then in the binary relationship approach there will be 100 tables
each with two columns. Each table carries the policy number to identify the
policy, together with just one simple immediate property.

Now consider a more complicated example: in a suppliers and parts
database, suppose that there is a capability relation indicating in each row
that a specified supplier can supply a specified quantum of a specified kind
of part within a specified time at a specified cost. Note that the primary key

474 • Claimed Alternatives to the Relational Model

of this relation is composite. It consists of the combination of supplier serial
number and part serial number.

To represent this n-ary relation in terms of binary relations, the simple
approach adopted in the insurance-policy case (i.e., repetition of the primary
key along with each of the simple immediate properties) is no longer viable
because each of those relations would be ternary (i.e., of degree three).
One solution, perhaps the simplest, is to introduce an extra (artificial) single-
column primary key in the n-ary version, and then convert that relation into
a collection of binary relations, just as in the insurance case. Unfortunately
the users will have to know about this artificial primary key in order to
manipulate these binary relations properly.

30.3.1 N o r m a l i z a t i o n C a n n o t B e F o r g o t t e n

In [Mark 1988], the author claims,

"The model [he is referring to the BR approach] seems to be easy
for non-technical people because it avoids normalization and because
schemata defined in terms of the model can be read almost like
natural language."

In database design, normalization can certainly be relegated to an an-
alytical or checking stage, but it cannot be avoided altogether if surprising
anomalies in insertions, updates, and deletions are to be avoided when use
of the database begins. Join dependencies, difficult to discover even in the
regular relational model, are even more difficult to discover in B R.

Corresponding to any given n-ary relational version of a database, there
is clearly a binary relational counterpart. Consider two n-ary versions of a
common conceptual database, one thoroughly normalized (say B1), and the
other incompletely normalized (say B2). Each of these databases has a
binary relational counterpart (say b l and b2, respectively).

Unfortunately, in the binary relational form it is extremely difficult to
see that b2 is effectively incompletely normalized, and that under certain
conditions insert, update, and delete anomalies will occur. Thus, the claim
that "normalization of n-ary relations can be forgotten" [Mark 1988] is false.
Moreover, it is harder to cope with this aspect if the database designer is
constrained to think in terms of binary relations only.

30.3 .2 M u c h D e c o m p o s i t i o n u p o n I n p u t

When information about an insurance policy is entered into the insurance
database, a good proportion is entered in a single operation. Otherwise,
questions such as, "To whom does this policy belong?, Does the policy-
holder satisfy our minimum requirements for this kind of policy?," and

30.3 Why the Binary Approach Will Not Replace . . . • 475

"How frequently does the policyholder have to be billed?" could arise and
be unanswerable.

If users are to perceive this policy information as part of a collection of
binary relations, it is likely that the DBMS, either once upon entry or else
many times, whenever the information is manipulated, must decompose the
policy information into small pieces to fit into the large collection of binary
relations. Even the policyholder's home address and work address each must
be decomposed into at least six separate items: (1) apartment or suite number
within a building, (2) building number within a street, (3) street name within
a city, (4) city name within a state, (5) name of state, and (6) zip code.
Presumably this task of decomposition is a burden on the DBMS, not the
user. However, no matter where the burden falls such decomposition is
completely unnecessary.

An important part of the difficulties encountered with the BR approach
is the fact that composite domains, composite columns, composite primary
keys, and composite foreign keys all must be abandoned (see Section 30.3.5).
From the user's point of view, the units of information that are atomic with
respect to a DBMS based on the BR approach are frequently too small to
support concise and clear thinking.

30.3.3 Extra Storage Space and Channel Time

DBMS prototypes of the BR type tend to store the data in the form of a
two-column table for each binary relation. The net result is that the storage
spaceconsumed for a BR database is about double what would be required
for a regular relational database.

The extra bits have to be transmitted to and from the processing units
across channels. Therefore, the channel load will be significantly greater
than that experienced if the structure and operators of the relational model
were used.

30.3.4 Much Recompos i t ion upon Output

For obvious reasons, business and government reports are rarely, if ever,
presented as a collection of two-column tables. Thus, the development of
reports and replies to queries by any DBMS based on the binary relational
approach entails putting together many items that are perceived by users as
separately tabulated items residing in tables that have just two columns.
This recomposition entails either many key-based natural joins of carefully
selected binary relations, or else an extended version of natural join that
collects all the desired properties into a single n-ary relation [Codd 1979].

Considering together the reasons in Sections 30.3.2 and 30.3.3, one
wonders what the purpose of decomposition was, if it is followed later by
as many recompositions as there are reports to be generated and queries
for which replies are needed.

476 • Claimed Alternatives to the Relational Model

30.3.5 Composi te Domains , Composi te C o l u m n s ,
and Composi te Keys Abandoned

The concepts of composite domains, columns, and keys fit quite naturally
into the relational model. These concepts appear to have been abandoned
in the binary relational approach. Any attempt to fit them into this approach
is bound to result in bending the approach and in unnecessary complexity.
The example of a person's home address or work address cited earlier
illustrates the need for composite domains and columns. The example of
the capability relation cited earlier also illustrates the need for composite
domains and composite primary keys, and therefore for composite foreign
keys.

The absence of these concepts from the binary relational approach means
that users must manipulate information in the database in terms of pieces
that are smaller than the user's customary perception. Thus, it should be
expected that user productivity will decrease.

30.3.6 The Heavy Load of Joins

The binary relational approach places an unnecessarily heavy load of joining
on the DBMS. In the regular relational model, database designers occa-
sionally must de-normalize parts of the database to reduce the time spent
in executing joins and, in this way, obtain good performance. The binary
relational approach is likely to cause an order-of-magnitude increase in the
execution of joins over that required by the relational model.

30.3.7 Joins Restricted to Entity-based Joins

In [Mark 1988], the author says that in the binary relation approach, "Re-
lationships between object types are derived through entity-joins rather than
symbol-joins." This is equivalent to taking the regular relational model and
permitting key-based joins only, since keys denote objects, while non-keys
denote properties of objects. All joins based on non-keys would be prohib-
ited. This is a very severe restriction that would be hard to justify.

Consider the query" Find the employees who live in a combination of
city and state in which the company has a warehouse. Given Mark's ground
rules, this query could not be handled by a binary relational DBMS, unless
every city and state combination were already treated as an object (having
its own immediate properties), and consequently this combination would
constitute the primary key in some relation.

When designing a database, it is quite likely that the designer will choose
to treat the city and state combination as a combination of properties of
other kinds of objects. Normally, this combination of city and state will be
treated as an object only if the company's business heavily depends upon
data maintained about cities (e.g., population, size of market, crime rate,
and distribution of wealth).

30.4 The Entity-relationship Approaches • 477

30.3.8 I n t e g r i t y C o n s t r a i n t s H a r d e r t o C o n c e i v e a n d E x p r e s s

In the relational model, each case of referential integrity frequently involves
two distinct relations (although more than two can be involved). Many user-
defined integrity constraints can also be expected to involve two or more
distinct relations. In the binary relational approach, each of these integrity
constraints is likely to involve even more distinct binary relations, and
therefore be harder to conceive, more cumbersome to express, and entail
more overhead for the DBMS, thus reducing its performance.

As an example, consider any referential integrity constraint that involves
a composite key in the relational model. As a second example, consider a
user-defined integrity constraint that requires the company's salespeople to
be based in city and state combinations for which the market is at least 10%
of the company's total market in the immediately preceding year.

30.3.9 No Comprehens ive Data Model

So far, the BR approach lacks a solid foundation. No data model for it has
been published that supports all the well-known requirements of database
management. Until this occurs, companies intending to acquire a DBMS
product should be concerned about the risk of investing in the binary
relational approach.

3 0 . 4 • T h e E n t i t y - R e l a t i o n s h i p A p p r o a c h e s

Numerous approaches based on splitting objects into two types, entities and
relationships, have been proposed. Many of the authors of these approaches
identify P.P. Chen as their source of inspiration [Chen 1976], even though
he was by no means the first to propose such a split. In fact, this kind of
split was an inherent part of the thinking that went into all single-record-at-
a-time, pre-relational approaches to database management. Of the five
approaches discussed in this chapter, this one is clearly the winner in terms
of its lack of precise definitions, lack of a clear level of abstraction, and
lack of a mental discipline. The popularity of ER may lie in its multitude
of interpretations, as well as its use of familiar but obsolete modes of thought.

The major problem in the entity-relationship approach is that one per-
son's entity is another person's relationship. There is no general and precisely
defined distinction between these two concepts, even when discussion is
limited to a particular part of a business that is to be modeled by means of
a database. If there are 10 people in a room and each is asked for definitions
of the terms "entity" and "relationship," 20 different definitions are likely
to be supplied for each term.

A good example is an airline flight. An accountant is likely to think of
this as an entity. Someone responsible for airplane scheduling or crew

478 n Cla imed Al ternat ives to the Relat ional Mode l

scheduling is likely to think of it as a relationship between a type of aircraft,
a flight route, a crew, and a date.

A second problem with this approach is that a relationship between
objects is not supposed to have immediate properties that are recorded in
the database. It should be very obvious that relationships can have any
number of immediate properties. Consider as an example a database con-
taining information about parts and suppliers. Two quite distinct relation-
ships between parts and suppliers are as follows:

1. the CAPABILITY relation, in which each assertion states that a partic-
ular supplier can supply a particular kind of part;

2. the SHIP relation, in which each assertion states that a particular supplier
has supplied a particular kind of part to the pertinent company.

Each of these relations is likely to have a distinct collection of numerous
immediate properties. For example, CAPABILITY may have estimated
speed of delivery, the number of units supplied as a non-divisible package,
and the cost of each such package. SHIP may have date of shipment, quantity
of parts shipped, and an identifier for the destination warehouse.

Even though a relationship may begin life with no immediate properties,
it is extremely unwise to establish the database design and the development
of application programs on the assumption that it will stay that way forever.

If it is proposed to handle the manipulation of entities and relationships
by means of distinct commands, then the vocabulary for retrievals, insertions,
updates, and deletions is doubled over the vocabulary in the relational
model. If no manipulative distinctions are made between entities and rela-
tionships, why are they conceived as two different kinds of information? Is
this just one more example of a distinction that leads to an increase in
complexity, but no increase whatsoever in generality?

No data model has yet been published for the entity-relationship ap-
proach. To be comprehensive, it must support all of the well-known require-
ments of database management. Until this occurs, companies intending to
acquire a DBMS product should be concerned about the risk of investing
in the entity-relationship approach.

30.5 • The S e m a n t i c Data A p p r o a c h e s

The claim that an approach is semantic is a very strong claim indeed, strong
enough to be considered extravagant. One test that I believe should be
made to check such a claim is as follows. Imagine that the computer system
is equipped with the five human senses: touch, smell, vision, hearing, and
taste. If such a system were also equipped with a DBMS based on some
approach that is claimed to be semantic, together with a database concerning
suppliers, parts, warehouses, projects, and employees, could this system use
its five senses and the database to distinguish these objects from one another
in its environment, and recognize the type of each object?

30.6 The Object-oriented Approaches • 479

While there have been numerous approaches to database management
claimed to be semantic, the one discussed here is that of Hammer and
McLeod [1981]. This particular case is chosen, because one United States
vendor, Unisys, claims that its product INFOEXEC is based on it, and that
"it will become the preferred approach to database management in the
1990s" [Balfour 1988]. The major difficulties encountered by any approach
that is claimed to be exclusively semantic are two-fold:

1. there is no known, totally objective boundary to the world of semantics;

2. there is no known way to replace predicate logic by semantic machinery.

Of course, either or both of these states of affairs could change in the
future, but in neither case is it likely to be an overnight change. Until such
a change occurs, however, both of these states represent sound reasons for
all of us to avoid claims that a semantic approach can replace the relational
model.

In [Hammer and McLeod 1981, page 353], the authors make the mistake
of characterizing the relational model as "record-oriented." They proceed
to declare that "it is necessary to break with the tradition of record-based
modeling, and to base a database model on structural constructs that are
highly user-oriented and expressive of the application environment." This
completely overlooks all the integrity constraints of the relational model, as
well as their definition by linguistic means independently of application
programs. The linguistic approach to defining these aspects of the meaning
of data is much more powerful than any known structural approach. It
represents a strong step forward from the old hierarchic and network-
structured approaches.

In [Balfour 1988], the author lists several properties of the relational
model that he alleges are "fundamental weaknesses." I find his supporting
case for the allegations to be quite shallow and completely unconvincing.
He interposes some criticisms of current SOL and current implementations
of the relational model. I agree with his criticism of SOL, but I believe his
assertion that "current implementations of the relational model have not
performed as well as the older database technologies in high-volume on-line
transaction-oriented environments" is not only false [Codd 1987a], but also
irrelevant to his defense of semantic data approaches.

No data model has yet been published for the semantic approach. To
be comprehensive, it must support all of the well-known requirements of
database management. Until this occurs, companies intending to acquire a
DBMS product should be concerned about the risk of investing in the
semantic approach.

30 .6 • T h e Object-oriented Approaches
There are several different approaches in the object-oriented category, and
no vendor has yet announced a database management product based on one

480 • Claimed Alternat ives to the Relational Model

of them. The ideas in this kind of approach stem from the need in program-
ming languages for more thoroughly defined and more abstract data types.
In particular, the concept known as abstract data type is the key to most of
the research in this area. Such ideas are clearly a step forward in the area
of programming languages, but it is not at all clear that they represent a
step forward in the technology for database management.

As time progresses, a database is bound to change in terms of the types
of information stored in it. In fact, there is likely to be a significant expansion
in the kinds of information stored in any database. Such expansion should
not require changes to be made in application programs. Some kinds of
information may be dropped. When any drop occurs, there should be a
simple way to detect (1) all the application programs that are adversely
affected, and (2) all the commands within each such program that are
adversely affected.

If each of these requirements is met, the approach can be claimed with
some credibility to be adaptable to change. When applied to database man-
agement, the object-oriented approaches take a very restrictive and non-
adaptable approach to the interpretation and treatment of data.

It is important to ask whether any object-oriented language exists that
is as high in level as the relational languages. Without a language that
conveys the user's intent at a high level of abstraction, how can the system
optimize the sequence of minor operations and the choice of access paths
when executing a request? The answer to this question is particularly crucial
when distributed database mangement is involved.

Can the OO approach to database management support distribution
independence? In other words, can application programs remain unchanged
and correct when a database is converted from centralized to distributed,
and later when the data must be re-distributed? What support does the OO
approach provide for built-in and user-defined integrity constraints that are
not embedded in the application programs?

No comprehensive data model has yet been published for the object-
oriented approach. To be comprehensive, it must support all of the well-
known requirements of database management. Until this occurs, companies
intending to acquire a DBMS product should be concerned about the risk
of investing in the object-oriented approach.

30 .7 • C o n c l u d i n g R e m a r k s

Both the SD and the OO approaches emphasize the need for DBMS products
to support generalization or type hierarchies. I agree that such support is
necessary, and showed with RM/T [Codd 1979] how type hierarchies could
be supported without making the data structure concepts more complicated.
This is a feature of RM/T that is very likely to drop down into RM/V3
within the next decade.

The five approaches to database management examined in this chapter
are just five of many that are.now competing for a place in the sun.

Exercises • 481

Development of the relational model has made researchers aware of the
impact a data model can have on the field of data processing. Each new
model that comes along must be carefully examined from the standpoint of
its technical merit, usability, and comprehensiveness. New theoretical con-
tributions to the field should also be examined carefully, not glibly cast aside
as just theory, and therefore not pract ical~a judgment made many times
in the last 20 years about the relational model.

E x e r c i s e s

30.1

30.2

30.3

30.4

30.5

30.6

30.7

joins and relational division are Occasionally criticized for requiring
Users to engage in "logical navigation." This presumably means
"finding their way through a logical data model." Discuss the claimed
alternatives to logical navigation, and your position regarding how
complete each alternative is and its technical pros and cons.

Does the "universal relation" provide a means of protecting users
from the multi-relation operators of the relational model? Defend
your position on this issue.

When insertions, deletions, and updates are applied to the "universal
relation," what problems are encountered?

