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Today, if you have a well-designed database management system, you have 
the keys to the kingdom of data processing and decision support. That is 
why there now exists a prototype machine whose complete design is based 
on the relational model. Its arithmetic hardware is a quite minor part of the 
architecture. In fact, the old term "computer system" now seems like a 
misnomer. 

My first paper dealing with the application of relations (in the mathe- 
matical sense) to database management was a non-confidential IBM research 
report made available to the general public that was entitled Derivability, 
Redundancy, and Consistency of Relations stored in Large Data Banks [Codd 
1969]. I placed a great deal of emphasis then on the preservation of integrity 
in a commercial database, and I do so now. In this book, I devote Chapters 
13 and 14 exclusively to that subject. 

Another concern of mine has been, and continues to be, precision. A 
database management system (DBMS) is a reasonably complex system, even 
if unnecessary complexity is completely avoided. The relational model in- 
tentionally does not specify how a DBMS should be built, but it does specify 
what should be built, and for that it provides a precise specification. 

An important adjunct to precision is a sound theoretical foundation. 
The relational model is solidly based on two parts of mathematics: first- 
order predicate logic and the theory of relations. This book, however, does 
not dwell on the theoretical foundations, but rather on all the features of 
the relational model that I now perceive as important for database users, 
and therefore for DBMS vendors. My perceptions result from 20 years of 
practical experience in computing and data processing (chiefly, but not 
exclusively, with large-scale customers of IBM), followed by another 20 
years of research. 

I believe that this is the first book to deal exclusively with the relational 
approach. It does, however, include design principles in Chapters 21 and 
22. It is also the first book on the relational model by the originator of that 
model. All the ideas in the relational model described in this book are mine, 
except in cases where I explicitly credit someone else. 

_ r 



vi • Preface 

In developing the relational model, I have tried to follow Einstein's 
advice, "Make it as simple as possible, but no simpler." I believe that in 
the last clause he was discouraging the pursuit of simplicity to the extent of 
distorting reality. So why does the book contain 30 chapters and two ap- 
pendixes? To answer this question, it is necessary to look at the history of 
research and development of the relational model. 

From 1968 through 1988, I published more than 30 technical papers on 
the relational model [Codd 1968-Codd 1988d]. I refer to the total content 
of the pre-1979 papers as Version 1 of the relational model (RM/V1 for 
brevity). 

Early in 1979, I presented a paper to the Australian Computer Society 
at Hobart, Tasmania, entitled "Extending the Database Relational MOdel 
to Capture More Meaning," naming the extended version RM/T (T for 
Tasmania). My paper on RM/T later appeared in A CM Transactions on 
Database Systems [Codd 1979]. My aim was for the extensions to be tried 
out first in the logical design of databases and subsequently to be incorpo- 
rated in the design of DBMS products, but only if they proved effective in 
database design. 

Progress in this direction has been much slower than I expected. Vendors 
of DBMS products have in many cases failed to understand the first version 
RM/V1, let alone RM/T. One of the reasons they offer is that they cannot 
collect all the technical papers because they are dispersed in so many 
different journals and other publications. 

This book collects in one document much of what has appeared in my 
technical papers, but with numerous new features, plus more detailed ex- 
planation (and some emphasis) on those features of RM/V1 and RM/V2 
that capture some aspects of the meaning of the data. This emphasis is 
intended to counter the numerous allegations that the relational model is 
devoid of semantics. I also hope that this document will challenge vendors 
to get the job done. 

Figure P.1 is intended to show how features of RM/T are expected to 
be gradually dropped into the sequence of versions RM/V2, RM/V3, . . . . 
The dropping will be gradual to allow DBMS vendors and consumers time 
to understand them. 

RM/V2 consists of 333 features. A few of these features are of a 
proscriptive nature, which may sound surprising or inappropriate. However, 

Figure P.1 R e l a t i o n s h i p  b e t w e e n  the  Various  Vers ions  of  the  
Re la t iona l  M o d e l  

RM/- I  

R M / V l  ~ R M / V 2  ~ R M / V 3  ~ . . . . . . . . .  
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they are intended to improve the understanding of the relational model and 
help DBMS vendors avoid extensions that at first glance seem quite harmless, 
but later turn out to block extensions needed to advance the DBMS from 
a primitive to a basic status. The most famous example of a proscriptive 
feature in the computing field was Dijkstra's assertion that new programming 
languages should exclude the GO TO command. 

The features of RM/V2 include all of the features of RM/V1, roughly 
50 of them. Thus, this book covers both versions of the relational model. 
However, except for some of the advanced operators in Chapter 5, there is 
no sharp boundary between RM/V1 and RM/V2. This is partly due to 
changes in some of the definitions to make them more general~for  example, 
entity integrity and referential integrity. Incidentally, the new definitions 
[Codd 1988a] were available to DBMS vendors well before their first at- 
tempts to implement referential integrity. 

Domains, primary keys, and foreign keys are based on the meaning of 
the data. These features are quite inexpensive to  implement properly, do 
not adversely affect performance, and are extremely important for users. 
However, most DBMS vendors have failed to support them, and many 
lecturers and consultants in relational database management have failed to 
see their importance. 

Most of the new ideas in RM/V2 have been published in scattered 
technical journals during the 1980s. What is different about this version of 
the relational model? Is all of RM/V1 retained? 

Versions 1 and 2 are at the same high level of abstraction, a level that 
yields several advantages: 

• independence of hardware support; 

• independence of software support; 

• occasionally, vendors can improve their implementations "under the 
covers" without damaging their customers' investment in application 
programs, training of programmers, and training of end users. 

A strong attempt has been made to incorporate all of RM/V1 into RM/V2, 
allowing programs developed to run on RM/V1 to continue to operate 
correctly on RM/V2. The most important additional features in RM/V2 are 
as follows: 

• a new treatment of items of data missing because they represent prop- 
erties that happen to be inapplicable to certain object instances~for 
example, the name of the spouse of an employee when that employee 
happens to be unmarried (Chapters 8 and 9); 

• new features supporting all kinds of integrity constraints, especially the 
user-defined type (Chapter 14); 

• a more detailed account of view updatability, which is very important 
for users but has been sadly neglected by DBMS vendors (Chapter 17); 
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• some relatively new principles of design applied to DBMS products and 
relational languages (Chapters 21 and 22); 

• a more detailed account of what should be in the catalog (Chapter 15); 

• new features pertaining to the management of distributed databases 
(Chapters 24 and 25); 

• some of the fundamental laws on which the relational model is based 
(Chapter 29). 