When a new relation is created in a relational database, what is the
counterpart activity in a "universal relation?" Create an example
such that the addition cannot be attached to the outer boundaries of
the "universal relation."

Consider this query: find the suppliers, and 10 immediate properties
of these suppliers, each of whom can supply every part listed by part
serial number in a given unary relation. Assume that the database
contains information about suppliers including their supplier serial
numbers and 50 other immediate properties. Assume also that the
database contains capability information about suppliers and parts,
together with 20 immediate properties that apply to each combination
of supplier and part. Outline a binary relational database, and express
the query in terms of joins, relational division, projects, and so forth
(but only as these operators apply to binary and unary relations).
Do not assume that any relation of degree greater than two can be
generated as a derived relation, except as the final "report-presen-
tation" step.

Take an example of a relation of degree five in which there exists a
join dependency that is not a multi-valued or functional dependency.
Cast this relation into a collection of binary relations that is equiv-
alent in information content, Comment on whether the join depend-
ency is easier to detect in this form or in the original form.

A bank has branches in several cities, and each city has its own
DBMS storing the customer accounts. Assume that the accounts are

482 • C l a i m e d A l t e r n a t i v e s to t h e R e l a t i o n a l M o d e l

30.8

30.9

30.10

all the same in the kinds of identifying properties and other properties
stored for each. Thus, they are union-compatible. Suppose that the
DBMS in each city is part of the bank's overall control of its dis-
tributed database. If each DBMS is based solely on the binary
relation approach~ and each customer account has 20 distinct prop-
erties recorded, iibw would you obtain at bank headquarters the
union of all customer accounts?

Supply six reasons why the "universal relation" will not replace the
relational model.

Supply eight reasons why the binary relation approach will not
replace the relational model.

How prevalent is the property-not-applicable mark in a ',universal
relation?" Take a simple example involving 50 suppliers with 20
distinct properties, 1,000 parts with 40 distinct properties, and 2,000
capabilities with 15 distinct properties. Assume the usual condition
that none of the properties of an object of any one type is applicable
to objects of the other two types, where the three types are suppliers,
parts, and capabilities. In this database, how many items of data are
marked property inapplicable?

l A P P E N D I X A l

R M / V 2 F e a t u r e I n d e x

A.1 • I n d e x t o t h e F e a t u r e s

This index of the 333 features of Version 2 of the relational model described
in this book is intended to make it easy to find each feature of RM/V2.

The features are labeled with consecutive numbers within each of 18
classes. The following table indicates the letters denoting each class and the
chapter(s) each class falls in:

Chapter Class

18 A Authorization
4 B Basic operators

15 C Catalog
21 D Principles of DBMS design

3,7 E Commands for the DBA
19 F Functions

13,14 I Integrity
11 J Indicators
22 L Principles of language design
12 M Manipulation
6 N Naming

20 P Protection
10 Q Qualifiers
2 S Structure

4.83

484 • A p p e n d i x A

Chapter Class

3 T Data types
16,17 V Views
24,25 X Distributed database management
5,17 Z Advanced operators

In the "priority" column, the letter F or B appears (F denotes funda-
mental, and hence top priority, while B denotes basic). The phrase "multiple
rows" includes zero and one row as special cases that are not given special
treatment.

Note that DBMS products can be classified by the features they support.
In the early 1990s, a DBMS product that fully supports all the features of
both Type F and Type B deserves to be called advanced.

Structure-Oriented and Data-Oriented Features (Chapter 2)

Feature
Label Priority

RS-1 F
RS-2 F
RS-3 F
RS-4 F
RS-5 B
RS-6 F
RS-7 F
RS-8 F
RS-9 B
RS-10 F
RS-11 B
RS-12 B
RS-13 F
RS-14 B

Feature Title Page

The information feature 30
Freedom from positional concepts 32
Duplicate rows prohibited in every relation 32
Information portability 33
Three-level architecture 34
Declaration of domains as extended data types 34

Column descriptions 35
Primary key for each base R-table 35
Primary key for certain views 36
Foreign key 36
Composite domains 37
Composite columns 37
Missing information: representation 39
Avoiding the universal relation 40

Domains as Ex tended Data Types (Chapter 3)

Feature
Label Priority

RT-1 F
RT-2 F
RT-3 F

Feature Title Page

Safety feature when comparing database values 46
Extended data types built into the system 49
User-defined extended data types 50

A.I I n d e x to t h e Fea tu r e s • 485

Feature
Label Priority Feature Title

RT-4 B Calendar dates

RT-5 B Clock times

RT-6 B Coupling of dates with times

RT-7 B Time-zone conversion

RT-8 B Non-negative decimal currency

RT-9 B Free decimal currency

Page

50

52

53

53

53

54

The ten compara to r s in the ta-se lec t and the ta- jo in are as follows'

1 E Q U A L TO =

2 N O T E Q U A L T O 4=

3 LESS T H A N <

4 LESS T H A N O R E Q U A L T O < =

5 G R E A T E R T H A N >

6 G R E A T E R T H A N O R E Q U A L T O > =

7 G R E A T E S T LESS T H A N G <

8 G R E A T E S T LESS T H A N O R E Q U A L TO G < =

9 L E A S T G R E A T E R T H A N L >

10 L E A S T G R E A T E R T H A N O R E Q U A L T O L > =

The Basic Operators (Chapter 4)

Feature
Label Priority

RB-1 F

RB-2 F

RB-3 F

RB-4 F

RB-5 F

RB-6 F

RB-7 F

RB-8 F

RB-9 F

RB-10 F

RB-11 F

RB-12 F

Feature Title

De-emphasis of Cartesian product as an operator

The project operator

Theta select using =

Theta select using

Theta select using <

Theta select using < =

Theta select using >

Theta select using > =

Theta select using G<

Theta select using G< =

Theta select using L>
Theta select using L< =

Page

66

67

69

69

69

69

69

69

69

69

69

69

486 • A p p e n d i x A

Feature
Label Priority

RB-13 B

RB-14 F

RB-15 F

RB-16 F

RB-17 F

RB-18 F

RB-19 F

RB-20 F

RB-21 F

RB-22 F

RB-23 F

RB-24 B

RB-25 F

RB-26 F

RB-27 F

RB-28 F

RB-29 F

RB-30 F

RB-31 F

RB-32 F

RB-33 B

RB-34 B

RB-35 F

RB-36 B

RB-37 B

Feature Title Page

The Boolean extension of theta-select 72

Theta join using = 73

Theta join using ~ 73

Theta join using < 73

Theta join using < = 73

Theta join using > 73

Theta join using > = 73

Theta join using G< 73

Theta join using G< = 73

Theta join using L> 73

Theta join using L< = 73

The Boolean extension of thetaojoin 76

The natural join operator 77

The union operator. 78

The intersection operator 81

The difference operator 82

The relational division operator 83

Relational assignment 87

The insert operator 88

The update operator 89

Primary.key update with cascaded update of for- 90
eign keys and optional update of sibling primary
keys

Primary-key update with cascaded marking of for- 92
eign keys

The delete operator 92

The delete operator with cascaded deletion 93

The delete operator with cascaded A-marking and 94
optional sibling deletion

The Advanced Operators (Chapters 5 and 17)

Feature
Label Priority

RZ-1 F

RZ-2 F

RZ-3 B

RZ-4 B

RZ-5 B

Feature Title

Framing a relation

Extend the description of one relation to include
all the columns of another relation

Semi-theta join using =

Semi-theta join using

Semi-theta join using <

Page

98

103

105

105

105

A.1 I n d e x to t h e Features • 487

Feature
Label

RZ-6

RZ-7

RZ-8

RZ-9

RZ-10

RZ-11

RZ-12

RZ-13

RZ-14

RZ-15

RZ-16

RZ-17

RZ-18

RZ-19

RZ-20

RZ-21

RZ-22

RZ-23

RZ-24

RZ-25

RZ-26

RZ-27

RZ-28

RZ-29

RZ-30

RZ-31

RZ-32

RZ-33

RZ-34

RZ-35

RZ-36

RZ-37

RZ-38

RZ-39

RZ-40

RZ-41

RZ-42

RZ-43

RZ-44

Priority

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Feature Title

Semi-theta join using < =

Semi-theta join using >

Semi-theta join using > =

Semi-theta join using G<

Semi-theta join using (3< =

Semi-theta join using L>

Semi-theta join using L< =

Left outer equi-join

Right outer equi-join

Symmetric outer equi-join

Left outer natural join

Right outer natural join

Symmetric outer natural join

Outer union

Outer set difference ..,

Outer set intersection

Inner T-join using <

Inner T-join using < =

Inner T-join using >

Inner T-join using > =

Left outer T-join using <

Left outer T-join using < =

Left outer T-join using >

Left outer T-join using > =

Right outer T-join using <

Right outer T-join using < =

Right outer T-join using >

Right outer T-join using > =

Symmetric outer T-join using <

Symmetric outer T-join using < =

Symmetric outer T-join using >

Symmetric outer T-join using > =

User-defined select

User-defined join

Recursive join

Semi-insert operator

Semi-update operator

Semi-archive operator

Semi-delete operator

Page

105

105

105

105

105

105

105

107

108

108

114

114

114

117

119

120

125

125

125

125

134

134

134

134

134

134

134

134

i34
134

134

134

137

138

140

320

321

321

321

488 • A p p e n d i x A

Naming (Chapter 6)

Feature
Label Priority

RN-1 F

RN-2 F

RN-3 F

RN-4 F

RN-5 F

RN-6 F

RN-7 F

RN-8 B

RN-9 B

RN-10 B

RN-11 B

RN-12 B

RN-13 B

RN-14 B

Feature Title Page

Naming of domains and data types 146

Naming of relations and functions 146

Naming of columns 146

Selecting columns within relational commands 148

Naming freedom 148

Names of columns involved in the union class of 148
operators

Non-impairment of commutativity 150

Names of columns of result of the join and 151
division operators

Names of columns of result of a project 151
operation

Naming the columns whose values are function- 151
generated

Inheritance of column names 152

Naming archived relations 152

Naming integrity constraints 153

Naming for the detective mode 153

Commands for the DBA (Chapters 3 and 7)

Feature
Label Priority

RE-1 B

RE-2 B

RE-3 F

RE-4 B

RE-5 B

RE-6 F

RE-7 F

RE-8 B

RE-9 F

RE-10 F

RE-11 B

RE-12 B

RE-13 F

RE-14 F

RE-15 B

Feature Title Page

The FAO__AV command 56

The FAO__LIST command 57

The CREATE DOMAIN command 156

The RENAME DOMAIN command 157

The ALTER DOMAIN command 157

The DROP DOMAIN command 158

The CREATE R-TABLE command 158

The RENAME R-TABLE command 159

The DROP R-TABLE command 159

The APPEND COLUMN command 161

The RENAME COLUMN command 161

The ALTER COLUMN command 161

The DROP COLUMN command 161

The CREATE INDEX command 162

The CREATE DOMAIN-BASED INDEX 163
command

A.I Index to the Features • 489

Feature
Label Priority

RE-16 F

RE-17 B

RE-18 B

RE-19 B

RE-20 B

RE-21 B

RE-22 B

Feature Title

The DROP INDEX command

The CREATE SNAPSHOT command

The LOAD AN R-TABLE command

The EXTRACT AN R-TABLE command

The CONTROL DUPLICATE ROWS
command

The ARCHIVE command

The REACTIVATE command

Page

163

163

164,

164

164

167

167

Missing Information (Chapters 8 and 9)

Feature
Label Priority

RS-13 F

RQ-1 B
RQ-2 B

RQ-3 F

RQ-4 B

RQ-5 B

RJ-3 B

RM-10 F

RM-11 F

RM~-12 F

RM-13 F

RI-12 F

RI-26 B

RI-27 B

RF-9 B

RF-iO B

Feature Title

Missing information: representation

The MAYBE__A qualifier

The MAYBE__I qualifier

The MAYBE qualifier

Temporary replacement of missing database
values (applicable)

Temporary replacement of missing database
values (inapplicable)

Missing-information indicator (result indicator)

Four-valued logic: truth tables

Missing information: manipulation

Arithmetic operators: effect of missing values

Concatenation: effect of marked values

User-defined prohibition of missing database
values

Insertion involving I-marked values

Update involving I-marked values

Domains and columns containing names of
functions

Domains and columns containing names of
arguments

Page

39

209

210

210

210

210

223

236

236

237

237

250

267

268

54

55

Qualifiers (Chapter 10)

Feature
Label Priority

RQ-1 B

RQ-2 B

Feature Title

The MAYBE__A qualifier

The MAYBEmI qualifier

Page

209

210

490 • A p p e n d i x A

Feature
Label Priority

RQ-3 F
RQ-4 B

RQ-5 B

RQ-6 B
RQ-7 F
RQ-8 B
RQ-9 B

RQ-10 B
RQ-i1 F

RQ-12 B
RQ-13 B

Feature Title

The MAYBE qualifier

Temporary replacement of missing database
values (applicable)

Temporary replacement of missing database
values (inapplicable)

Temporary replacement of empty relation(s)
The ORDER BY qualifier
The ONCE ONLY qualifier

The DOMAIN CHECK OVERRIDE (DCO)
qualifier

The EXCLUDE SIBLINGS qualifier

The appended DEGREE OF DUPLICATION
(DOD) qualifier
The SAVE qualifier
The VALUE qualifier

Page

210
210

210

211
211
214
215

216
216

218
218

Indicators (Chapter 11)

Feature
Label Priority

RJ-1 B
RJ-2 B
RJ-3 B
R J-4 B

RJ-5 B

R J-6 B

RJ-7 B

R J-8 B
R J-9 B

RJ-10 B

RJ-11 B
RJ-12 B
RJ-13 B
RJ-14 B

Feature Title

Empty-relation indicator (result indicator)
Empty-divisor indicator (argument indicator)
Missing-information indicator (result indicator)
Non-existing argument indicator (argument
indicator)

Domain-not-declared indicator (argument
indicator)

Domain-check-error indicator (argument
indicator)

Domain not droppable, column still exists
indicator (argument indicator)

Duplicate-row indicator (argument indicator)
Duplicate-primary-key indicator (argument
indicator)

Non-redundant ordering indicator (result
indicator)

Catalog block indicator (result indicator)
View not tuple,insertible

View not component-updatable
View not tuple-deletable

Page

223
223
223
224

224

224

224

225
225

225

226
226
226
227

A.I Index to the Features • 491

Data Manipulation (Chapter 12)

Feature
Label Priority

RM-1 F

RM-2 F

RM-3 B

RM-4 F

RM-5 F

RM-6 F

RM-7 B

RM-8 F

RM-9 F

RM-10 F

RM-11 F

RM-12 F

RM-13 F

RM-14 F

RM-15 F

RM-16 B

RM-17 B

RM-18 F

RM-19 B

RM-20 B

Feature Title Page

Guaranteed access 229

Parsable relational data sublanguage 230

Power of the relational language 231

High-level insert, update, and delete 231

Operational closure 232

Transaction block 233

Blocks to simplify altering the database 234
description

Dynamic mode 235

Triple mode 235

Four-valued logic: truth tables 236

Missing information" manipulation 236

Arithmetic operators: effect of missing values 237

Concatenation" effect of marked values 237

Domain-constrained operators and DOMAIN 238
CHECK OVERRIDE

Operators constrained by basic data type only, if 238
one operand or both operands are function-
generated

Prohibition of essential ordering 239

Interface to single-record-at-a-time host 239
languages

The comprehensive data sublanguage 240

Library check-out 240

Library return 241

Integrity Constraints (Chapter 13)

Feature
Label Priority

RI-1 F
RI-2 F

RI-3 F

RI-4 F

RI-5 F

RI-6 B

RI-7 B

Feature Title Page

Domain integrity constraints: Type D 246

Column integrity constraints: Type C 246

Entity integrity constraints: Type E 246

Referential integrity constraints: Type R 246

User-defined integrity constraints: Type U 246

Timing of testing for Types R and U 247

Response to attempted violation of Types R and 248
U

492 • A p p e n d i x A

Feature
Label Priority

RI-8 B

RI-9 B

RI-10 B

RI-11 F

RI-12 F

RI-13 B

RI-14 B

RI-15 B

RI-16 F

RI-17 B

RI-18 B

RI-19 F

RI-20 B

RI-21 B

RI-22 B

Feature Title Page

Determining applicability of constraints 248

Retention of constraint definitions for Types R 248
and U

Activation of constraint testing 249

Violations of integrity constraints of Types D, 249
C, and E

User-defined prohibition of missing database 250
values

User-defined prohibition of duplicate values 251

Illegal tuple 251

Audit log 252

Non-subversion 252

Creating and dropping an integrity constraint 253

New integrity constraints checked 253

Introducing a column integrity constraint (Type 253
C) for disallowing missing database values

Minimal adequate scope of checking 254

Each integrity .constraint executable as a 255
command

On-the-fly, end of command, and end of 255
transaction timing

User-Defined Integrity Constraints (Chapter 14)

Feature
Label Priority

RI-23 B

RI-24 B

RI-25 B

RI-26 B

RI-27 B

RI-28 B

RI-29 B

RI-30 B

RI-31 B

RI-32 F

RI-33 F

RI-34 F

Feature Title Page

Information in a user-defined integrity constraint 260

Triggering based on AP and TU actions 260

Triggering based on date and time 261

Insertion involving I-marked values 267

Update involving I-marked values 268

Functional dependency constraint 272

Multi-valued dependency constraint 272

Join dependency constraint 273

Inclusion dependency constraint 273

The REJECT command 274

The CASCADE command 274

The MARK command 274

A.I Index to the Fea tures • 493

The Catalog (Chapter 15)

Feature
Label Priority

RC-1 F

RC-2 F

RC-3 F

RC-4 F

RC-5 B

RC-6 F

RC-7 B

RC-8 F

RC-9 B

RC-10 F

RC-11 F

Feature Title

Dynamic on-line catalog

Concurrency

Description of domains

Description of base R-tables

Description of composite columns

Description of views

User-defined integrity constraints

Referential integrity constraints

User-defined functions

Authorization data

Database statistics in the catalog

Page

278

278

279

279

280

280

281

281

282

282

282

Views (Chapters 16 and 17)

Feature
Label Priority

RV-1 F

RV-2 F

RV-3 F

RV-4 F

RV-5 F

RV-6 F

RV-7 F

RV-8 F

Feature Title

View definitions: what they are

View definitions: what they are not

View definitions: retention and interrogation

Retrieval using views

Manipulation using views

View updating

Names of columns of views

Domains applicable to columns of views

Page

285

287

288

288

289

290

291

291

Authorization (Chapter 18)

Feature
Label Priority

RA-1 F

RA-2 F

RA-3 B

RA-4 B

RA-5 B

RA-6 F

Feature Title

Affirmative basis

Granting authorization: space-time scope

Hiding selected columns in views

Blocking updates that remove rows from a view

N-person turn-key

Delayed deletions of data and drops by
archiving

Page

327

327

329

330

330

331

494 [] Append ix A

Feature
Label Priority

RA-7 F

RA-8 F

RA-9 B

RA-10 F

RA-11 B

RA-12 B

RA-13 B

RA-14 B

RA-15 B

RA-16 B

Feature Title

Authorizable database-control activities

Authorizable query and manipulative activities

Authorizable qualifiers

Granting and revoking authorization

Passing on authority to grant

Cascading revocation

Date and time conditions

Resource consumption (anticipated or actual)

Choice of terminal

Assigning authorization

Page

331

332

333

333

334

334

334

335

335

335

Functions (Chapter 19)

Feature
Label Priority

RF-1 F

RF-2 F

RF-3 B

RF-4 B

RF-5 B

RF-6 B

RF-7 B

RF-8 F

RF-9 B

RF-10 B

Feature Title

Built-in aggregate functions

The DOD versions of built-in statistical
functions

Built-in scalar functions

User-defined functions: their use

Inverse function required, if it exists

User-defined functions: compiled form required

Functions can access the database

Non-generation of marked values by functions

Domains and columns containing names of
functions

Domains and columns containing names of
arguments

Page

338

340

340

341

341

341

342

342

343

344

Protection o f I nve s tmen t (Chapter 20)

Feature
Label Priority

RP-1 F

RP-2 B

RP-3 B

RP-4 B

RP-5 B

Feature Title

Physical data independence

Logical data independence

Integrity independence

Distribution independence

Distributed database management:
decomposition and recomposition

Page

345

346

347

347

349

A.1 Index to the Features • 495

DBMS Design (Chapter 21)

Feature
Label Priority

RD-1 F

RD-2 F

RD-3 B

RD-4 F

RD-5 B

RD-6 F

RD-7 B

RD-8 B

RD-9 B

RD-10 B

RD-11 F

RD-12 B

RD-13 F

RD-14 B

RD-15 F

RD-16 F

Feature Title

Non-violation of any fundamental law of
mathematics

Under-the-covers representation and access

Sharp boundary
Concurrency independence

Protection against unauthorized long-term
locking

Orthogonality in DBMS design

Domain-based index

Database statistics

Interrogation of statistics

Changing storage representation and access
options

Automatic protection in case of malfunction

Automatic recovery in case of malfunction

Atomic execution of relational commands

Automatic archiving

Avoiding Cartesian product
Responsibility for encryption and decryption

Page

351

352

352

353

353

354

355

355

355

355

356

356

356

357

357

358

Language Design (Chapter 22)

Feature
Label Priority

RL-1 F

RL-2 F

RL-3 F

RL-4 F

RL-5 F

RL-6 F

RL-7 F

RL-8 B

RL-9 B

RL-10 B

RL-11 B

Feature Title

Data sublanguage: variety of users

Compiling and re-compiling

Intermixability of relational- and host-language
statements

Principal relational language is dynamically
executable

RL is both a source and a target language

Simple rule for scope within an RE command

Explicit BEGIN and END for multi-command
blocks

Orthogonality in language design

Predicate logic versus relational algebra

Set-oriented operators and comparators

Set constants and nesting of queries within
queries

Page

362

362

362

363

363

363

363

364

364

365

365

496 • A p p e n d i x A

Feature
Label Priority

RL-12 B

RL-13 B

RL-14 B

RL-15 B

RL-16 B

RL-17 F

Feature Title

Canonical form for every request

Global optimization

Uniform optimization

Constants, variables, and functions
interchangeable

Expressing time-oriented conditions

Flexible role for operators

Page

366

366

367

367

367

368

Distributed Database Management (Chapters 24 and 25)

Feature
Label

RX-1

RX-2

RX-3

RX-4

RX-5

RX-6

RX-7

RX-8

RX-9

RX-10

RX-11

RX-12

RX-13

RX-14

RX-15

RX-16

RX-17

RX-18

RX-19

RX-20

RX-21

RX-22

Priority

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Feature Title

Multi-site action from a single relational
command

Local autonomy

Global database and global catalog

N copies of global catalog (N > 1)

Synonym relation in each local catalog

Unique names for sites

Naming objects in a distributed database

Reversibility and redistribution

Decomposition by columns for distributing data

Decomposition by rows for distributing data

General transformation for distributing data

Replicas and snapshots

Integrity constraints that straddle two or more
sites

Views that straddle two or more sites

Authorization that straddles two or more sites

Name resolution with a distributed catalog

Inter-site move of a relation

Inter-site moves of rows of a relation

Dropping a relation from a site

Creating a new relation

Abandoning an old site and perhaps its data

Introducing a new site

Page

393

394

396

397

398

399

399

401

403

404

404

405

406

407

408

409

410

411

412

412

413

414

A.2 S u m m a r y of RM/V2 Features by Class • 497

Feature
Label

RX-23

RX-24 B

RX-25 B

RX-26 B

RX-27 B

RX-28 B

RX-29 B

Priority

B

Feature Title Page

415 Deactivating and reactivating items in the
catalog
Minimum standard for statistics 421

Minimum standard for the optimizer 422

Performance independence in distributed 422
database management

Concurrency independence in distributed 423
database management

Recovery at multiple sites 423

Locking in distributed database management 423

A.2 • S u m m a r y of RM/V2 Features by Class

Table of features fundamental and basic

Feature
Class

RS

RT

RB

RZ

RN
RE

RQ

RJ

RM

RI

RC

RV

RA

RF

RP

RD
RL
RX

Totals

Fundamental Basic
(F) (B) Totals

9 5 14

3 6 9

31 6 37 104

2 42 44

7 7 14 221

8 14 22

3 10 13 63

0 14 14

14 6 20 '~

11 23 34 1 54

8 3 11}

8 0 8 35

6 10 16

3 7 10

1 4 5 112

8 8 16 77

8 9 17

0 29 29

130 203 333 " 333 333

498 [] Appendix A

A . 3 a C l a s s e s o f F e a t u r e s a n d N u m b e r s o f F e a t u r e s in
E a c h Class

Number of
Class Features

Z 44 ~}
B 37 115
I 34
X 29 }
E 22 71
M 20
D 16
L 17 77
A 16
S 14
N 14

J 14 t Q 13 38
C 11
F 10
T 9
V 8 32
P 5

186

147

333

A . 4 m P r i n c i p a l O b j e c t s a n d P r o p e r t i e s in R M / V 1

S t ruc tu re

Domains
Relations (same as R-tables)
Attributes (same as columns)
Primary keys
Foreign keys
Information portability

Data Types

See Features RT-1-RT-6.

A.4 Principal Objects and Properties in RMfV1 • 499

O p e r a t o r s

Each operator can be expressed in at most one command, and without
circumlocution or circumconception.

Theta-select (restrict)

Project

Theta-join

(Where theta is any of the comparat0rs 1-6 for theta-select, and any of the
comparators 1-10 for theta-join.)

Union

Set difference

Intersection (inner types)

Left, right, and symmetric outer join

Relational division

Relational assignment

Q u a l i f i e r s

Qualifiers include the temporary replacement of missing elementary data-
base values, as well as the MAYBE qualifiers.

I n d i c a t o r s

Empty relation

Empty divisor in relational division

M a n i p u l a t i v e F e a t u r e s

See Features RM-1-RM-5.

I n t e g r i t y C o n s t r a i n t s

Each integrity constraint can be expressed in one command per constraint,
and without circumlocution or circumconception. Each such constraint is
stored in the catalog, not in an application program.

D Domain integrity

C Column integrity

E Entity integrity

500 • Appendix A

R Referential integrity

U User-defined integrity

Catalog

See Features RC-I-RC-4.

V i e w s

See Features RV-1-RV-5.

A u t h o r i z a t i o n

See Features RA-i-RA-4.

A . 5 • F u n c t i O n s

See Features RF-1-RF,3.

A . 6 • Investment P r o t e c t i o n

See Features RP-i and RP-2.

D B M S D e s i g n

See Features RD-i, RD-2, RD-4, RD-6, RD-11, and RD-13.

L a n g u a g e D e s i g n

See Features RL-1-RL-6.

A . 7 • T h e R u l e s I n d e x

The following table shows the features of RM/V2 that correspond to the
twelve rules published in 1985 [Codd 1985]. The text of any selected rule
can be found by first using this table to determine which feature(s) of RM/
V2 corresponds to the selected rule, and then by using the index to the
features at the beginning of this Appendix to find the text in the book.

1985 RM/V2
Rule Feature Name

1 RS-i Information rule
2 RM-1 Guaranteed access

A.7 T h e R u l e s I n d e x • 501

1985
Rule

3
4

5
6
7

8
9

10
11
12

RM/V2
Feature

RS-13, RM-10
RC-1
RM-3
RV-4, RV-5
RM-4

RP-1
RP-2
RP-3
RP-4
RI-16

Name

Missing information

Active catalog
Comprehensive data sublanguage (DSL)
View updatability
High level language
Physical data independence
Logical data independence
Integrity independence
Distribution independence
Non-subversion

a A P P E N D I X B •

Exercises in Logic and the

Theory of Relations

The following exercises are included in this book to help the reader test his
or her own knowledge in these two branches of mathematics. Although
these topics are not covered in this book, knowledge of them is important
for the designers of DBMS products and for database administrators.

B.1 t S i m p l e Exercises in Pred icate Logic

In the following exercises, P, Q are predicates, x is an individual variable,
c is a constant, (~J) denotes the existential quantifier, (V) denotes the
universal quantifier, and--~ denotes logical implication.

Which of the following pairs of formulas in predicate logic are logically
equivalent?

la. Vx(Px k /Qx) lb. (VxPx V VxQx)

2a. V x (P x A O x) 2b. (V x P x A V x Q x)

3a. --1 (PcV Qc) 3b. (--1 Pc) A (~ Qc)

4a. P c ~ Q c 4b. (-1 Pc) V Q c

5a. --1 VxPx 5b. 3x(-n Px)

6a. Vx(Px ~ Qx) 6b. (,.qxPx k/VxQx)

7a. ~[x(Px --~ Qx) 7b. 5tx(--1 Px) k/~lxQx

8a. --1 2txPx 8b. -1 V x Px

503

504 • A p p e n d i x B

B.2 • S i m p l e E x e r c i s e s i n R e l a t i o n a l T h e o r y

In the following exercises, R, S, and T are union-compatible relations. The
three operators are relational union (denoted U), relational difference (de-
noted -) , and relational intersection (denoted n).

Which of the following pairs of expressions are guaranteed to yield
identical results?

la. R U S lb. S u R

2a. R - S 2b. S - R

3a. R N S 3b. S A R

4a. (R U S) A T 4b. (R A T) U (S A T)

5a. (R U S) - T 5b. (R - T) U (S - T)

ha. (R n S) - T 6b. (R - T) N (S - T)

7a. (R A S) U T 7b. (R U T) n (S U T)

8a. (R - S) A T 8b. (R A T) - (S A T)

B.3 • E x e r c i s e s C o n c e r n i n g t h e I n t e r - r e l a t e d n e s s o f
R M / V 2 F e a t u r e s

No claim has been made that all 333 features of RM/V2 are independent of
one another; such a claim would be false. This kind of independence would
make the relational model, whether Version 1 or Version 2, difficult to
understand. It would be similar to trying to learn an IBM 3090 by first
learning a universal Turing machine.

Suppose that F and G are two features of RM/V2. The notation F ~ G
means that the DBMS must support F if it is to provide full support for G.

1. Let F be view updatability and G be logical data independence. Show
that F ~ G.

2. Let F be domains as extended data types and G be view updatability.
Show that F --~ G.

Let F be primary keys and G be view updatability. Show that F ~ G.

Take each distinct pair of features F and G in RM/V2. Examine whether
F ~ G or G -~ F, or neither. Explain your answers.

.

4.

• R E F E R E N C E S •

This list of references is not claimed to be complete. The list, however, does
include most of the works by the author of this book that concern database
management (Codd 1969-Codd 1988b). (Codd 1968) illustrates levels of
abstraction, but applied tO a different subject.

The reference list includes the following database management papers
by other authors: (Beeri, Fagin, and Howard 1977), (Bernstein and Chiu
1981), (Bernstein, Hadzilacos, and Goodman 1987), (Buff 1986), (Casanova,
Fagin, and Papadimitriou 1984), (Chen 1976), (Date 1984 and 1987), (Dayal
and Bernstein 1982), (Ganski and Wong 1987), (Goodman 1988), (Hammer
and McLeod 1981), (Heath 1971), (Keller 1986), (Kim 1982), (Klug 1982),
(Lindsay 1981), (Lipski 1978), (Maier, Ullman, and Vardi 1984), (Mark
1988), (Sweet 1988), (Vardi 1988), (Vassiliou 1979), and (Wiorkowski and
Kull 1988).

Several texts dealing with predicate logic also appear in the reference
list. In descending order of difficulty, they are as follows: (Church 1958),
(Suppes 1967), (Exner and Rosskopf 1959), (Stoll 1961), and (Pospesel
1976).

The remaining entries in the reference list consist of database manage-
ment system prototypes and products. (IMS n.d.) was a leading DBMS
product in the late 1960s and early 1970s. Note that the Peterlee relational
test vehicle (Todd 1976), listed as operational at the end of 1972, preceded
all other systems based on the relational model. These entries are far from
complete because of the recent development of many relational DBMS
products.

Balfour, A. (1988) INFOEXEC: The First Practical Implementation of
a Semantic Database, Unisys, Europe-Africa Division. December.