A few of the ideas in RM/T have been incorporated into RM/V2. Many, 
however, are being postponed to RM/V3 or later versions, because the 
industry has not been able to maintain an adequate pace of product devel- 
opment and improvement. Additionally, errorsmade in the design of DBMS 
products along the way are also hindering progress~often it is necessary to 
continue to support those errors in order to protect a customer's heavy 
investment in application programs. 

In this book, I attempt to emphasize the numerous semantic features in 
the relational model. Many of these features were conceived when the model 
was first created. The semantic features include the following: 

[] domains, primary keys, and foreign keys; 

• duplicate values are permitted within columns of a relation, but duplicate 
rows are prohibited; 

• systematic handling of missing information independent of the type of 
datum that is missing. 

These features and others go far beyond the capabilities of pre-relational 
DBMS products. 

Except in Chapter 30, very little is said about models for database 
management other than the relational model. The relational model, invented 
in 1969, was the first model for database management. Since then, it has 
become popular to talk of many other kinds of data models, including a 
network data model, a hierarchical data model, a tabular data model, an 
entity-relationship model, a binary relationship model, and various semantic 
data models. 

Historically, it has often been assumed that the hierarchic and network 
data models pre-dated not only the relational model, but also the availability 
of hierarchical and network DBMS products. Actually, judging by what has 
been published, no such models existed before the relational data model 
was invented or before non-relational DBMS products became available. 
With the sole exception of relational systems, database management system 
products existed before any data model was created for them. 

The motivations for Version 2 of the relational model included the 
following five" 
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1. all of the motivations for Version 1; 

2. the errors in implementing RM/V1, such as the following: 

a. duplicate rows permitted by the language SQL; 

b. primary keys have either been omitted altogether, or they have been 
made optional on base relations; 

c. major omissions, especially of all features supporting the meaning 
of the data (including domains); 

d. indexes misused to support semantic aspects; 

e. omission of almost all the features concerned with preserving the 
integrity of the database. 

3. the need to assemble all of the relational model in one document for 
DBMS vendors, users, and inventors of new data models who seem to 
be unaware of the scope of the relational model and the scope of 
database management; 

4. the need for extensions to Version 1, such as the new kinds of joins, 
user-defined integrity, view updatability, and features that support the 
management of distributed databases; 

5. the need for users to realize what they are missing in present relational 
DBMS products because only partial support of the relational model is 
built into these products. 

In Appendix A, the features index, there is a specialized and compre- 
hensive index to all of the RM/V2 features. This index should facilitate the 
cross-referencing that occurs in the description of several features. In ad- 
dition to the exercises at the end of each chapter, simple exercises in 
predicate logic and the theory of relations appear in Appendix B. The 
reference section, in addition to full citations to the many papers and books 
cited in the text, includes a short bibliographical essay. 

I have tried to keep the examples small in scale to facilitate understand- 
ing. However, small-scale examples often do not show many of the effects 
of the large scale of databases normally encountered. 

Finally, I would like to acknowledge the encouragement and strong 
support provided by friends and colleagues, especially Sharon Weinberg, to 
whom I am deeply indebted. I also wish to thank the reviewers of my 
manuscript for their many helpful comments: Nagraj Alur, Nathan Good- 
man, Michel Melkanoff, Roberta Rousseau, Sharon Weinberg, and Gab- 
rielle Wiorkowski. 

I hope that all readers of this bookmwhether they are students, vendors, 
consultants, or users~find something of value herein. 

Menlo Park, California 
E. F. Codd 
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• C H A P T E R  1 • 

I n t r o d u c t i o n  to  V e r s i o n  2 

of  t h e  R e l a t i o n a l  M o d e l  

1.1 • W h a t  Is a R e l a t i o n ?  

The word "relation" is used in English and other natural languages without 
concern for precise communication. Even in dictionaries that attempt to be 
precise, the definitions are quite loose, uneconomical, and ambiguous. The 
Oxford English Dictionary devotes a whole page of small print to the word 
"relation." A small part of the description is as follows: 

That feature or attribute of things which is involved in considering 
them in comparison or contrast with each other; the particular way 
in which one thing is thought of in connexion with another; any 
connexion, correspondence, or association, which can be conceived 
as naturally existing between things. 

On the other hand, mathematicians are concerned with precise com- 
munication, a very high level of abstraction, and the economy of effort that 
stems from making definitions and theorems as general as possible. A special 
concern is that of avoiding the need for special treatment of special cases 
except when absolutely necessary. The generally accepted definition of a 
relation in mathematics is as follows: 

Given sets S1, $ 2 , . . . ,  Sn (not necessarily distinct), R is a relation 
on these n sets if it is a set of n-tuples, the first component of which 
is drawn from $1, the second component from $2, and so on. 
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More concisely, R is a subset of the Cartesian product $1 × $2 x . . . 
× Sn. (For more information, see Chapter 4.) Relation R is said to be of 
degree n. Each of the sets S1, $2, . . . ,  Sn on which one or more relations 
are defined is called a domain. 

It is important to note that a mathematical relation is a set with special 
properties. First, all of its elements are tuples, all of the same type. Second, 
it is an unordered set. This is just what is needed for commercial databases, 
since many of the relations in such databases are each likely to have thou- 
sands of tuples, sometimes millions. In several recently developed databases, 
there are two thousand millions of tuples. In such circumstances, users 
should not be burdened with either the numbering or the ordering of tuples. 

The relational model deals with tuples by their information content, not 
by means extraneous to the tuples such as tuple numbers, tuple identifiers, 
or storage addresses. The model also avoids burdening users with having to 
remember which tuples are next to which, in any sense of "nextness." 

As one consequence of adopting relations as the user's perception of 
the way the data is organized, application programs become independent of 
any ordering of tuples in storage that might be in effect at some time. This 
enables the stored ordering of tuples to be changed whenever necessary 
without adversely affecting the correctness of application programs. 