Beech, D. (1989) "The Need for Duplicate Rows in Tables." Datama-
tion, January.

Beeri, C., R. Fagin, and J. H. Howard (1977) "A Complete Axiomat-
ization for Functional and Multi-Valued Dependencies in Database Rela-

505

506 • R e f e r e n c e s

tions." In Proc. A CM SIGMOD 1977 Int. Conf. on Management of Data
(Los Angeles, 1977).

Bernstein, P. A., and D. W. Chiu (1981) "Using Semi-joins to Solve
Relational Queries." JACM 28:1.

Bernstein, P. A., V. Hadzilacos, and N. Goodman (1987) Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

Buff, H. W. (1986) "The View Update Problem Is Undecidable." Per-
sonal communication, Zurich, August 4. Published as "Why Codd's Rule
No. 6 Must Be Reformulated." ACM SIGMOD Record 17:4 (1988).

Casanova, N., R. Fagin, and C. Papadimitriou (1984) "Inclusion De-
pendencies and Their Interaction with Functional Dependencies." JCSS
28:1.

Chamberlin, D. D., Astrahan, M, M., Blasgen, M. W., Gray, J. N.,
King, W. F., Lindsay, B. G., Lorie, R., Mehl, J. W., Price, T. G., Putzolu,
F., Selinger, P. G., Schkolnick, M., Slutz, D. R., Traiger, I. L., Wade, B.
W., Yost, R. A. (1981) "A History and Evaluation of System R." Comm.
ACM 24:10.

Chen, P. P. (1976) "The Entity-Relationship Model~Toward a Unified
View of Data, A CM TODS 1"1.

Church, A. (1958) Introduction toMathematical Logic. Princeton Uni-
versity Press.

Codd, E. F. (1968) Cellular Automata. Academic Press.

Codd, E. F. (1969) Derivability, Redundancy, and Consistency of Rela-
tions Stored in Large Data Banks. San Jose, IBM Research Report RJ599.

Codd, E. F. (1970) "A Relational Model of Data for Large Shared Data
Banks." Comm. A CM 13:6.

Codd, E. F. (1971a) "ALPHA: A Data Base Sublanguage Founded on
the Relational Calculus." In Proc. 1971 ACM SIGFIDET Workshop (San
Diego, Nov. 11-12, 1971).

Codd, E. F. (197ib) "Further Normalization of the Data Base Relational
Model." In Courant Computer Science Symposia 6, Data Base Systems. (New
York, May 24-25). Prentice-Hall.

Codd, E. F. (1971c) "Normalized Data Base Structure" A Brief Tuto-
rial." Proc. 1971 ACM SIGFIDET Workshop (San Diego, Nov. 11-12,
1971).

Codd, E. F. (1971d) Relational Completeness of Data Base Sublan-
guages." In Courant Computer Science Symposia 6, Data Base Systems (New
York, May 24-25). Prentice-Hall.

R e f e r e n c e s • 507

Codd, E. F. (1974a) "Interactive Support for Non-Programmers: The
Relational and Network Approaches" and "Data Models: Data-Structure-
Set versus Relational." Proc. 1974 ACM SIGMOD Debate (Ann Arbor,
May 1-3).

Codd, E. F. (1974b) "Recent Investigations in Relational Data Base
Systems." Proc. IFIP (Stockholm, August). Also published in Information
Processing 1974. North-Holland.

Codd, E. F. (1974c) "The Relational Approach to Data Base Manage-
ment: An Overview." Third Annual Texas Conference on Computing Sys-
tems (Austin, November 7-8).

Codd, E. F. (1974d) "Seven Steps to Rendezvous with the Casual User."
Proc. IFIP TC2 Working Conf. on Data Base Management Systems (Cargese,
Corsica, April 1-5).

Codd, E. F. (1978) "How about Recently?" Proc. Int. Conf. on Data-
bases: Improving Usability and Responsiveness. (Haifa, Israel, August 2-3).
Academic Press.

Codd, E. F. (1979) "Extending the Database Relational Model to Cap-
ture More Meaning." A CM Trans. on Database Systems 4:4.

Codd, E. F. (1980) "Data Models in Database Management." ACM
SIGMOD, SIGPLAN, SIGART meeting (Pingree Park, Colorado, Novem-
ber 1980).

Codd, E. F. (1981) "The Capabilities of Relational Database Manage-
ment Systems." Proc. Convencio Informatica Llatina (Barcelona, June 9-
12).

Codd, E. F. (1982) "Relational Database: A Practical Foundation for
Productivity." Comm. A CM 25:2.

Codd, E. F. (1985)"How Relational Is Your Database Management
System?" Computerworld, October 14 and 21. Also available from The
Relational Institute, San Jose.

Codd, E. F. (1986a) "Missing Information (Applicable and Inapplicable)
in Relational Databases." A CM SIGMOD Record, Vol. 15, no. 4.

Codd, E. F. (1986b) The Twelve Rules for Relational DBMS. San Jose,
The Relational Institute, Technical Report EFC-6.

Codd, E. F, (1987a) "The Beginning of a New Era in Data Processing"
(review of Tandem's NonStop SQL). InfoWeek, May 4.

Codd, E. F. (1987b) Fundamental Laws in Database Management. San
Jose, The Relational Institute, Technical Report EFC-27.

508 • References

Codd, E. F. (1987c) "More Commentary on Missing Information in
Relational Databases." A CM SIGMOD Record, Vol. 16, no. 1.

Codd, E. F. (1987d) Principles of Design of Database Management Sys-
tems. San Jose, The Relational Institute, Technical Report EFC-18.

Codd, E. F. (1987e) View Updatability in Relational Databases: Algo-
rithm VU-1. Unpublished paper.

Codd, E, F. (1988a) "Domains, Primary Keys, Foreign Keys, and
Referential Integrity." Info DB, May.

Codd, E. F. (1988b) "Fatal Flaws in SQL (Both the iBM and the ANSI
Versions)." Datamation, August and September. Also available from The
Relational Institute, San Jose (Technical Report EFC-28).

Date, C. J. (1984) ,'Why Is It So Difficult to Provide a Relational
Interface to IMS?" Info IMS 4:4.

Date, C. J. (1987) "Where SQL Falls Short," (abridged). Datamation,
May 1. Unabridged version, What Is Wrong with SQL, available from The
Relational InstitUte, San Jose.

Dayal, U., and P. A . Bernstein (1982). "On the Correct Translation of
Update Operations on Relational Views." A CM TODS 7:3.

Exner, R. M,, and M. F. Rosskopf (1959) Logic in Elementary Mathe-
matics. MCGraw-Hill.

Ganski, R. A., and H. K. T. Wong (1987) "Optimization of Nested
SQL Queries Revisited." Proc. A CM SIGMOD Annual Conference (San
Francisco), May 27-29.

Goodman, N. (1988) Letter regarding the outer set operators, July 15.

Hammer, M., and D. McLeod (1981) "Database Description with SDM:
A Semantic Database Model." A CM TODS 6:3.

Heath, I. J. (1971) Memorandum introducing the outer join. Fall.

Hutt, A, T. F. (i979) A Relational Data Base Management System.
Wiley.

IBM (n.d.) IMS Reference Manual. IBM Corporation, White Plains,
N.Y. (any post-1971 edition).

IBM (1988) SQL Reference Manual. IBM Corporation.

Keller, A. M. (1986) "Choosing a View Update Translator by Dialog
at View Definition Time." 12th Conference on Very Large Databases (To-
kyo, August 25-28, 1986).

References • 509

Kim, Won (1982) "On Optimizing an SQL-like Nested Query.
TODS 7"3.

" ACM

Klug, A. (1982) "Equivalence of Relational Algebra and Relational
Calculus Query Languages Having Aggregate Functions." JACM 29:3.

Lindsay, B. (1981) "Object Naming and Catalog Management for a
Distributed Database Manager." Proc. Second Int. Conf. on Distributed
Computing (Paris, April 1981). Also IBM Research Report RJ2914, 1980.

Lipski, W. (1978) On Semantic Issues Connected with Incomplete Infor-
mation Data Bases. Institute of Computer Science, Polish Academy of Sci-
ences, Warsaw.

Maier, D., J. D. Ullman, and M. Y. Vardi (1984) "On the Foundations
of the Universal Relational Model." A CM TODS, Vol. 9, no. 2.

Mark, L. (n.d.) The Binary Relationship Model. Institute of Advanced
Computer Studies, University of Maryland (probably 1988).

Meldman, M. J., D. J. McLeod, R. J. Pellicore, and M. Squire (1978)
RISS: A Relational DBMS for Minicomputers. Van Nostrand Reinhold.

Ozkarahan, E. A., S. A. Schuster, and K. C. Smith (1975) "RAP" An
Associative Processor for Data Base Management." Proc. AFIPS, Vol. 44.

Pospesel, H. (1976) Predicate Logic. Prentice-Hall.

Relational Technology (1988) INGRES/QUEL Reference Manual. Ala-
meda, California, Relational Technology Inc.

Stoll, R. R. (1961) Sets, Logic, and Axiomatic Theories. Freeman.

Stonebraker, M., ed. (1986) The INGRES Papers. Addison-Wesley.

Suppes, P. (1967) Introduction to Logic. Van Nostrand.

Sweet, F. (1984) "What, if Anything, Is a Relational Database?" Da-
tamation (USA) Vol. 30, no. 11.

Titman, P. J. (1974) "An Experimental Data Base System Using Binary
Relations." Proc. IFIP TC-2 Working Conf. on Data Base Management Sys-
tems, eds. Klimbie J. W., and Koffeman, K. I., North-Holland.

Todd, S. J. P. (1976) "The Peterlee Relational Test Vehicle: A System
Overview." IBM Systems Journal 15:4.

Vardi, M. Y. (1988) "The Universal-Relational Data Model for Logical
Independence." IEEE Software, March.

Vassiliou, Y. (1979) "Null Values in Database Management: A Deno-
tational Semantics Approach," Proc. A CM SIGMOD 1979 Int. Conf. on
Management of Data (Boston, May 30-June 1).

510 • References

Williams, R., Daniels, D., Haas, L., Lapis, G., Lindsay, B., Ng, P.,
Obermarck, R., Sclinger, P., Walker, A., Wilms, P., and Yost, R. (1981)
R*: An Overview of the Architecture. IBM Research Report RJ3325.

Wiorkowski, G., and Di Kull (1988) DB2 Design and Development
Guide. Addison-Wesley.

Zloof, M. M. (1975) "Query by Example." Proc. of AFIPS, Vol. 44.

I N D E X

Abandoning an Old Site and Perhaps
Its Data (RX-21), 413-414

Abstract data type, 480
Abstract machine, Relational Model

as, 11-12
Abstract machine standard, 13-14
Access, under-the-covers, 352
Access options, changing, 355-356
"Access path," universal relation and,

472
Activation of Constraint Testing

(RI-IO), 249
Acyclic graph, 141
Acyclic path, 141-142
Adaptability

to change, 480
of relational approach, 432

Advanced operators, 63, 97-144
auxiliary operators and, 103-106

extending relations and, 103-104
semi-theta-join operator and, 104-

106
framing relations and, 98-103

applying aggregate functions to
framed relations and, 101-103

introduction to, 98-99
partitioning relations by individ-

ual values and, 99-100
partitioning relations by ranges of

values and, 100-101
inner and outer T-join and, 123-137

inner T-join and, 125-134
introduction to T-join operators

and, 123-125
outer T-join and, 134-135

outer equi-join operators and, 106-
110

with MAYBE qualifier, 110-113
outer natural joins and, 113-115
outer set operators and, 115-122

inner operators and, 115-116
relationship between, 122

recursive join and, 140-143
user-defined join operator and,

138-140
user-defined select operator and,

137-138
Affirmative Basis (RA-1), 327
Aggregate functions, 338-340

built-in, 338-340
Algebraic approach, 62
ALPHA, 61, 86
ALTER COLUMN command

(RE-12), 161
ALTER DOMAIN command (RE-5),

157
A-marks (missing-but-applicable value

mark), 173-174
rows containing, 175-176
updating, 177-178

Ambiguity of origin, 304
Analysis of semantic distinctiveness,

379
Analyzability of intent, 349,427
APPEND COLUMN command

(RE-IO), 161
Appended DEGREE OF DUPLICA-

TION (DOD) qualifier (RQ-
11), 216-218

ARCHIVE command (RE-21), 167

511

512 • Index

Archived Relations, Naming, 152
Archiving

automatic, 357
commands for, 166-167
delayed deletions of data and drops

by, 331
Arguments, names of, as extended

data type, 55
of a function, 187

Arithmetic Operators: Effect of Miss-
ing Values (RM-12), 237

Assertions, 29-30
Assigning Authorization (RA-16), 335
Associated source relation, 152
Atomic data, 6
Atomic value, definition of, 172
Attempted violation, 269
Attributes, 43
Audit Log (RI-15), 252
Authorizable Database-control Activi-

ties (RA-7), 331-332
Authorizable Qualifiers (RA-9), 333
Authorizable Query and Manipulative

Activities (RA-8), 332
Authorization, 325-336

assigning, 335
authorizable actions and, 331-334
basic features of, 327-331
distributed, 407-408
flexible, with relational approach,

435-436
granting and revoking, 327, 333,

335
subject to date, time, resource con-

sumption, and terminal, 334-
336

Authorization Data (RC-IO), 282
Authorization that Straddles Two or

More Sites (RX-15), 407
Automatic Archiving (RD-14), 357
Automatic Execution of Relational

Commands (RD-13), 356-357
Automatic payment, for parts, 270
Automatic Protection in Case of Mal-

function (RD-11), 356
Automatic Recovery in Case of Mal-

function (RD-12), 356
Autonomy, local, 394-395

Auxiliary operators, 103-106
extending relations and, 103-104
semi-theta.join operator and, 104-

106
Avoiding Cartesian Product (RD-15),

357
Avoiding the Universal Relation

(RS-14), 40-41

B
Back-traceability, 302
Base R-tables, 18

catalog and, 279-280
integrity constraints and, 36
primary key for, 35-36

Base relations, 17-18, 30, 33
catalog and, 279-281
new operators for, 320-321
rows containing A-marks and/or

I-marks and, 175
Basic data types, 43, 54, 150

operators constrained by, 238-239
Basic operators, 61-95

Boolean extension of theta-join and,
76-77

Boolean extension of theta-select
and, 72

intersection, 81-82
natural-join, 77-78
project, 67-69
relational difference, 82-83
relational division, 83-87
relational union, 78-81
safety feature when comparing data-

base values and, 71-72
techniques for explaining, 63-66
theta-join, 73-76
theta-select, 69-71

BEGIN, explicit, for multi-command
blocks, 363-364

Bill-of-materials problem, 452
Binary relationship,

inability to replace relational model,
473-477

abandonment of composite do-
mains, composite columns, and
composite keys and, 476

Index • 513

decomposition on input and, 474-
475

difficulty of conceiving and ex-
pressing integrity constraints
and, 477

extra storage space and channel
time and, 475

heavy load of joins and, 476
lack of comprehensive data model

and, 477
normalization and, 474
recomposition upon input and,

475
restriction to entity-based joins

and, 476
Birth site, 399
Blocking commands, 232-235
Blocking Updates That Remove Rows

From a View (RA-4), 330
Blocksto Simplify Alteringm the Data-

base Description (RM-7), 234-
235

Boolean Extension of Theta-Join
(RB-24), 76-77

Boolean Extension Of Theta-Select
(RB-13), 72

Boolean logic, 19
Boundary, sharp, 352-353
Built-in Aggregate Functions (RF-1),

338-340
Built-in Scalar Functions (RF-3), 340

C
Calendar Dates (RT-4), 50-52
Canonical Form for Every Request

(RL-12), 366
Can supply, 223
Cartesian product, 64-67

avoiding, 357
de-emphasis as operator, 66
techniques for explaining, 64-66
theta-join operator and, 74-75

CASCADE command (RI-33), 274
Cascaded deletion, delete operator

with, 93
Cascade delete, implementation of do-

mains and, 47

Cascaded marking
delete operator with, 94
primary-key update with, 92

Cascade insert, implementation of do-
mains and, 47

Cascade update, implementation of
domains and, 47

Cascading, 90
update of foreign keys and, 89-92

Cascading option, 90
Cascading Revocation (RA-12), 334
Catalog, 16, 277-283

access to, 277-278
deactivating and reactivating items

in, 415
description of domains, base rela-

tions, and views and, 278-281
distributed, 408-412

dropping relations and creating
new relatitJns and, 412

inter-site move Of a relation and,
4i0

inter-site move of one or more
rows of a relation and, 410-
411

more comialicated redistribution
and, 411

features for safety and performance
and, 282-283

functions in, 282
global. See Global cataiog
integrity constraints in, 281
synonym relation in, 398

Catalog block, 160
Catalog Block Indicator (RJ-11),

226
Change, universal relation versus rela-

tional approach and, 471-472
Changing Storage Representation and

Access Options (RD-IO), 355-
356

Channel time, extra, binary relation-
ship approach versus relational
approach and, 475

Choice of Terminal (RA-15), 335
Citation ordering, 66
Clock Times (RT-5), 52-53
Close counterpart, 116

514 • I n d e x

Column(s), 43
ALTER COLUMN command and,

161
APPEND COLUMN command

and, 161
comparand, 73,305,307
composite, 37-39

binary relationship approach ver-
sus relational approach and,
476

catalog and, 280
containing names of arguments,

344, 449
containing names of functions, 343,

449
DROP COLUMN command and,

161-162
with function-generated values,

naming, 151-152
hiding in views, 329-330
inheritance of names of, 152
involved in union class of operators,

naming, 148-150
naming, 146-147
RENAME COLUMN command

and, 161
of result of join and division opera-

tors, naming, 151
of result of project operation, nam-

ing, 151
selecting within relational com-

mands, 148
of views

domains applicable to, 291
names of, 291

Column Descriptions (RS-7), 35
Column names, reasons for using, 3
Command-interpretation time, 313
Commands

automatic execution of, 356-357
choosing ordering of, 377
simple rule for scope within, 363
single, multi-site action from, 393
single relational, 423
for triggered action, 273-274

COMMIT command, 248
"Common", 374
Common domain, primary keys on,

25-26

"Common domain" constraint, 8
Communicability, person-to-person,

with relational approach, 434
Commutativity, non-impairment of,

150-151
Comparand columns, 73,305,307
Comparators,

ordering, 125
set-oriented, 365

Comparing terms, 72, 76
Compiling and Re-compiling (RL-2),

362
Component-updatable by a DBMS,

296
Composite Columns (RS-12), 37-39
Composite columns, 37-38

binary relationship approach versus
relational approach and, 4.76

catalog and, 280
Composite Domains (RS-11), 37
Composite key, 36
Compound data, 6-7
Comprehensive data model

binary relationship approach versus
relational approach and, 477

universal relation versus relational
approach and, 472

Comprehensive Data Sublanguage
(RM-18), 240

Computation, extending relational
model and, 456

Concatenation: Effect of marked Val-
ues (RM-13), 237-238

Concurrency (RC-2), 278
Concurrency

inter-command, 353, 423
intra-command, 353,423

Concurrency control, 19
Concurrency Independence (RD-4),

353
Concurrency Independence in Distrib-

uted Database Management
(RX-27), 423

Condition(s), 337
time-oriented, expressing, 367-368

Condition part, of user-defined integ-
rity constraint, 261-264

Constants, Variables, and Functions
Interchangeable (RL-15), 367

Index • 515

CONTROL DUPLICATE ROWS
command (RE-20), 164-166

Conversion, ease of, with relational
approach, 439

Corrupted relations, 3, 373
SQL and

alleged security problem and, 378
application of statistical functions

and, 374
ordering of relational operators

and, 374-378
semantic problem and, 373-374
supermarket check-out problem

and, 378-379
Coupling of Dates with Times (RT-6),

53
CREATE DOMAIN command

(RE-3), 156-157
CREATE DOMAIN command, 156-

157
CREATE DOMAIN-BASED INDEX

command (RE-15), 163
CREATE INDEX command (RE-14),

162-163
CREATE R-TABLE command

(RE-7), 158
CREATE SNAPSHOT command

(RE-17), 163-164
Creating a New Relation (RX-20),

412
Creating and Dropping an Integrity

Constraint (RI-17), 253
Cross-ties, 130
Currency

decimal, non-negative, 53-54
free decimal, 54

Cyclic key states, universal relation
versus relational approach and,
470-471

Cyclic path, 141

D
Data

atomic, 6
compound, 6
discipline needed for sharing of, 5-

6
Database(s)

controls on, 11

exploratory, 5
global. See Global database
knowledge bases and, 29-30
production-oriented, 5
relational, 7, 395

Database administrator (DBA)
commands for, 155-168

for archiving and related activi-
ties, 166-168

CONTROL DUPLICATE
ROWS, 164-166

CREATE SNAPSHOT, 163-164
for domains, relations, and col-

umns, 156-162
EXTRACT AN R-TABLE, 164
for indexes, 162-163
LOAD AN R-TABLE, 164

controls on database and, 11
responsibilities of, 155-156

Database-c0ntrol activities, authoriza-
blel '331-332

Database controllability, with rela-
tional approach, 434-435

Database description, 30
altering, blocks to simplify, 234-235

Database management
distributed, 391-416, 417-429

abandoning an old site and, 412-
414

DBMS at each site and, 394-395
distributed authorization and,

407-408
distributed catalog and, 408-412
distributed integrity constants

and, 406
distributed processing distin-

guished from, 391
distributed views and, 406-407
heterogeneous, 424
implementation considerations

and, 422-424
introducing a new site and, 414-

415
optimization in, 417-422
optimizer in, 393-394
relational approach to distributing

data and, 395-404
requirements for, 391-393

entity-relationship approach to, 7

516 • I n d e x

exploratory, 5
fundamental laws of, 459-466

Database management system
_

(DBMS)
fully relational, 16
implementation of, 11
relational, 16-17, 395

communication between machines
of different architectures and,
445-446

features and products on top of,
assuming future is logically
based, 444

features and products on top of,
assuming vendors continue to
take very short-term view, 444

performance and fault tolerance
of, 444

performance and fault tolerance
of, assuming future is logically
based, 444

performance and fault tolerance
of, assuming vendors take very
short-term view, 445

products needed on top of, 443-
444

Database management system
(DBMS) design, 351-359

Database Statistics (RD-8), 355
Database Statistics in the Catalog

(R C-11), 282-283
Database values

missing, 197
introducing column integrity con-

straint 'for disallowing, 253-254
temporary replacement of, 210
user-defined prohibition of, 250-

251
safety feature when comparing, 46-

49, 71-72, 105 ~
Data distribution, relational approach

to, 395-405
assignment of relations for the

global database and, 401
combination of relations from the

global database and, 404
decomposition of relations from

the global databaseand, 402-
404 •

naming rules and, 398-401
replicas and snapshots and, 405

Data Sublanguage: Variety of Users
(RL-1), 362

Data types
abstract, 480
naming, 146

Date(s), 50-53
coupling with times, 53
integrity Constraints triggere d by,

266
time-zone conversion and, 53

Date and Time Conditions (RA-13),
334

DBA. See Database administrator
DBMS. See Database management

system
Deactivating and Reactivating Items

in the Catalog (RX-23), 415
Deadlocks

global, 423
inter.site, 423

Declaration of Domains as Extended
Data Types (RS-6), 34-35

Decomposition, upon input, binary
relationship approach versus re-
lational approach and, 474-475

Decomposition by Columns for Dis-
tributing Data (RX-9), 403-
404

Decomposition by Rows for Distribut-
ing Data (RX-IO), 404

Decomposition flexibility, 349,426
Decryption, responsibility for, 358
De-emphasis of Cartesian Product as

an Operator (RB-1), 66
Default value(s), legitimate use of,

1204-205
Default-value approach, problems en-

: countered in, 203-204
Default value scheme, 197, 198-200
Definitely incorrect, 199
Degree n, 2, 20
Delayed Deletions of Data and Drops

By Archiving (RA.6), 331
Delete, high-level, 231-232
Delete command, 7
"'Delete duplicates," 20
Delete Operator (RB-35), 92

I n d e x • 517

Delete Operator with Cascaded
A-marking and Optional Sib-
ling Detection (RB-37), 94

Delete Operator with Cascaded Dele-
tion (RB-36), 93

(RB-37), 93-94
"Delete redundant duplicates," 20
Deletion, universal relation versus re-

lational approach and, 471
Denied access, 327
Dependency

functional, 272
inclusion, 273
join, 273
multi-valued, 272

Derived relations, 16, 18, 30, 166
rows containing A-marks and/or

I-marks and, 175-176
Derived R-tables, 18

exclusion of duplicate rows from,
18-19

Description of Base R-tables (RC-4),
279-280

Description of Composite Columns
(RC-5), 280

Description of Domains (RC-3), 279
Description of Views (RC-6), 280-281
Detective mode, naming for, 153
Determining Applicability of Con-

straints (RI-8), 248
Dictionaries, 46, 159, 277
Difference Operator (RB-28), 82-83
Digraph, 451
Directed graph, 451
Directed graph relation, 140-141
Disjoint subrelations, 403
Distributability, with relational ap-

proach, 436-437
Distributed database, naming objects

in, 399-401
Distributed database management.

See Database management,
distributed

Distributed Database Management:
Decomposition and Recomposi-
tion (RP-5), 349

Distributed processing, distributed da-
tabase management distin-
guished from, 391

Distribution Independence (RP-4),
347-349

Distribution independence, 348, 392,
427

Division operators, names of columns
of results of, 151

DOD column, 216
DOD Versions of Built-in Statistical

Functions (RF-2), 340
Domain(s), 2

ALTER DOMAIN command and,
157

catalog and, 279
composite, 37

binary relationship approach ver-
sus relational approach and, 476

CREATE DOMAIN command
and, 156-157

DROP DOMAIN command and,
158

as extended data types, 34-35, 43-
59

basic and extended data types
and, 43-45

calendar dates and clock times
and, 50-53

for currency, 53-55
features built into RM/V2 system

and, 49-50
FIND commands and, 55-58
reasons for supporting domains

and, 45-49
user-defined data types and, 50

exercise, 283
naming, 146
primary, 49
RENAME DOMAIN command

and, 157
Domain-based Index (RD-7), 355
Domain-check-error Indicator (R J-6),

224
DOMAIN CHECK OVERRIDE

qualifier (RQ-9), 215-216
Domain-constrained Operators and

DOMAIN CHECK
OVERRIDE (RM-14), 238

Domain integrity, 46
Domain-not-declared Indicator (R J-5),

224

518 • I n d e x

Domain Not Droppable, Column Still
Exists Indicator (R J-7), 224-
225

Domains and Columns Containing
Names of Arguments (RF-IO),
344, 449

Domains Applicable to Columns of
Views (RV-8), 291

DROP COLUMN command (RE-13),
161-162

DROP INDEX command (RE-16),
163

Dropping a Relation from a Site
(RX-19), 412

DROP R-TABLE command (RE-9),
159-160

Duplicate-primary-key Indicator
(R J-9), 225

Duplicate-primary-key indicator, 88
Duplicate-row Indicator (R J-8), 225
Duplicate row indicator, 88
Duplicate rows, 6

CONTROL DUPLICATE ROWS
command and, 164-166

corrective steps for, 386-387
exclusion of, 18-19
prohibition within a relation, 300-

301
removal of, 189-191
SOL and, 372-379

alleged security problem and, 378
application of statistical functions

and, 374
ordering of relational operators

and, 374-378
semantic problem and, 373-374
supermarket check-out problem

and, 378-379
Duplicate Rows Prohibited in Every

Relation (RS-3), 32-33
Duplicate values, user-defined prohi-

bition of, 251
"Dynamically," 21
Dynamic Mode (RM-8), 235
Dynamic On-line Catalog (RC-1), 278

E
Each Integrity Constraint Executable

as a Command (RI-21), 255

Economy of transmission, 349, 426
Edges, 451
Empty Divisor Indicator (R J-2), 223
Empty relation(s), temporary replace-

ment of, 211
Empty-relation Indicator (R J-l), 223
Empty sets, application of statistical

functions to, 188-189
Empty trigger, 188
Encryption, responsibility for, 358
END, explicit, for multi-command

blocks, 363-364
Entity integrity, 175, 244

missing information and, 176
rules, 176

Entity-relationship approaches
to database management, 7
relational approach versus, 477-478

Equality, missing information and,
178-180

inapplicable information and, 180
missing-but-applicable informa-

tion and, 179
Equi-join, 73-74

missing information and, 183
view updatability and, 304-309

E-relation, 25
Essential ordering, prohibition of, 239
EXCLUDE SIBLINGS qualifier

(RQ-IO), 216
Execution modes, 235-236
Expert systems, 436
Explicit BEGIN and END for Multi-

command Blocks (RL-7), 363-
364

Exploratory database, 5
Expressing Time-oriented Conditions

(RL-16), 367-368
Expression, relation-valued, 87
Extended data types, 43-59, 150

declaration of domains as, 34-35
domains as. See Domain(s), as ex-

tended data types
names of arguments of functions as,

55
names of functions as, 54-55
user-defined, 50

Extended Data Types Built into the
System (RT-2,) 49-50

Extended theta-join, 77

Index • 519

Extended theta-select, 72
Extend operator, 103-104
Extend the Description of one Rela-

tion to Include all the Columns
of Another Relation (RZ-2),
103-104

Extension, of relation, 9, 10
EXTRACT AN R-TABLE command

(RE-19), 164

F
Factoring advantage, 35

support of domains and, 45
F A O _ A V Command (RE-l), 56-57
FAOmLIST Command (RE-2), 57-58
Fault-tolerant channel organization,

395
Feature(s), present situation and,

441-443
errors of commission and, 443
errors of omission and, 442

FIND commands, 55-58
FK-targeting, 26
Flexible Role of Operators

(RL-17), 368-369
Foreign Key (RS-IO), 36-37
Foreign key, 23

of base relations, 175
cascaded update of, primary-key

update with, 90-92
dependent, 91
semantic aspects of, 23-25

Foreign key value, 23, 175,245
Formal equality. See Symbolic

equality.
Formal ordering. See Symbolic

ordering.
Four-valued, first-order predicate

logic, 20
Four-valued logic, 20

inadequate support for, SOL and,
383-386

of RM/V2, 182-183
Four-valued Logic: Truth Tables

(RM-IO), 236
Fragmentation, 402
Frame identifier, 99
Framing, of relations, 98-103

applying aggregate functions to
framed relations and, 101-103

introduction to, 98-99
partitioning relation by individual

values and, 99-100
partitioning relations by ranges of

values and, 100-101
Framing a Relation (RZ-1), 98-99
Free Decimal Currency (RT-9), 54
Freedom, naming, 148
Freedom from Positional Concepts

(RS-2), 32
Function(s), 337-344

interchangeability of, 367
names of, as extended data type,

54-55
naming, 146
safety and interface, 342-344
scalar and aggregate, 338-340
user-defined, 340-342
view-interpretation, 313

Functional Dependency (RI-28), 272
Function-derived function, 88

G
General Transformation for Distribut-

ing Data (RX-11), 404
Global catalog, 396-397

composite, 397
n copies of, 397
normalized, 397

Global database, 396-397
assignment or relations from, 401
combination of relations from, 404
decomposition of relations from,

401-404
redistribution in, 401
reversibility in, 401
single, 392

Global Database and Global Catalog
(RX-3), 396-397

Global deadlocks, 423
Global names, 397
Global Optimization (RL-13), 366-

367
Granted permission. See Authoriza-

tion, granting and revoking.
Granting and Revoking Authorization

(RA-IO), 333-334
Granting Authorization: Space-time

Scope (RA-2), 327-329
Guaranteed Access (RM-1), 229-230

520 • I n d e x

H
Heading relation, 31
Heterogeneous distributed database

management system, 424
Hidden from the user's view, 4
Hiding Selected Columns in Views