Changes in the stored ordering may have to be made for a variety of 
reasons. For example, the pattern of traffic on the database may change, 
and consequently the ordering previously adopted may no longer be the 
most suitable for obtaining good performance. 

A mathematical relation has one property that some people consider 
counter-intuitive, and that does not appear to be consistent with the defi- 
nition in The Oxford English Dictionary. This property is that a unary 
relation (degree one) can conform to this definition. Thus, a mathematical 
relation of degree greater than one does inter-relate two or more objects, 
while a mathematical relation of degree one does not. In some cases, 
intuition can be a poor guide. In any event, whether the concept of a 
unary relation is counter-intuitive or not, mathematicians and computer- 
oriented people do not like to treat it any differently from relations of higher 
degree. 

In applying computers effectively (whether in science, engineering, ed- 
ucation, or commerce) there is, or should be, a similar concern for precise 
communication, a high level of abstraction, and generality. If one is not 
careful, however, the degree of generality can sometimes be pursued beyond 
what is needed in practice, and this can have costly consequences. 

A relation R in the relational model is very similar to its counterpart in 
mathematics. When conceived as a table, R has the following properties: 

• each row represents a tuple of R; 

• the ordering of rows is immaterial; 

• all rows are distinct from one another in content. 
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From time to time, objects are discussed that violate the last item listed, 
but that are mistakenly called relations by vendors of database management 
systems (abbreviated DBMS). In this book, such objects are called improper 
relations or corrupted relations. Reasons why improper relations should not 
be supported in any database management system are discussed in Chapter 
23. 

The fact that relations can be perceived as tables, and that tables are 
similar to flat files, breeds the false assumption that the freedom of action 
permitted [with] tables or flat files must also be permitted when manipulating 
relations. The manipulation differences are quite strong. For example, rows 
that entirely duplicate one another are not permitted in relations. The more 
disciplined approach of the relational model is largely justified because the 
database is shared by many people; in spite of the heavy traffic, all of the 
information in that database must be maintained in an accurate state. 

The concept of a relation in the relational model is slightly more abstract 
than its counterpart in mathematics. Not only does the relation have a name, 
but each column has a distinct name, which often is not the same as the 
name of the pertinent set (the domain) from which that column draws its 
values. There are three main reasons for using a distinct column name: 

1. such a name is intended to convey to u~,ers some aspect of the intended 
meaning of the column; 

2. it enables users to avoid remembering positions of columns, as well as 
which component of a tuple is next to which in any sense of "nextness;" 

3. it provides a simple means of distinguishing each column from its un- 
derlying domain. A column is, in fact, a particular use of a domain. 

One reason for abandoning positional concepts altogether in the relations 
of the relational model is that it is not at all unusual to find database 
relations, each of which has as many as 50, 100, or even 150 columns. Users 
therefore are given an unnecessary burden if they must remember the 
ordering of columns and which column is next to which. Users are far more 
concerned with identifying columns by their names than by their positions, 
whether the positions be those in storage or those in some declaration. It 
makes much more sense for a user to request an employee's date of birth 
by name than by what its position happens to be (for example, column # 
37). 

One reason for discussing relations in such detail is that there appears 
to be a serious misunderstanding in the computer field concerning relations. 
There is a widely held misconception that, for one collection S of data to 
be related to another collection T, there must exist a pointer or some kind 
of link from S to T that is exposed to users. A pointer to T, incidentally, 
has as its value the storage address of some key component of T. A recent 
article [Sweet 1988] shows that this false notion still exists. 
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TabIe 1.1 Relat ions  in M a t h e m a t i c s  Versus Relat ions  in t he  
Relat ional  M o d e l  

M a t h e m a t i c s  

Unconstrained values 
Columns not named 
Columns distinguished from each other 
by position 
Normally constant 

Rela t i ona l  Model 

A t o m i c  va lues  

Each column named 
Columns distinguished from each other 
and from domains by name 
Normally varies with time 

For many reasons, pointers are extremely weak in supporting relations. 
In fact, an individual pointer is capable of supporting no more than a relation 
of degree 2, and even then supports it in only one direction. Moreover, 
pointers tend to foster needlessly complex structures that frustrate interaction 
with the database by casual users, especially if they are not programmers. 
The slow acceptance of artificial intelligence (AI) programs has been largely 
due to the use of incredibly complex data structures in that field. This 
supports the contention that AI researchers write their programs solely for 
other AI researchers to comprehend. 

It is therefore a basic rule in relational databases that there should be 
no pointers at all in the user's or programmer's perception. For implemen- 
tation purposes, however, pointers can be used in a relational database 
management system "under the covers," which may in some cases allow the 
DBMS vendor to offer improved performance. ~ 

The term "relation" in mathematics means a fixed relation or constant, 
unless it is explicitly stated to be a variable. In the relational model exactly 
the reverse is true: every relation in the relational model is taken to be a 
variable unless otherwise stated. Normally it is the extension of relations 
(i.e., the tuples or rows) that is subject to change. Occasionally, however, 
new columns may be added and old columns dropped without changing the 
name of the relation. 

The distinctions between the relation of mathematics and that of the 
relational model are summarized in Table 1.1. 

A final note about relations: every tuple or row coupled with the name 
of the relation represents an assertion. For example, every row in the 
EMPLOYEE relation is an assertion that a specific person is an employee 
of the company and has the immediate single-valued properties cited in the 
row. Every row in the CAN__SUPPLY relation is an assertion that the cited 
supplier can supply the cited kind of part with the cited speed in the cited 
minimUm package and at the cited cost. It is this general fact that makes 
relational databases highly compatible with knowledge bases. 

1. Occasionally it is necessary in this book to discuss some features of database management 
that are at too low a level of abstraction to be included in the relational model. When this 
occurs, such features are said to be under the covers or hidden from the user's view. 
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In a reasonably complete approach to database management, it is not 
enough to describe the types of structure applied to data. In the recent past, 
numerous inventors have stopped at that point, omitting the operators that 
can be used in query and manipulative activities, data-description techniques, 
authorization techniques, and prevention of loss of integrity (see [Chen 
1976] for an example). All of these capabilities should be designed into the 
DBMS from the start, not added afterwards. If a similar approach were 
adopted in medical science, all that would be taught is anatomy. Other 
important subjects such as physiology, neurology, and cardiology would be 
omitted. Database management has many facets in addition to the types of 
structure applied to data. Of key importance is the collection of operators 
that can be applied to the proposed types of data structure. 

The relational model provides numerous operators that convert one or 
more relations into other relations; these are discussed in Chapters 4 and 
5. Very few of these operators were conceived by mathematicians before 
the relational model was invented. One probable reason for this was the 
widely held belief that any problem expressed in terms of relations of 
arbitrary degree can be reduced to an equivalent problem expressed in terms 
of relations of degree one and two. My work on normalizing relations of 
assorted degrees shows this belief to be false. 

1.2  m T h e  R e l a t i o n a l  M o d e l  

A database can be of two major types: production-oriented or exploratory. 
In commerce, industry, government, or educational institutions, a produc- 
tion-oriented database is intended to convey at all times the state of part or 
all of the activity in the enterprise. 

An exploratory database, on the other hand, is intended to explore 
possibilities (usually in the future) and to plan possible future activities. 
Thus, a production-oriented database is intended to reflect reality, while an 
exploratory database is intended to represent what might be or what might 
happen. In both cases the accuracy, consistency, and integrity of the data 
are extremely important. 

Database management involves the sharing of large quantities of data 
by many usersmwho, for the most part, conceive their actions on the data 
independently from one another. The opportunities for users to damage 
data shared in this way are enormous, unless all users, whether knowledge- 
able about programming or not, abide by a discipline. 

The very idea of a discipline, however, is abhorrent to many people, 
and I understand why. For example, I have encountered those who oppose 
a special feature of the relational model, namely, the prohibition of duplicate 
rows within all relations. They declare, "Why shouldn't I have duplicate 
rows if I want them? I am simply not prepared to give up my freedom in 
this regard." My response is as follows. If the data were a purely private 
concern (to just this single user), it would not matter. If, on the other hand, 
the data is shared or is likely to be shared sometime in the future, then all 
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of the users of  this data would have to agree on what it means for a row to 
be duplicated (perhaps many times over). In other words, the sharing of 
data requires the sharing of its meaning. In turn, the sharing of meaning 
requires that there exist a single, simple, and explicit description of the 
meaning of every row in every relation. This is necessary even though one 
user may attach more importance to some facet of the meaning than some 
other user does. 

Returning to the questionable support of duplicate rows, if the DBMS 
supports duplicate rows or records, it must be designed to handle these 
duplicates in a uniform way. Thus, there must be a general consensus among 
all of  the users of  a DBMS product regarding the meaning of duplicate rows, 
and this meaning should not be context-sensitive (i.e., it should not vary 
from relation to relation). My observation is that no such consensus exists, 
and is not likely to exist in the future. 

For this reason and others, the discipline needed for the successful 
sharing of important data should be embodied within the database manage- 
ment system. The relational model can be construed as a highly disciplined 
approach to database management. Adherence to this discipline by users is 
enforced by the DBMS provided that this system is based whole-heartedly 
on the relational model. 

As a normal mode of operation, if a user wishes to interpret the data 
in a database differently from the shared meaning, the DBMS should permit 
that user to extract a copy of the data from the database for this purpose 
(provided that the user is suitably authorized), and should disallow re-entry 
of that data into the database. 

The management of shared data presents significantly tougher problems 
than the management of private data. Also, the role of shared data in 
efficiently carrying out business and government work is rapidly becoming 
a central concern. These two facts strongly suggest that no compromises be 
made on the quality of systems that manage the sharing of data simply to 
support a small minority of users of private data. 

1.2.1 R e l a t i o n  as t h e  O n l y  C o m p o u n d  D a t a  T y p e  

From a database perspective, data can be classified into two types: atomic 
and compound. Atomic data cannot be decomposed into smaller pieces by 
the DBMS (excluding certain special functions). Compound data, consisting 
of structured combinations of atomic data, can be decomposed by the DBMS. 

In the relational model there is only one type of compound data: the 
relation. The values in the domains on which each relation is defined are 
required to be atomic with respect to the DBMS. A relational database is 
a collection of relations of assorted degrees. All of the query and manipu- 
lative operators are upon relations, and all of them generate relations as 
results. Why focus on just one type of compound data? The main reason is 
that any additional types of compound data add complexity without adding 
power. 
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This is particularly true of the query and manipulative language. In such 
a language it is essential to have at least four commands" retrieve, insert, 
update, and delete. If there are N distinct types of compound data, then for 
these four operations 4N commands will be necessary. By choosing a single 
compound data type that, by itself, is adequate for database management, 
the smallest value (one) is being selected for N. 

In non-relational approaches to database management, there was a 
growing tendency to expose more and more distinct types of compound 
data. Consequently, the query and manipulative languages were becoming 
more and more complicated, and at the same time significantly less com- 
prehensible to users, even those who were knowledgeable about programming. 

Relational databases that have many relations, each with few rows 
(tuples), are often called rich, while those that have few relations, each with 
many rows, are called large. Commercial databases tend to be large, but 
not particularly rich. Knowledge databases tend to be rich, but not partic- 
ularly large. 

About six years after my first two papers on the relational model [Codd 
1969 and 1970], Chen [1976] published a technical paper describing the 
entity-relationship approach to database management. This approach is 
discussed in more detail in Chapter 30, which deals with proposed alterna- 
tives to the relational model. Although some favor the entity-relationship 
approach, it suffers from three fundamental problems: 

11 Only the structural aspects were described; neither the operators upon 
these structures nor the integrity constraints were discussed. Therefore, 
it was not a data model. 

2. The distinction between entities and relationships was not, and is still 
not, precisely defined. Consequently, one person's entity is another 
person's relationship. 

3. Even if this distinction had been precisely defined, it would have added 
complexity without adding power. 

Whatever is conceived as entities, and whatever is conceived as rela- 
tionships, are perceived and operated upon in the relational model in just 
one common way: as relations. An entity may be regarded as inter-relating 
an object or identifier of an object with its immediate properties. A rela- 
tionship may be regarded as a relation between objects together with the 
immediate properties of that relationship. 