(RA-3), 329-330
Hierarchic structure, 452
Hierarchy, 142

strict, integrity checks and, 456
High-level Insert, Update, and Delete

(RM-4), 231-232
Highly discriminating character, 124-

125
HL. See Host language(s)
Homographs, 103
Host language(s) ("HL"), 22

interface to, 203
single-record-at-a-time, interface to,

239
user-defined functions and, 342

Host-language statements, intermixing
with relational-language state-
ments, 362

I
IBM systems, distribution indepen-

dence and, 348
Identifier, 31
Illegal Tuple (RI-14), 251
I-mark(s) (inapplicable value mark),

173-174
rows containing, 175-176
updating, 177-178

I-marked values
insertion involving, 267-268
update involving, 268

Implementation anomalies, 202
Improper relations, 3
IMS Fastpath, 438
Inadequately identified objects, 244
Incapability, 212
Inclusion constraint, 26
Inclusion Dependency (RI-31), 273
Inclusion dependency(ies), 26

implementation of domains and, 47
Independence

concurrency and, 353

in distributed database manage-
ment, 424

distribution, 392, 427
location, 392
performance, in distributed data-

base management, 422
replication, 393
types, 350

Indexes
commands for, 162-163
domain-based, 49, 355

Indicators, 221-227
argument, 222
catalog block, 226
domain-check-error, 224
domain-not-declared, 224
domain not droppable, column still

exists, 224-225
duplicate-primary-key, 89, 225
duplicate-row, 89, 225
empty divisor, 223
empty-relation, 223
missing-information, 223
non-existing argument, 224
non-redundant ordering, 225
other than view-defining indicators,

223-226
view-defining, 226-227
view not component-updatable, 226
view not tuple-deletable, 227
view not tuple-insertible, 226

Inequality join, missing information
and, 183

Information Feature (RS-1), 30, 31-33
Information in a User-defined Integ-

rity Constraint (RI-23), 260
Information Portability (RS-4), 33
INGRES project, 348
Inheritance of Column Names

(RN-11), 152
Inner equi-join, outer equi-join versus,

as views, 321-322
Inner identity relationship, 116
Inner joins, other than equi-joins,

view updatability and, 309-311
Insert, high-level, 231-232
Insert command, 7
Insertion, universal relation versus re-

lational approach and, 469

I n d e x • 521

Insertion Involving I-marked Values
(RI-26), 267-268

Insert Operator (RB-31), 88-89
Integrability, with relational approach,

436
Integrity checks, 35

domains and, 48
extending relational model and,

455-456
checking for unintended cycles

and, 455
isolated subgraphs and, 455-456
strict hierarchy and, 456

Integrity constraints, 243-258
conceiving and expressing, binary

relationship approach versus re-
lational approach and, 477

creating, executing, and dropping,
253-254

distributed, 406
five types of, 244-246
independent of the data structure,

244
involving cascading the action, im-

plementation of domains and,
47

linguistic expression of, 244
naming, 153
performance-oriented features and,

254-257
referential, in catalog, 281
safety features and, 250-252
timing and response specification

and, 246-250
user-defined, 259-275

in catalog, 281
condition part of, 261-264
examples of, 268-270
execution of, 264-266
implementation of domains and,

47
information in, 260-261
relating to missing information,

266-268
simplifying features and, 271-273
special command for triggered ac-

tion and, 273"274
triggered action and, 264
triggered by date and time, 266

"user-defined," 244
Integrity Constraints that Straddle

Two or More Sites (RX-13),
406

Integrity features, implementation of
domains and, 47

Integrity Independence (RP-3), 347
Integrity rules, missing information

and, 176-177
Intension, of relation, 9, 10
Intent, analyzability of, 427
Inter-command concurrency, 353, 422
Interface features, functions and, 342-

344
Interface to Single-record-at-a-time

Host Languages (RM-17), 239
Intermixing Relational- and Host-

language Statements (RL-3),
362

Interpretation algorithms, 299
"Interrogation," 21

view definitions and, 288
Interrogation of Statistics (RD-9),

355
Intersection Operator (RB-27), 81-82
Intersection operato r, view updatabil-

ity and, 314-315
Inter-site deadlocks, 423
Inter-site Move of a Relation

(RX-17), 410
Inter-site Moves of Rows of a Rela-

tion (RX-18), 411
I-timed. See Command-interpretation

time.
Intra-command concurrency, 353, 422
Introducing a Column Integrity Con-

straint for Disallowing Missing
Database, Values (Rl-19), 253-
254

Introducing a New Site (RX-22), 414
Inverse Function Required, If It Ex-

ists (RF-5), 341
Investment, protection of, 345-350

integrity, 347
logical, 346
physical, 345-346
redistribution, 347-349

Isolated subgraphs, integrity checks
and, 455-456

522 • Index

J
Join(s), 76

calendar dates and, 51
heavy load of, binary relationship

approach versus relational ap-
proach and, 476

involving value-ordering, 184-185
recursive, 140-143
restriction to entity-based joins, bi-

nary relationship approach ver-
sus relational approach and,
476

user-defined, 138-140
names of columns of results of, 151

Join Dependency (RI-30), 273

K
Key(s), 22-26

composite, 36
binary relationship approach ver-

sus relational approach and,
474

foreign, 23, 36-37
semantic aspects of, 23-25

joins based on, universal relation
versus relational approach and,
470

primary, 22-23
for certain views, 36
on common domain, 25-26
for each base R-table, 35-36
semantic aspects of, 23-25

referential integrity and, 23-26
Knowledge bases, databases and, 29-

30
Known by the system, 199

L
Language. See also specific languages

host. See Host languages
role in relational model, 21-22
comprehensive data sublanguage

and, 240
relational

parsable, 230
power of, 231
principles of design for, 361-369

Left Outer Equi-Join (RZ-13), 107-
108

Left outer increment, 112, 134
Left Outer Natural Join (RZ-16), 114
Library Check-out (RM-19), 240-241
Library check-out and return, 240-241
Library Return (RM-20), 241
LOAD AN R-TABLE command

(RE-18), 164
Local Autonomy (RX-2), 394-395
Local management of local data, 395
Local names, 397
Location independence, 392-393
Location transparency, 392-393
Locking, long-term, unauthorized,

protection against, 353-354
Locking in Distributed Database Man-

agement (RX-29), 423-424
Logic

Boolean, 19
mathematical, 19-20

Logical support, 381
Logical Data Independence (RP-2),

346
Logical data independence, 322
Logical impairment, 356
Logic-based approach, 62

M
Malfunction

automatic protection in case of, 356
automatic recovery in case of, 356

Manipulation, 21
extending relational model and, 454

Manipulation Using Views (RV-5),
289-290

Manipulative activities, authorizable,
332

Manipulative operators, 63, 86-94
delete, 92

with cascaded A-marking and op-
tional sibling deletion, 94

with cascaded deletion, 93
insert, 88-89
primary-key update with cascaded

marking and, 92
primary key update with cascaded

update of foreign keys and op-
tional update of sibling primary
keys and, 90-92

relational assignment, 88, 89
update, 89

Index • 523

Mark(s), 172-174, 197-198. See also
A-marks; 1-mark(s); 1-marked
values

operator-generated, 191
ordering of, 183-184

MARK command (RI-34), 274
Marked arguments, scalar functions

applied to, 185
Marked values, 23. See also A-marks;

1-mark(s); 1-marked values
concatenation and, 237-238
criticisms of arithmetic on, 186
non-generation of, by functions,

342-343
property inapplicable, exercise, 482
property-not-applicable, exercise,

482
Mathematical logic, 20
Mathematics, non-violation of funda-

mental laws of, 351-352
MAYBE__A qualifier (RQ-1), 209
MAYBE~I qualifier (RQ-2), 210
MAYBE qualifier (RQ-3), 210
MAYBE qualifier, outer join opera-

tors with, 110-113
Meta-data, 31
Minimal Adequate Scope of Checking

(RI-20), 254-255
Minimality property, 23
Minimum Standard for Statistics

(RX-24), 421
Minimum Standard for the Optimizer

(RX-25), 422
Missing information, 169-195

application of equality and, 178-180
inapplicable information and, 180
missing but applicable informa-

tion and, 179
application os statistical functions

and, 187-188
empty sets and, 188-189

criticisms of arithmetic on marked
values and, 186

definitions and, 171-174
four-valued logic of RM/V2 and,

182-183
integrity constraints relating to,

266-268
integrity rules and, 176-177
introduction to, 169-171

joins involving value-ordering and,
184-185

manipulation of, 176, 236-238
necessary language changes and,

191-193
normalization and, 193-194
operator-generated marks and, 191
ordering of values and marks and,

183-184
primary keys and foreign keys of

base relations and, 175
removal of duplicate rows and, 189-

19!
response to technical criticisms re-

garding, 197-206
alleged breakdown of normaliza-

tion and, 200-201
alleged counter-intuitive nature

and, 198-200
application to statistical functions

and, 202-203
implementation anomalies and,

202
interface to host languages and,

203
legitimate use of default values

and, 204-205
problems encountered in default-

value approach and, 203-204
value-oriented misinterpretation

and, 197-198
rows containing A-marks an/or

1-marks and, 175-176
scalar functions applied to marked

arguments and, 185
selects, equi-joins, inequality joins,

and relational division and, 183
three-valued logic of RM/V1 and,

180-182
treatment by SOL, 385-386
updating A-marks and I-marks and,

177-178
Missing-information Indicator (R J-3),

223
Missing Information: Manipulation

(RM-11), 236-237
Missing Information: Representation

(RS-13), 39-40
Missing values, arithmetic operators

and, 237

i i , •

524 • Index

"Modification," 21
Multi-command blocks, explicit BE-

GIN and END for, 363-364
Multi-site Action from a Single Rela-

tional Command (RX-1), 393
Multi-valued Dependency (RI-29), 272
Multi-valued logic, corrective steps for

supporting, 387

N

Name Resolution with a Distributed
Catalog (RX-16), 409

Names
global, 397
local, 397

Names of Arguments of Functions
as an Extended Data Type
(RF-9), 55

Names of Columns Involved in the
Union Class of Operators
(RN-6), 148-150

Names of Columns of Result of a
Project Operation (RN-9), 151

Names of Columns of Result of the
Join and Division Operators
(RN-8), 151

Names of Columns of Views (RV-7),
291

Names of Functions as an Extended
Data Type (RF-8), 54-55

Naming, 145-154
of archived relations, 152
basic features and, 146-148
columns in intermediate and final

results and, i48-152
for detective mode, 153
of integrity constraints, 153

Naming Archived Relations (RN-12),
152

Naming for the Detective Mode
(RN-14), 153

Naming Freedom (RN-5), 148
Naming Objects in a Distributed Da-

tabase (RX-7), 399-401
Naming of Columns (RN-3), 146-147
Naming of Domains and Data Types

(RN-1), 146
Naming of Integrity Constraints

(RN-13), 153

Naming of Relations and Functions
(RN-2), 146

Naming rules, 398-401
Naming the Columns whose Values

are Function-generated
(RN-IO), 151-152

Natural Join Operator (RB-25), 77-78
Natural join operator, view updatabil-

ity and, 312
Natural language, universal relation

and, 472
N Copies of Global Catalog (N>I)

(RX-4), 397
Need to know basis, 326
Nested versions, permitted in SQL, 381
Network, 392
New Integrity Constraints Checked

(RI-18), 253
Nodes, 451

starting, 451
terminating, 451

Non-existing Argument Indicator
(R J-4), 224

Non-generation of Marked Values by
Functions (RF-8), 342-343

Non-impairment of Commutativity
(RN-7), 150-151

Non-keys, joins based on, universal
relation versus relational ap-
proach and, 470

Non-negative Decimal Currency
(nr-8), 53-54

Non-PK projection, 27
Non-redundant Ordering Indicator

(nJ-lO), 225
Non-subversion (RI-16), 252
Non-violation of Any Fundamental

Law of Mathematics (RD-1),
351-352

Normalization, 193-194, 317-319
alleged breakdown of, 200-201
binaryrelationship approach versus

relational approach and, 473-
474

view updatability and, 317-322
archiving and deletion anomalies

and, 319 ~
insertion anomalies and, 318-319
new operators and, 320-321
update anomalies and, 319

Index • 525

N-person Turn-key (RA-5), 330
Nulls, 172, 197-198
Null values, 172, 197

O
Object-oriented approaches, relational

approach versus, 479-480
Occurance, 263
On-the-fly, End of Command, and

End of Transaction Techniques
(RI-22), 255-257

ONCE ONLY qualifier (RQ-8), 214-
215

Operand
left, 134
right, 134

Operational Closure (RM-5), 232
Operator(s)

advanced. See Advanced operators
built-in, 137
basic. See Basic operators
manipulative. See Manipulative

operators
for retrieval and modifying, imple-

mentation of domains and, 47
set-oriented, 365
superiority or subordination of, 368
techniques for explaining, 63-66
universal relation versus relational

approach and, 468-469
Operators Constrained by Basic Data

Type (RM-15), 238-239
Optimizability

analyzability of, 427
with relational approach, 437

Optimization, 76
by DBMS, 377, 382
in distributed database manage-

ment, 417-422
financial company example of,

418-421
global, 366-367
uniform, 367

Optimization problem, 437
Optimizer, 76

in distributed DBMS, 393-394
minimum standard for, 422

Order
ascending, 133
descending, 133

ORDER BY qualifier (RQ-7), 211-
213

Ordering, essential, prohibition of,
239

Orthogonality in DBMS Design
(RD-6), 354

Orthogonality in Language Design
(RL-8), 364

Outer difference operator
implementation of domains and, 47
view updatability and, 316

Outer equi-join operator
inner equi-join versus, as views,

321-322
view updatability and, 312

Outer increments, 134
left, 134
right, 134

Outer intersection operator
implementation of domains and, 47
view updatability and, 315

Outer equi-join operators, 106-110
implementation of domains and, 47
with MAYBE qualifier, 110-113

Outer Set Difference (RZ-20), 119-
120

Outer Set Intersection (RZ-21), 120-
122

Outer set operators, 115-122
inner operators and, 115-116
relationship between, 122

Outer T-joins (RZ-26--RZ-37), 134-
135

Outer Union (RZ-19), 117-119
Outer union operator

view updatability and, 314
implementation of domains and, 47

P
Parsable Relational Data Sublanguage

(RM-2), 230
Passing on Authority to Grant

(RA-11), 334
Performance Independence in Distrib-

uted Database Management
(RX-26), 422

Physical Data Independence (RP-1),
345-346

PK-based projection, 27

526 • I n d e x

PK-targeting, 26
Positional concepts, freedom from, 32
Potentially incorrect, 199
Power, of relational approach, 432
Power of the Relational Language

(RM-3), 231
Power-oriented features, 229-232
Predicate logic, 180, 231,384
Predicate Logic versus Relational Al-

gebra (RL-9), 364-365
Primary-key Update with Cascaded

Marking (RB-34), 92
Primary-key Update with Cascaded

Update of Foreign Keys and
Optional Update of Sibling Pri-
mary Keys (RB-33), 89-92

Primary key(s), 22-23, 36
of base relations, 175
on common domain, 25-26
semantic aspects of, 23-25
sibling

optional update of, with primary-
key update, 90-92

values of, 93
Primary Key for Certain Views

(RS-9), 36
Primary Key for Each Base R-table

(RS-8), 35-36
Primary key update, implementation

of domains and, 47
Principal Relational Language Is Dy-

namically Executable (RL-4),
363

Production-oriented database, 5
Productivity, of relational approach,

433
Prohibition of Essential Ordering

(RM-16), 239
Project operator, 76

names of columns of result of, 151
view updatability and, 303-304

Project Operator (RB-2), 67-69
Property P, 316
Protection Against Unauthorized

Long-term Locking (RD-5),
353-354

Psychological mix-up
corrective steps for, 387
SOL and, 379-382

adverse consequences of, 382

problem of, 379-382
support, 381

Q
Quad, 130, 308
Qualifiers, 207-219

appended DEGREE OF DUPLI-
CATION, 216-218

authorizable, 333
DOMAIN CHECK OVERRIDE,

215-216
EXCLUDE SIBLINGS, 216
existential, 86
MAYBE, 210
MAYBE___A, 209
MAYBE_I, 210
ONCE ONLY, 214-215
ORDER BY, 211-213
SAVE, 218
temporary replacement of empty re-

lations, 211
temporary replacement of missing

database values, 210
truth values and, 207-208
universal, 86
VALUE, 218

QUEL, 21
Queries, 21

authorizable, 332
nested versus non-nested, choosing,

382
set constants and nesting of, 365-

366

R
RA-1 Affirmative Basis, 327
RA-2 Granting Authorization: Space-

time Scope, 327-329
RA-3 Hiding Selected Columns in

Views, 329-330
RA-4 Blocking Updates That Remove

Rows From a View, 330
RA-5 N-person Turn-key, 330
RA-6 Delayed Deletions of Data and