1.2.2 I n t e r - r e l a t i n g  t h e  I n f o r m a t i o n  C o n t a i n e d  
i n  D i s t i n c t  R e l a t i o n s  

Some people who are used to past approaches find it extremely difficult to 
understand how information in distinct relations can possibly be inter-related 
by the relational model without the explicit appearance in the user's per- 
ception of pointers or links. 
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The fundamental principle in the relational model is that all inter-relating 
is achieved by means of comparisons of values, whether these values identify 
objects in the real world or whether they indicate properties of those objects. 
A pair of values may be meaningfully compared, however, if and only if 
these values are drawn from a common domain. 

Some readers may consider the "common domain" constraint to be an 
unnecessary restriction. The opportunities for comparing values even with 
this constraint, however, are vastly superior in numbers and quality over 
the old approach of requiring pointers, links, or storage contiguity. Regard- 
ing the numbers, it should be remembered that not only object-identifiers 
can be compared with each other, but also simple properties of objects. 
Regarding the quality, those relational operators that involve the comparing 
of values require the values that are compared to be drawn from a common 
domain. In this way, these operators protect users from making very costly 
kinds of errors. 

An example may help. Suppose the database contains serial numbers 
of suppliers and serial numbers of parts. Then, the immediate properties of 
a supplier contained in the SUPPLIER relation can be inter-related to the 
immediate properties of a supplier's capability contained in the CAPABIL- 
ITIES relation by means of a single relational operator. This operator is the 
equi-join, and its application in this case involves comparing for equality the 
serial numbers of suppliers in the SUPPLIERS relation with those serial 
numbers in the CAPABILITIES relation. 

Suppose that values for the serial numbers of suppliers and parts happen 
to have the same basic data type (i.e., character strings of the same length). 
Naturally, it is not meaningful to compare the supplier serial number in the 
SUPPLIER relation with the part serial number in the CAPABILITIES 
relation, even though they happen to have the same basic data type. Thus, 
the domain concept plays a crucial role in the inter-relating game. In fact, 
in Chapter 3 I discuss the general problem of determining of a given 
collection of relations whether they are all inter-relatable; domains are an 
essential and central concept in that discussion. 

1.2.3 Examples  of Relat ions  

Two examples of relations in the relational model, described next, are 
intended to convey the structural uniformity of the approach to representing 
the information in relational databases for users (including application pro- 
grammers). The first of these examples is the parts relation P, which iden- 
tifies and describes each kind of part carried in inventory by a manufacturer. 

P#  Part serial number 

PNAME Part name 

SIZE Part size 

QP Quantity of parts 
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OH__QP 

O 0 _ Q P  

MOH__QP 

Quantity of parts on hand 

Quantity of parts on order 

Minimum quantity of parts to be in inventory 

There are only four domains: P#,  PNAME, SIZE, and QP. 

OP 

P P# PNAME SIZE OH_QP O O _ _ Q P  MOH_QP 

pl nut 10 500 300 400 
p2 nut 20 800 0 300 
p3 bolt 5 400 200 300 
p4 screw 12 1200 0 800 
p5 cam 6 150 150 100 
p6 cog 15 120 200 1 O0 
p7 cog 25 200 50 100 

This relation has six columns and therefore is of degree six. All of the rows 
(seven in this example) constitute the extension of the parts relation P. 
Sometimes the extension of a relation is called its snapshot. The remaining 
descriptive information constitutes the intension of the parts relation P. 

The second example, the capabilities relation C, is intended to provide 
information concerning which suppliers can supply which kinds of parts. 

In many approaches to database management, such a concept is treated 
entirely differently from the information concerning parts, differently from 
both the structural and the manipulative points of view. (Most of these 
approaches are pre-relational.) Parts are called entities, while each capability 
is called a relationship between suppliers and parts. The problem is that 
capabilities have immediate properties just as parts do. Examples of prop- 
erties that are applicable to capabilities are the speed of delivery of parts 
ordered, the minimum package size adopted by the supplier as the unit of 
delivery, and the price of this unit delivered. 

This example may help the reader understand why, in the relational 
model, precisely the same structure is adopted for capabilities as for p a r t s ~  
and, more generally, precisely the same structure is adopted for entities as 
for relationships between entities. 

S# 

P#  

SPEED 

QP 

U N I ~ _ Q P  

MONEY 

PRICE 

supplier serial number 

part serial number 

number of business days to deliver 

quantity of parts 

minimum package 

U.S. currency 

price in U.S. dollars of minimum package 
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There are five domains: S#, P#,  TIME, QP, and MONEY. 

C S# P# SPEED UNIT_QP PRICE 

sl pl 5 100 10 
sl p2 5 100 20 
sl p6 12 10 600 
s2 p3 5 50 37 
s2 p4 5 100 15 
s3 p6 5 10 700 
s4 p2 5 100 15 
s4 p5 15 5 300 
s5 p6 10 5 350 

This relation has five columns and is therefore of degree five. All of the 
rows (nine in this example) constitute the extension of the capabilities relation 
C. The remaining descriptive information constitutes the intension of rela- 
tion C. 

1 .2 .4  O m i s s i o n  o f  F e a t u r e s  

When implementing a relational database management system, many ques- 
tions arise regarding the relational model. Occasionally, support for some 
basic feature has been omitted due to it being assessed as useless. Unfor- 
tunately, the relational model has always had features that are inextricably 
intertwined. This means that omission of one feature of the model in a 
DBMS can inhibit implementation of numerous others. For example, omis- 
sion of support for primary keys and foreign keys (defined in Section 1.8) 
jeopardizes the implementation of 

• view updatability (see Chapter 17), 

• the principal integrity constraints (see Chapter 13), and 

• logical data independence (see Chapter 20). 

1.2 .5  T h e  G o a l s  of  RM/ V2  

Version 2 of the relational model (abbreviated RM/V2) now has 333 features, 
which are even more inextricably intertwined than the approximately 50 
features of Version 1 (abbreviated RM/V1). Most of the original definitions 
and features of RM/V1 have been preserved unchanged in Version 2. A 
very few of the original definitions and features have been extended to 
become broader in scope! 

In late 1978 I developed an extended version of the relational model 
called RM/T [Codd 1979]. A principal aim was to capture more of the 
meaning of the data. Acceptance of the ideas in  this version has been 
exceptionally slow. Consequently, it seems prudent to develop a sequence 
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of versions V1, V2, V3, . . . that are more gradual in growth. As the 
development of this sequence proceeds, certain features of RM/T will be 
selected and incorporated in appropriate versions. 

My goals in developing Version 2 of the relational model included all 
those for the original relational model, RM/V1. Three of the most important 
of these goals were, and remain, 

1. simplifying interaction with the data by users 

a. who have large databases, 

b. who need not be familiar with programming, and 

c. who normally conceive their interactions independently from all 
other users; 

2. substantially increasing the productivity of those users who are profes- 
sional programmers; 

3. supporting a much more powerful tool for the database administrator 
to use in controlling who has access to what information and for what 
purpose, as well as in controlling the integrity of the database. 

If these goals were attained, and I believe they have been, the market 
for DBMS products would be expanded enormously. This suggests one more 
goal, namely, that a very strong emphasis be placed on the preservation by 
the DBMS of database integrity. Chapters 13 and 14 are devoted to the 
treatment of integrity by the relational model. The DBMS products available 
so far have supported very few of the integrity features of the model. 

It is the database administrator (abbreviated DBA) who is responsible 
for imposing controls on the database: controls that are adequate for the 
DBMS to maintain the database in a state of full integrity, as well as controls 
that permit access for specified purposes to only those users with authorized 
access for those purposes. The DBMS, however, must provide the DBA 
with the tools to carry out his or her job. Pre-relational DBMS products 
failed to provide adequate tools for this purpose. 

Implementation of a high-performance DBMS that supports every fea- 
ture of RM/V2 is not claimed to be easy. In fact, it is quite a challenging 
task. There are already clear indications that the DBMS products leading 
in performance and in fault tolerance will be those based on new hardware 
and software architectures, both of which exploit the many opportunities 
for concurrency provided by the relational model. 

1.2 .6  T h e  R e l a t i o n a l  M o d e l  as  a n  A b s t r a c t  M a c h i n e  

The term "abstract" scares many people who work in computing or data 
processing, even though they deal with abstractions every day. For example, 
speed and distance are abstractions. An airline reservation is an abstraction. 
Bits and bytes are abstractions. So are computer commands. 
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In my book Cellular Automata [Codd 1968], I make use of at least four 
levels of abstraction to explain concisely how a self-reproducing computer 
that is capable of computing all computable functions might be designed 
from a large number (in fact, millions) of simple identical cells, each of 
which interacts with only its immediate neighbors. 

It is useful to think of RM/V2 as an abstract machine. Its level of 
abstraction is sufficiently high that it can be implemented in many distinctly 
different ways in hardware, in software, or in both. This machine can be 
advantageously treated by all DBMS vendors, standards committees, and 
DBMS users as an abstract machine standard. 

For example, consider the structural features introduced in Chapter 2. 
Their level of abstraction is necessary for enabling different types of hard- 
ware and software (possibly from different vendors) to communicate with 
one another about their databases. The abstract machine must be comple- 
mented with standards that deal with the following: 

• the physical representation of data for inter-computer communication; 

• transaction-c0ntrol signals to facilitate adequate control of each trans- 
action that straddles two or more computer systems (e.g., the signal 
from one system to the other "Are you ready to commit your data?"); 

• specific relational languages that have specific syntax. 

These topics are discussed in detail in Chapters 24 and 25. 

1.2.7 T h e  S t r u c t u r e d  Q u e r y  L a n g u a g e  (SQL)  

Many people may contend that a specific relational language, namely SQL, 
already exists as a standard. SQL, standing for structured query language, 
is a data sublanguage invented by a group in IBM Research, Yorktown 
Heights, N.Y. [IBM 1972]. 

SOL was invented in late 1972. Although it was claimed that the language 
was based on several of my early papers on the relational model, it is quite 
weak in its fidelity to the model. Past and current versions of this relational 
language are in many ways inconsistent with both of the abstract machines 
RM/V1 and RM/V2. Numerous features are not supported at all, and others 
are supported incorrectly. Each of these inconsistencies can be shown to 
reduce the usefulness and practicality of SOL. 

The most noteworthy error in several current implementations is that 
SQL permits the use and generation of improper or corrupted relations, that 
is, "relations" that contain duplicate tuples or  rows. In Chapter 23 this 
problem is examined in sufficient detail to demonstrate the seriously adverse 
consequences of this very simple infidelity to the model. As each feature of 
RM/V2 is introduced in this book, the attempt is made to comment on 
SQL's support, non-support, or violation of the feature. 

Several relational languages other than SQL have been developed. An 
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example that I consider superior to SQL is Query Language (abbreviated 
QUEL). This language was invented by Held and Stonebraker at the Uni- 
versity of California, Berkeley, and was based on the language ALPHA 
[Codd 1972]. More attention is devoted to SQL, however, because it has 
been adopted as an ANSI standard, and is supported in numerous DBMS 
products. 

1.2 .8  A n  A b s t r a c t  M a c h i n e  S t a n d a r d  

The computing field clearly needs an abstract machine standard for database 
management for at least the following reasons: 

• The intrinsic importance of computer-based support for the sharing of 
business information interactively and by program. 

• The users involved in this sharing normally conceive their modifications 
of the information independently of one another. 

• Clearly the field of database management is moving toward the man- 
agement of distributed databases, and at each of the sites involved there 
may be hardware and software from a variety of vendors. Intercom- 
munication among these systems will be a vital requirement. 

• The boundary between hardware and software is moving out from the 
yon Neumann position. Hardware is taking on more of the tasks pre- 
viously handled by basic software, and already there are products in 
which numerous components of operating systems and DBMS are sup- 
ported by hardware. An abstract machine standard for database man- 
agement should enable this boundary to move without the necessity of 
continual reformulation of a new standard. 

The relational model deals with database management from an abstract, 
logical point of view only, never at the detailed level of bits and bytes. Does 
this make the relational model incomplete? If incomplete in this sense, the 
model is intended to be this way. It is important to stop short of prescribing 
how data should be represented and positioned in storage, and also how it 
should be accessed. This not only makes users and programmers more 
productive, but also permits both hardware and software vendors to compete 
in lower-level techniques for obtaining good performance. 