Drops By Archiving, 331
RA-7 Authorizable Database-control

Activities, 331-332
RA-8 Authorizable Query and Manip-

ulative Activities, 332

Index • 527

RA-9 Authorizable Qualifiers, 333
RA-IO Granting and Revoking Au-

thorization, 333-334
RA-11 Passing on Authority to Grant,

334
RA-12 Cascading Revocation, 334
RA-13 Date and Time Conditions,

334
RA-14 Resource Consumption, 335
RA-15 Choice of Terminal, 335
RA-16 Assigning Authorization, 335-

336
RB-1 De-emphasis of Cartesian Prod-

uct as an Operator, 66
RB-2 Project Operator, 67-69
RB-3--RB-12 The Theta-Select Oper-

ator, 69-71
RB-13 The Boolean Extension of

Theta-Select, 72
RB-14-RB-23 The Theta-Join Opera-

tor, 73-76
RB-24 The Boolean Extension of

Theta-Join, 76-77
RB-25 The Natural Join Operator,

77-78
RB-26 The Union Operator, 78-81
RB-27 The Intersection Operator, 81-

82
RB-28 The Difference Operator, 82-

83
RB-29 The Relational Division Opera-

tor, 83-87
RB-30 Relational Assignment, 87-88
RB-31 The Insert Operator, 88-89
RB-32 The Update Operator, 89-90
RB-33 Primary-key Update with Cas-

caded Update of Foreign Keys
and Optional Update of Sibling
Primary Keys, 90-92

RB-34 Primary-key Update with Cas-
caded Marking, 92

RB-35 The Delete Operator, 92
RB-36 The Delete Operator with Cas-

caded Deletion, 93
RB-37 The Delete Operator with Cas-

caded A-marking and Optional
Sibling Detection, 94

R C-1 Dynamic On-line Catalog, 278
R C-2 Concurrency, 278
RC-3 Description of Domains, 279

RC-4 Description of Base R-tables,
279-280

RC-5 Description of Composite Col-
umns, 280

RC-6 Description of Views, 280-281
RC-7 User-defined Integrity Con-

straints, 281
RC-8 Referential Integrity Con-

straints, 281
RC-9 User-defined Functions in the

Catalog, 282
RC-IO Authorization Data, 282
RC-11 Database Statistics in the Cata-

log, 282-283
RD-1 Non-violation of Any Funda-

mental Law of Mathematics,
351-352

RD-2 Under-the-covers Representa-
tion and Access, 352

RD-3 Sharp Boundary, 352-353
RD-4 Concurrency Independence,

353
RD-5 Protection Against Unauthor-

ized Long-term Locking, 353-
354

RD-6 Orthogonality in D BMS Design,
354

RD-7 Domain-based Index, 355
RD-8 Database Statistics, 355
RD-9 Interrogation of Statistics, 355
RD-IO Changing Storage Representa-

tion and Access Options, 355-
356

RD-11 Automatic Protection in Case
of Malfunction, 356

RD-12 Automatic Recovery in Case
of Malfunction, 356

RD-13 Automatic Execution of Rela-
tional Commands, 356-357

RD-14 Automatic Archiving, 357
RD-15 Avoiding Cartesian Product,

357
RD-16 Responsibility for Encryption

and Decryption, 358
RE-1 The FAO__AV Command, 56-

57
RE-2 The FAO__LIST Command,

57-58
RE-3 CREATE DOMAIN command,

156-157

528 • I n d e x

RE-4 RENAME DOMAIN com-
mand, 157

RE-5 ALTER DOMAIN command,
157

RE-6 DROP DOMAIN command,
158

RE-7 CREATE R-TABLE command,
158

RE-8 RENAME R-TABLE com-
mand, 159

RE-9 DROP R-TABLE command,
159-160

RE-IO APPEND COLUMN com-
mand, 161

RE-11 RENAME COLUMN com-
mand, 161

RE-12 ALTER COLUMN command,
161

RE-13 DROP COLUMN command,
161-162

RE-14 CREATE INDEX command,
162-163

RE-15 CREATE DOMAIN-BASED
INDEX command, 163

RE-16 DROP INDEX command, 163
RE-17 CREATE SNAPSHOT com-

mand, 163-164
RE-18 LOAD AN R-TABLE com-

mand, 164
RE-19 EXTRACT AN R-TABLE

command, 164
RE-20 CONTROL DUPLICATE

ROWS command, 164-166
RE-21 ARCHIVE command, 167
RE-22 REACTIVATE command,

167-168
REACTIVATE command (RE-22),

167-168
Recomposition, upon output, binary

relationship approach versus re-
lational approach and, 475

Recomposition power, 349, 426
Recovery at Multiple Sites (RX-28),

423
Recursive Join (RZ-40), 140-143
Redistribution, in global database, 401
Referential integrity, 22-26, 175,244-

245
implementation and, 26

implementation of domains and, 47
missing information and, 176
primary keys on a common domain

and, 25-26
rules, 176
semantic aspects of primary and for-

eign keys and, 23-25
Referential Integrity Constraints

(RC-8), 281,283
REJECT command (RI-32), 274
Relation(s), 1-5

conceptual, 320
corrupted. See Corrupted relations
distinct, inter-relating the informa-

tion contained in, 7-8
dropping and creating, 412
duplicate rows prohibited in, 32-33
empty, temporary replacement of,

211
examples of, 8-10
extension of, 9, 298
from global database

assignment of, 401
combination of, 404
decomposition of, 402-404

improper, 3
intension of, 9
inter-site move of, 410
inter-site move of one or more rows

of, 410-411
of mathematics and relational

model, distinctions between, 4
naming, 146
as only compound data type, 6-7
prohibition of duplicate rows

within, 300-301
properties of, 2-3
tables versus, 17-20
universal. See Universal relation

Relational
DBMS, 17
Fully, 16

Relational algebra, predicate logic
versus, 364-365

Relational approach, 431-440
adaptability of, 432
concurrent action by multiple proc-

essing units and, to achieve
fault tolerance, 438-439

Index • 529

to achieve superior performance,
437

database controllability and, 434-
435

distributability and, 436-437
ease of conversion and, 439
flexible authorization and, 435-436
integratability and, 436
optimizability and, 437
person-to-person communicability

and, 434
power of, 432
productivity and, 433
richer variety of views with, 435
round-the-clock operation and, 433-

434
safety of investment and, 432-433
summary of advantages of, 439-440

Relational Assignment (RB-30), 87-88
Relational capabilities, 17
Relational commands

automatic execution of, 356-357
single, multi-site action from, 393

Relational data sublanguage, parsable,
230

Relational database(s), 7, 395
Relational database management sys-

tem, 395
Relational difference operator, 79, 82-

83
implementation of domains and, 47
view updatability and, 315

Relational Division Operator
(RB-29), 83-87

Relational division operator, 64
implementation of domains and, 47
missing information and, 183
view updatability and, 312

Relational intersection operator, 79,
81-82

imPlementation of domains and,
47

Relational languages RL, 21
as both source and target language,

363
power of, 21-22, 231
principal, dynamically executable,

363
principles of design for, 361-369

Relational-language statements, inter-
mixing with host-language
statements, 362

Relational model, 5-14
as abstract machine, 11-12
abstract machine standard and, 13-

14
claimed alternatives to, 465-482

entity-relationship approaches
and, 477-478

object-oriented approaches and,
479-480

semantic data approaches and,
476-477

SQL and, 444
universal relation and binary rela-

tions and, 468
why binary approach will not re-

place relational model and,
473-477

why universal relation will not re-
place relational model and,
468-473

classification of features of, 15-17
examples of relations and, 8"10
extending, 447-457

bill-of-materials problem and, 451
computational aspects and, 456
constructing, examples and, 451-

453
general rules and, 448-451
integrity checks and, 455
manipulation aspects and, 454
representation aspects and, 453-

454
requested extensions and, 447-448

goals of Version 2 (RM/V2) of, 10-
11

inter-relating data contained in dis-
tinct relations and, 7-8

omission of features from, 10
relation as only compound data

type and, 6-7
role of language in, 21-22
structured query language and, 12-

13
Relational operators, ordering of, du-

plicate rows and corrupted rela-
tions and, 374-378

530 • Index

Relational schema, 16
Relational union operator, 78-81

implementation of domains and, 47
Relation-valued expression, 87
Relationships

many-to-many, 306
time-independent P-K to F-K rela-

tionship, 307
RENAME COLUMN command

(RE-11), 161
RENAME DOMAIN command

(RE-4), 157
RENAME R-TABLE command

(RE-8), 159
Rendezvous, 472
Reordering parts, automatically, 269-

270
Repeating groups, 30-31
Replicas, global database and, 405
Replicas and Snapshots (RX-12), 405
Replication independence, 393
Representation

extending relational model and,
453-454

missing information and, 39-40
under-the-covers, 352

Request time, 298
Resource Consumption (RA-14),

335
Response specification, integrity con-

straints and, 246-250
Response to Attempted Violation for

Types R and U (RI-7), 248
Responsibility for Encryption and De-

cryption (RD-16), 358
Result of a function, 187
Retention, view definitions and, 288
Retention of Constraint Definitions

for Types R and U (RI,9),
248-249

"Retrieval," 21,232
Retrieval conditioning, 26
Retrieval targeting, 26
Retrieval Using Views (RV-4), 288-

289
Retrieve command, 7
Retrieved data, ordering imposed on,

211-213
Reversibility, in global database,

401

Reversibility and Redistribution
(RX-8), 401

Revocation, cascading, 334
RF-1 Built-in Aggregate Functions,

338-340
RF-2 DOD Versions of Built-in Statis-

tical Functions, 340
RF-3 Built-in Scalar Functions, 340
RF-4 User-defined Functions: Their

Use, 341
RF-5 Inverse Function Required, If It

Exists, 341
RF-6 User-defined Functions: Com-

piled Form Required, 341-342
RF-7 User-defined Functions Can Ac-

cess the Database, 342
RF-8 Non-generation of Marked Val-

ues by Functions, 342
RF-9 Domains and Columns Contain-

ing Names of Functions, 54-55,
343,449

RF-IO Domains and Columns Con-
taining Names of Arguments,
55,344, 449

RI-I--RI-5 Types of Integrity Con-
straints, 246

RI-6 Timing of Testing for Types R
and U, 247-248

RI-7 Response to Attempted Viola-
tion for Types R and U, 248

RI-8 Determining Applicability of
Constraints, 248

RI-9 Retention of Constraint Defini-
tions for Types R and U, 248-
249

RI-IO Activation of Constraint Test-
ing, 249

RI-11 Violations of Integrity Con-
straints of Types D, C, and E,
249-250

RI-12 User-defined Prohibition of
Missing Database Values, 250-
251

RI-13 User-defined Prohibition of Du-
plicate Values, 25t

RI-14 Illegal Tuple, 251
RI-15 Audit Log, 252
RI-16 Non-subversion, 252
RI-17 Creating and Dropping an In-

tegrity Constraint, 253

Index • 531

RI-18

RI-19

RI-20

R1-21

RI-22

RI-23

RI-24

R~ -25

RI-26

RI-27

RI-28
RI-29
RI-30
RI-31
RI-32
RI-33
RI-34
Right
Right

New Integrity Constraints
Checked, 253
Introducing a Column Integrity
Constraint for Disallowing
Missing Database Values, 253-
254
Minimal Adequate Scope of
Checking, 254-255
Each Integrity Constraint Exe-
cutable as a Command, 255
On-the-fly, End of Command,
and End of Transaction Tech-
niques, 255-257
Information in a User-defined
Integrity Constraint, 260
Triggering Based on AP and
TU Actions, 260
Triggering Based on Date and
Time, 261
Insertion Involving I-marked
Values, 267-268
Update Involving I-marked Val-
ues, 268
Functional Dependency, 272
Multi-valued Dependency, 272
Join Dependency, 273
Inclusion Dependency, 273
REJECT Command, 274
CASCADE command, 274
MARK command, 274
operand, 134
Outer Equi-Join (RZ-14),
108

Right outer increment (ROI), 112,
134

Right Outer Natural Join (RZ-17),
114

R J-1 Empty-relation Indicator, 223
R J-2 Empty Divisor Indicator, 223
R J-3 Missing-information Indicator,

223
R J-4 Non-existing Argument Indica-

tor, 224
R J-5 Domain-not-declared Indicator,

224
R J-6 Domain-check-error Indicator,

224
RJ-7 Not Droppable, Column Still

Exists Indicator, 224-225
R J-8 Duplicate-row Indicator, 225

R J-9 Duplicate-primary-key Indicator,
225

RJ-IO Non-redundant Ordering Indi-
cator, 225

R J-11 Catalog Block Indicator, 226
R J-12 View Not Tuple-insertible,

226
RJ-13 View Not Component-updata-

ble, 226
R J-14 View Not Tuple-deletable, 227
RE. See Relational languages
RL-1 Data Sublanguage: Variety of

Users, 362
RL-2 Compiling and Re-compiling,

362
RL-3 Intermixing Relational- and

Host-language Statements, 362
RL-4 Principal Relational Language Is

Dynamically Executable, 363
RL-5 RL Both a Source and a Target

Language, 363
RL-6 Simple Rule for Scope Within

an RE Command, 363
RL-7 Explicit BEGIN and END for

Multi-command Blocks, 363-
364

RL-80rthogonality in Language De-
sign, 364

RL-9 Predicate Logic versus Rela-
tional Algebra, 364-365

RL-IO Set-oriented Operators and
Comparators, 365

RL-11 Set Constants and Nesting of
Queries Within Queries, 365-
366

RL-12 Canonical Form for Every Re-
quest, 366

RL-13 Global Optimization, 366-367
RL-14 Uniform Optimization, 367
RL-15 Constants, Variables, and

Functions Interchangeable, 367
RL-16 Expressing Time-oriented Con-

ditions, 367-368
RL-17 Flexible Role for Operators,

368-369
RE Both a Source and a Target Lan-

guage (RL-5), 363
RM-1 Guaranteed Access, 229-230
RM-2 Parsable Relational Data Sub-

language, 230

532 • Index

RM-3 Power of the Relational Lan-
guage, 231

RM-4 High-level Insert, Update, and
Delete, 231-232

RM-5 Operational Closure, 232
RM-6 Transaction Block, 233-234
RM-7 Blocks to Simplify Altering the

Database Description, 234-
235

RM-8 Dynamic Mode, 235
RM-9 Triple Mode, 235-236
RM-IO Four-valued Logic: Truth Ta-

bles, 236
RM-11 Missing Information" Manipu-

lation, 236-237
RM-12 Arithmetic Operators: Effect

of Missing Values, 237
RM-13 Concatenation: Effect of

marked Values, 237-.238
RM-14 D0main-constraine d Operators

and DOMAIN CHECK OV-
ERRIDE, 238

RM-15 Operators Constrained by
Basic Data Type, 238.-239

RM-16 Prohibition of Essential Order-
ing, 239

RM-17 Interface to Single-record-at-a-
time Host Languages, 239

RM-18 Comprehensive Data Sublan-
guage, 240

RM-19 Library Check-out, 240-241
RM-20 Library Return, 241
RM/V1. See also Relational model

three-valued logic of, 180-182
RM/V2; See also Relational model

four-valued logic of, 182-183
RN-1 Naming of Domains and Data

Types, 146
RN-2 Naming of Relations and Func-

tions, 146
RN-3 Naming of Columns, 146-147
RN-4 Selecting Columns within Rela-

tional Commands, 148
RN-5 NamingFreedom, 148
RN-6 Names of Columns Involved in

the Union Class of Operators,
148-150

RN-7 Non-impairment of Commuta-
tivity, 150-151

RN-8 Names of Columns of Result of
the Join and Division Opera-
tors, 151

RN-9 Names of Columns of Result of
a Project Operation, 151

RN-IO Naming the Columns whose
Values are Function-generated,
151-152

RN-11 Iriheritance of Column Names,
152

RN-12 Naming Archived Relations,
152

RN-13 Naming of Integrity Con-
straints, 153

RN-14 Naming for the Detective
Mode, 153

ROLLBACK command, 248
Round-the-clock operation, with rela-

tional approach, 433-434
Rounding, calendar dates and, 51
RP-1 Physical Data Independence,