This is an area of considerable technical significance in which DBMS 
vendors can productively compete with one another. In the case of DBMS 
products that are carefully based on the relational model, such competition 
need not adversely affect the users' investment in training and application 
development, precisely because their perception is at a high level of ab- 
straction. 

One final reason for a high level of abstraction is that the choice of 
representation for data in storage and the choice of access methods depend 
heavily on the nature and volume of the traffic on the database. 



14 • Introduct ion to Version 2 of the  Relat ional  Model  

Publication of the relational model in the June 1970 issue of Commu- 
nications of the Association for Computing Machinery [Codd 1970] preceded 
the completion of development of relational DBMS products by at least a 
decade. The model is more abstract than these systems and has an existence 
that is completely independent of them. 

This is an advantage in many ways. First, it provides a useful goal, 
target, and tool for the designers and developers of new DBMS products. 
Second, it provides a special kind of standard against which dissimilar DBMS 
products can be measured and compared. No DBMS product or data sub- 
language marketed in the western world today fully supports each and every 
feature of the relational model, even Version 1 [Codd 1969, 1970, 1971a- 
d, 1974a]. Third, it provides a foundation upon which theoretical work in 
database management has been and will continue to be based. 

1.3 a T h e  T r a n s a c t i o n  C o n c e p t  

Brief reference was made to the concept of a transaction in the preceding 
discussion of the additional kinds of standards that are now needed. In the 
relational model, this concept has a precise definition. 

A transaction is a collection of activities involving changes to the data- 
base, all of which must be executed successfully if the changes are to be 
committed to the database, and none of which may be committed if any 
one or more of the activities fail. Normally, such a collection of activities is 
represented by a sequence of relational commands. The beginning of the 
sequence is signaled by a command such as BEGIN or BEGIN TRANS- 
ACTION. Its termination is signaled by a command such as END or COM- 
M I T ~ o r ,  if it is necessary to abort the transaction, ABORT. 

A simple example of a transaction is that in which a bank customer 
requests the bank to transfer $1,000 from his checking account into his 
savings account. In the bank's computer program the first action is to check 
that there is at least $1,000 in the customer's checking account. If so, this 
amount is deducted from the balance in that account. The next action is to 
credit the customer's savings account with the $1,000. 

If the first action were successful and the second action failed (due to 
hardware malfunction, for example), the customer would lose the $1,000; 
this would be unacceptable to most customers. Therefore, this is a case in 
which both actions must succeed or neither must cause any change in the 
database. 

In DBMS products two methods of handling a transaction are as follows: 

1. to delay storing in the database any data generated during execution of 
a transaction until the DBMS encounters a COMMIT or END TRANS- 
ACTION command, and then store all of this data; 

2. to write details of each change in the recovery log as each change is 
generated, and immediately record the change in the database. This log 
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is then used for recovery purposes if an A B O R T  TRANSACTION 
command is to be executed. 

1.4 • C l a s s i f i c a t i o n  o f  R M / V 2  F e a t u r e s  

Each feature of the relational model RM/V2 is assigned to one of the 18 
classes listed in Table 1.2. The table includes the number of the chapter in 
which each class of features is described. Each letter identifies the class. 
Each feature has a unique label. Thus, in the feature RS-9, R stands for 
relational, S for the structure class, and 9 for the ninth feature in that class. 
The numbering of features within a class should be interpreted as a distinctive 
label only, not as an ordering of importance. 

There is no claim that the features of RM/V2 are all independent of 
one another. In fact, as discussed earlier, there are numerous inter-depen- 
dencies among the features. A minimal, totally non-redundant set would be 
more difficult to understand, would probably reduce user productivity sig- 
nificantly, and would probably lead to even more errors by vendors in 
designing their relational DBMS products. Of course, I am not advocating 

Table  1.2 The 18 Classes of  Features  and  t h e  P e r t i n e n t  Chapters  

Chapter Label Class 

2 S Structural 
3 T Extended data types 
4 B Basic operators 
5 Z Advanced operators 
6 N Naming 
7 E Elementary commands 

10 Q Qualifiers 
11 J Indicators 
12 M Manipulative 

13,14 I Integrity 
15 C Catalog 

16,17 V View 
18 A Authorization 
19 F Scalar and aggregate functions 
20 P Protection of user investment in the DBMS, the database, 

application programming, and user training 
21 D DBMS design principles 
22 L Language-design principles 

24,25 X Distributed database management 
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the other extreme, namely complexity, since this runs counter to com- 
prehensibility. 

Two very important concepts of relational DBMS products are the 
catalog and views. Some think that the basic relational model does not 
mention the catalog or views, but these concepts were discussed in my early 
papers on the relational model, although not by these names. I referred to 
the catalog as the relational schema and to views as derived relations whose 
definitions were stored in the schema. In this book I have adopted the 
System R terms "catalog" and "view" [Chamberlin et al. 1981] because they 
are concise and very usable, and are now quite widely used. System R was 
one of three DBMS prototypes developed in distinct divisions of IBM and 
based on the relational model. 

When DBMS products are evaluated today, the evaluation should in- 
clude fidelity of the product to the relational model, and specifically RM/ 
V2. In part, this is required because almost all vendors claim that their 
DBMS products are relational. Therefore, one important concern for po- 
tential users of these products is that they reap all the benefits of fidelity to 
the relational model. 

As with RM/V1, the features that are included in RM/V2 are intended 
to be helpful for all users of relational DBMS, both application programmers 
and end users. Also, as with RM/V1, they are intended to help the designers, 
implementors, and evaluators of relational DBMS products. RM/V2 features 
include all the features of RM/V1, together with the following: 

• new features that cover important aspects of relational DBMS not 
previously included in RM/V1, either because they were overlooked or 
because I considered them too obvious to mention, until I discovered 
that many people had not realized their obvious importance; 

• new features that are in line with the original RM/V1, but at a slightly 
lower level of abstraction. 

A DBMS product is fully relational in the 1990s if it fully supports each 
and every one of the features of RM/V2 defined in this book. A DBMS 
product that is not fully relational can nevertheless qualify to b e  called 
relational in the early 1990s by fully supporting each one of the roughly 40 
features listed in Appendix A. 