345-346
RP-2 Logical Data Independence, 346
RP-3 Integrity Independence, 347
RP-4 Distribution Independence, 347-

349
RP-5 Distributed Database Manage-

ment: Decomposition and Re-
composition, 349

RQ-1 MAYBE____A qualifier, 209
RQ-2 MAYBE_I qualifier, 210
RQ-3 MAYBE qualifier, 210
RQ-4, RQ-5 Temporary Replacement

of Missing Database Values,
210

RQ-6 Temporary Replacement of
Empty Relation(s), 211

RQ-7 ORDER BY qualifier, 211-213
RQ-8 ONCE ONLY qualifier, 214-

215
RQ-9 DOMAIN CHECK OVER-

RIDE (DCO) qualifier, 215-
216

RQ-IO EXCLUDE SIBLINGS quali-
fier, 216

RQ-11 Appended DEGREE OF DU-
PLICATION (DOD) qualifier,
216-218

RQ-12 SAVE qualifier, 218

Index • 533

RQ-13 VALUE qualifier, 218
RS-1 Information Feature, 30, 31-33
RS-2 Freedom from Positional Con-

cepts, 32
RS-3 Duplicate Rows Prohibited in

Every Relation, 32-33
RS-4 Information Portability, 33
RS-5 Three-Level Architecture, 34
RS-6 Declaration of Domains as Ex-

tended Data Types, 34-35
RS-7 Column Descriptions, 35
RS-8 Primary Key for Each Base

R-table, 35-36
RS-9 Primary Key for Certain Views,

36
RS-IO Foreign Key, 36-37
RS-11 Composite Domains, 37
RS-12 Composite Columns, 37-39
RS-13 Missing Information: Represen-

tation, 39-40
RS-14 Avoiding the Universal Rela-

tion, 40-41
RT-1 Safety Feature when Comparing

Database Values, 46-49, 71-
72, 105

RT-2 Extended Data Types Built into
the System, 49-50

RT-3 User-defined Extended Data
Types, 50

RT-4 Calendar Dates, 50-52
RT-5 Clock Times, 52-53
RT-6 Coupling of Dates with Times,

53
RT-7 Time-zone Conversion, 53
RT-8 Non-negative Decimal Currency,

53-54
RT-9 Free Decimal Currency, 54
R-tables, 17-18

base, 18
integrity constraints and, 36
catalog and, 279-280
primary key for, 35-36

CREATE R-TABLE command
and, 158

derived, 18-19
DROP R-TABLE command and,

159-160
EXTRACT AN R-TABLE com-

mand and, 164

LOAD AN R-TABLE command
and, 164

RENAME R-TABLE command
and, 159

Rule Zero, 16-17
RV-1 View Definitions: What They

Are, 285-287
RV-2 View Definitions: What They

Are Not, 287-288
RV-3 View Definitions: Retention and

Interrogation, 288
RV-4 Retrieval Using Views, 288-

289
R V-5 Manipulation Using Views, 289-

290
RV-6 View Updating, 290-291,322-

323
RV-7 Names of Columns of Views,

291
R V-8 Domains Applicable to Columns

of Views, 291
RX-1 Multi-site Action from a Single

Relational Command, 393
RX-2 Local Autonomy, 394-395
RX-3 Global Database and Global

Catalog, 396-397
RX-4 N Copies of Global Catalog

(N > 1), 397
RX-5 Synonym Relation in Each Cat-

alog, 398
RX-6 Unique Names for Sites, 399
RX-7 Naming Objects in a Distributed

Database, 399-401
RX-8 Reversibility and Redistribution,

401
RX-9 Decomposition by Columns for

Distributing Data, 403-404
RX-IO Decomposition by Rows for

Distributing Data, 404
RX-11 General Transformation for

Distributing Data, 404
RX-12 Replicas and Snapshots, 405
RX-13 Integrity Constraints that

Straddle Two or More Sites,
406

RX-14 Views that Straddle Two or
More Sites, 407

RX-15 Authorization that Straddles
Two or More Sites, 408

534 • Index

RX-16 Name Resolution with a Dis-
tributed Catalog, 409

RX-17 Inter-site Move of a Relation,
410

RX-18 Inter-site Moves of Rows of a
Relation, 411

RX-19 Dropping a Relation from a
Site, 412,

RX-20 Creating a New Relation, 412
RX-21 Abandoning an Old Site and

Perhaps Its Data, 413-414
RX-22 Introducing a New Site, 414
RX-23 Deactivating and Reactivating

Items in the Catalog, 415
RX-24 Minimum Standard for Statis-

tics, 421
RX-25 Minimum Standard for the Op-

timizer, 422
RX-26 Performance Independence in

Distributed Database Manage-
ment, 422

RX-27 Concurrency Independence in
Distributed Database Manage-
ment, 423

RX-28 Recovery at Multiple Sites, 423
RX-29 Locking in Distributed Data-

base Management, 423-424
RZ-1 Framing a Relation, 98-99
RZ-2 Extend the Description of one

Relation to Include all the Col-
umns of Another Relation,
103-104

RZ-3--RZ-12 Semi-Theta-Join, 105-
106

RZ-13 Left Outer Equi-Join, 107-108
RZ-14 Right Outer Equi-join, 108
RZ-15 Symmetric Outer Equi-Join,

108-110
RZ-16 Left Outer Natural Join, 114
RZ-17 Right Outer Natural Join, 114
RZ-18 Symmetric Outer Natural Join,

114-115
RZ-19 Outer Union, 117-119
RZ-20 Outer Set Difference, 119-120
RZ-21 Outer Set Intersection, 120-

122
RZ-22--RZ-25 Inner T-joins, 125
RZ-26--RZ-37 Outer T-joins, 134-135
RZ-38 User-defined Select, 137-138

RZ-39 User-defined Join, 138-140
RZ-40 Recursive Join, 140-143
RZ-41 Semi-insert Operator, 320-

321
RZ-42 Semi-update Operator, 321
RZ-43, RZ-44 Semi-archive and Semi-

delete Operators, 321

S
Safety feature(s), 238-240

functions and, 342-344
Safety Feature when Comparing Data-

base Values (RT-1), 46-49, 71-
72, 105

SAVE qualifier (RQ-12), 218
Scalar functions, 338-340

applied to marked arguments, 185
Security problem, alleged, duplicate

rows and corrupted relations
and, 378

Select operator, 7:
algebraic, 69
missing information and, 183
of SOL, 69
user-defined, 137-138
view updatability and, 302-303

Selecting Columns within Relational
Commands (RN-4), 148

Semantic data approaches, relational
approach versus, 478-479

Semantic distinctiveness, analysis of,
379

Semantic equality, missing informa-
tion and, 178

Semantic features, 150
Semantic notions of equality
Semantic ordering, 183, 184
Semantics, duplicate rows and cor-

rupted relations and, SOL and,
373-374

Semi-archive and Semi-delete Opera-
tors (RZ-43, RZ-44), 321

Semi-insert Operator (RZ-41), 320-
321

Semi-join operator, 104-106
Semi-Theta-Join (RZ-3--RZ-12), 105-

106
Semi-update Operator (RZ-42), 321

Index • 535

Set Constants and Nesting of Queries
Within Queries (RL-11), 365-
366

Set-oriented Operators and Compara-
tors (RL-IO), 365

Sharp Boundary (RD-3), 352-353
Simple Rule for Scope Within an RL

Command (RL-6), 363
Single-table view, 287
Snapshots, 9

CREATE SNAPSHOT command
and, 163-164

global database and, 405
Sole tool, 328
Source code

form, 356
globalized, 397

SOL. See Structured Query Language
Starting node, 451
Statistical functions

application of, 187-188, 202-203
duplicate rows and corrupted re-

lations and, 374
to empty sets, 188-189

built-in, 340
Statistics

database, 355
interrogation of, 355
minimum standard for, 421

Storage representations, 33
changing, 355-356

Storage space, extra, binary relation-
ship approach versus relational
approach and, 475

Strict hierarchy, integrity checks and,
456

Structured Query Language (SOL), 12-
13, 21, 62-63

NonStop, 438
serious flaws in, 371-389

corrective steps for, 386-387
duplicate rows and corrupted re-

lations and, 372-379
inadequate support for three- and

four-valued logic and, 383-386
precautionary steps and, 387-388
psychological mix-up and, 379-

382
Substitution qualifier, 187

Supermarket check-out problem, du-
plicate rows and corrupted rela-
tions and, 378-379

Suppliers, cutting off orders to, 269
Symbolic equality, 189

missing information and, 178
Symbolic ordering, 183
Symmetric Outer Equi-Join (RZ-15),

108-110
Symmetric Outer Natural Join

(RZ-18), 114-115
Synonym Relation in Each Catalog

(RX-5), 398
Systems application architecture

(SAA), 446

T
T-join operators, 123-137

implementation of domains and, 47
inner, 125-134

non-strict ordering in, 130-134
strict ordering in, 126-130

introduction to, 123-125
outer, 134-135

Tables, relations versus, 17-20
Tandem Corporation, 438
Target list, 337
Temporary Replacement of Empty

Relation(s) (RQ-6), 211
Temporary Replacement of Missing

Database Values (RQ-4,
RQ-5), 210

Terminating node, 451
Theta-join(s)

Boolean extension of, 76-77
effect of ONCE qualifier on, 213-

218
implementation of domains and, 47

Theta-Join Operator (RB--14-RB-
23), 73-76

Theta-sdect
Boolean extension of, 72
implementation of domains and, 47

Theta-Select Operator (RB-3--
RB-12), 69-71

Three-Level Architecture (RS-5), 34
Three-level architecture, 33-34
Three-valued, first-order predicate

logic, 20

536 • I n d e x

Three-valued logic, 20
clock, 52-53

coupling dates with, 53
time-zone conversion and, 53

how to support, 383-385
inadequate support for, SOL and,

383-386
of RM/V1, 180-182

Tie-breaking columns, 124
Time(s)

integrity constraints triggered by,
266

Time-independent PK-to-FK relation-
ship, 307

Time-oriented conditions, expressing,
367-368

Time-zone Conversion (RT-7), 53
Timing, integrity constraints and, 246-

250
Timing of Testing for Types R and U

(RI-6), 247-248
Trailing relation, 31
Transaction, 14, 233,423
Transaction Block (RM-6), 233-234
Transaction concept, 14-15
Transaction routing, 393
Transformed case, 301
Transitive closure, 454
Traversal of a path

downward, 142
upward, 142

Triggered action, 264, 266
special commands for, 273-274

Triggering Based on AP and TU Ac-
tions (RI-24), 260

Triggering Based on Date and Time
(RI-25), 261

Triggering event, 266, 269
Triple Mode (RM-9), 235-236
Truncation, calendar dates and, 51
Truth tables, 236
Tuple ids, 297
Tuple, illegal, 251
Types of Integrity Constraints

(RI-1--RI-5), 246

U
Under-the-Cover Representation and

Access (RD-2), 352

Under-the-covers, 4, 264
Uniform Optimization (RL-14), 367
Unintended cycles, integrity checks

and, 455
Union-compatibility, 79, 115
Union Operator (RB-26), 78-81
Union operator(s)

names of columns involved in, 148-
150

view updatability and, 312-314
Unique Names for Sites (RX-6), 399
Uniqueness property, 23
Universal relation

avoiding, 40-41
inability to replace relational model,

468-473
coping with change and, 471-472
cyclic key states and, 470-471
insertion, deletion, and updating

and, 471
joins based on keys and, 470
joins based on non-keys and, 470
lack of comprehensive data model

and, 472
natural language and, 472
operators and, 469-470

Unknowable, 180
Unknown, 171, 180
Unmarked values, 187
Untransformed case, 301
Update, high-level, 231-232
Update command, 7
Update Involving I-marked Values

(RI-27), 268
Update Operator (RB-32), 89
Updating, 21

removing rows from views, block-
ing, 330

universal relation versus relational
approach and, 471

of views, 290-291
User-defined Extended Data Types

(RT-3), 50
User-defined function, exercise, 283
User-defined Functions Can Access

the Database (RF-7), 342
User-defined Functions: Compiled

Form Required (RF-6), 341-
342

Index • 537

User-defined Functions in the Catalog
(RC-9), 282

User-defined Functions: Their Use
(RF-4), 341

User-defined Integrity Constraints
(RC-7), 259-275,281,283

User-defined Join (RZ-39), 138-140
User-defined Prohibition of Duplicate

Values (RI-13), 251
User-defined Prohibition of Missing

Database Values (RI-12), 250-
251

User-defined Select (RZ-38), 137-138

V
Value(s), 188

applicable, 172
decreasing, 127-128
duplicate, user-defined prohibition

of, 251
inapplicable, 172
increasing, 126
missing .

introducing column integrity con-
straint for disallowing, 253-254

and-applicable, 182
and-inapplicable, 182
treatment of, 180
user-defined prohibition of, 250-

251
ordering of, 183-184

Value-ordering, joins involving, 184-
185

VALUE qualifier (RQ-13), 218
Variables, interchangeability of, 367
View(s), 16, 18, 285-292

catalog and, 16, 280-281
component-updatable, 296
definitions of, 285-288

fully expanded version, 297
unexpanded version, 297

distributed, 406-407
fully expanded, 297
hiding columns in, 329-330
naming and domain features and,

291
primary key for, 36
richer variety of, with relational ap-

proach, 435

single-table, 287
tuple-deletable, 296
tuple-insertable, 296
use of, 288-291

View Definitions: Retention and In-
terrogation (RV-3), 288

View Definitions: What They Are
(R V-l), 285-287

View Definitions: What They Are
Not (RV-2), 287-288

View-definition time, 298
View Not Component-updatable

(R J-13), 226
View Not Tuple-deletable (R J-14),

227
View Not Tuple-insertible (R J-12),

226
Views that Straddle Two or More

Sites (RX-14), ~ 407
View updatability, 293-324

algorithms an d , 297
algorithms VU-1 and VU-2 and,

299-316
decision problem and, 302
equi-join operator and, 304-309
inner joins other than equi-joins

and, 309-311
intersection operator and, 314-

315
natural join operator and, 312
outer difference operator and, 316
outer equi-join operator and, 312
outer intersection operator and,

315
outer union operator and, 314
prohibition of duplicate rows

within a relation and, 300-301
project operator and, 303-304
relational difference operator and,

315
relational division operator and,

312
select operator and, 302-303
solution-oriented definitions and,

301-302
union operator and, 312-314

assumptions and, 297-299
fully and partially normalized views

and, 317-322

538 m Index

new operators for partially nor-
malized views and base rela-
tions and, 320-321

normalization and, 317-319
outer equi-join versus inner equi-

join as views and, 321-322
relating view updatability to nor-

malization and, 319-320
more comprehensive relational re-

quests and, 316-317
problem-oriented definitions and,

296-297

View Updating (RV-6), 290-291,322-
323

Violation response, 248
Violations of Integrity Constraints of

Types D, C, and E (RI-11),
249-250

W
Weak identifier, 36, 109

Dr. Codd received his M.A. in Mathematics
from Oxford University and his M.S. and Ph.D. in
Communication Sciences from the University of
Michigan. He is an elected member of the National
Academy of Engineering, a Fellow of the British
Computer Society, as well as a long-time member of
the Association of Computing Machinery, Phi Beta
Kappa, and Sigma Xi. In 1976, Dr. Codd became an
IBM Fellow, and in 1981 he received the ACIvl Turing
Award.

The REMITONALMODEL for DATABASE
MANAGEMENT VERSION 2

f ODD . ASLA-U
PC

O-ZOh-L4192-2

ISBN 0-20L-LVL92-2