Like the basic relational model RM/V1, all the features of RM/V2 are 
based on the practical requirements of users, database administrators, ap- 
plication programmers, security staff, and their managers. Along with the 
description of each feature, I attempt to explain the practical reasons for 
that feature. 

The relational model RM/V2 is based on the original model RM/V1 and 
on a single fundamental rule, which I call Rule Zero: 

For any system that is advertised as, or claimed to be, a relational 
database management system, that system must be able to manage 
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databases entirely through its relational capabilities, no matter what 
additional capabilities the system may support. 

This must hold whether or not the system supports any non-relational 
capabilities of managing data. Any DBMS that does not satisfy this Rule 
Zero is not a relational DBMS. 

The danger to buyers and users of a system that is claimed to be a 
relational DBMS and fails on Rule Zero is that these buyers and users will 
expect all the advantages of a truly relational DBMS, but will fail to receive 
them. 

One consequence of Rule Zero is that any system claimed to be a 
relational DBMS must support database insert, update, and delete at the 
relational level (multiple-record-at-a-time). (See Feature RM-6 in Chapter 
12.) Another consequence is the necessity of supporting the information 
feature and the guaranteed-access feature. (See Feature RS-1 in Chapter 2 
and Features RM-1 and RM-2 in Chapter 12.) 

Incidentally, "multiple-record-at-a-time" includes the ability to handle 
those situations in which zero or one record happens to be retrieved, 
inserted, updated, or deleted. In other words, a relation (often carelessly 
called a table) may have either zero tuples (rows) or one tuple (row) and 
still be a valid relation. Note that although it may be unusual for a relation 
to have either zero rows or one row, it does not receive special treatment 
in the relational model, and therefore users do not have to treat such a 
relation in any special way either. 

1.5 • T a b l e s  v e r s u s  R e l a t i o n s  

Actually, the terms "relation" and "table" are not synonymous. As discussed 
earlier, the concept of a relation found in mathematics and in the relational 
model is that of a special kind of  set. The relations of the relational model, 
although they may be conceived as tables, are then special kinds of tables. 
In this book they are called R-tables, although the term "relation" is still 
used from time to time to emphasize the underlying concept of mathematical 
sets, to refer to the model, or to refer to languages developed as part of 
implementations of the model. 

R-tables have no positional concepts. One may shuffle the rows without 
affecting information content. Thus, there is no nextness of rows. Simi- 
larly, one may shuffle the columns without affecting information content, 
providing the column heading is taken with each column. Thus, there is no 
"nextness" of columns. 

Normally, neither of these shuffling activities can be applied with such 
immunity to arrays. That is why I consider it extremely misleading to use 
the term "array" to describe the structuring of data in the relational model. 

Those relations, or R-tables, that are internally represented by stored 
data in some implementation-defined way are called the base relations or 
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base R-tables. All R-tables other than base R-tables are called derived 
relations or, synonymously, derived R-tables. An example of a derived re- 
lation is a view. A view is a virtual R-table defined in terms of other R- 
tables, and is represented by its defining expression only. 

In both RM/V1 and RM/V2, duplicate rows are not permitted in any 
relations, whether base relations, views, or any other type of relations. For 
details, see Features RS-3 and RI-3 in Chapters 2 and 13, respectively. This 
rule has been applied in all of my technical papers on the relational model, 
even the first one [Codd 1969]. 

In RM/V2, duplicate rows are still excluded from all relations. They are 
excluded from base R-tables, primarily as a step to retain integrity of the 
database: each row in such a table represents an object whose distinctiveness 
is lost if duplicate rows are allowed in these R-tables. A very fundamental 
property of the relational model is that each object about which information 
is stored in the database must be uniquely and explicitly identified, and 
thereby distinguished from every other object. As we shall see, the unique 
identifier is the name of the R-table, together with the primary key value. 
This fundamental property, an integrity-preservation feature, is not enforced 
by any other approach to database management. 

Duplicate rows are still excluded from all derived R-tables for semantic 
reasons (see Fundamental Law 20 in Chapter 29). They are also excluded 
because such duplicates severely reduce the interchangeability of sequencing 
of operators within a relational command or in a sequence of commands. 
This reduction in interchangeability has two serious consequences (see Chap- 
ter 23 for more detail): 

1. it reduces the optimizability of relational commands; 

2. it imposes severe conceptual problems and severe constraints on users. 

Two of the early prototypes of relational DBMS products were devel- 
oped in the mid-1970s by the System R team at IBM Research in San Jose, 
Calif. [Chamberlin et al. 1981] and the INGRES team at the University of 
California Berkeley [Stonebraker 1986]. Curiously, both of these teams made 
the same two criticisms of the relational model: 

1. the expected loss of performance if duplicate rows had to be eliminated 
in several types of relational operations without the user explicitly 
requesting that elimination; 

2. the alleged impossibility of applying statistical functions correctly to 
columns that happen to have duplicate values legally. 

Based on the first point, I conditionally agreed to the idea that duplicate 
rows should be permitted in derived R-tables only, not in base R-tables. 
The condition for this concession was that all of the effects upon the 
relational operators be carefully examined for possibly damaging 
consequences. 
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On the second point, I found myself in strong disagreement, because 
the mistake made in these two prototypes was to apply as a first step the 
projection operator (see Chapter 4) on the column or columns for which 
statistics were needed. Instead, I advised the researchers to apply the sta- 
tistical function first in the context of whatever relation was given, and then 
apply the projection operator, only if such action were necessary for other 
reasons. 

It now appears that neither project adequately examined the severely 
damaging effects of duplicate rows (1) on the operators and (2) on common 
interpretability by users (see Chapter 23). 

This latter concern is related to the fact that, when hundreds, possibly 
thousands, of users share a common database, it is essential that they also 
share a common meaning for all o f  the data therein that they are authorized 
to access. There does not exist a precise, accepted, context,independent 
ipterpretation of duplicate rows in a relation. These adverse consequences 
are the reason that I still find that duplicate rows in any relation are 
unacceptable. 

Let us turn our attention to a table that is extracted from a non-relational 
source for storage in a relational database. If it happens to contain duplicate 
rows, these duplicate rows can easily be removed by means of a special 
operator (see Feature RE-17 in Chapter 7). This operator removes all except 
one occurrence of each row that has multiple occurrences. It leaves the table 
unchanged if it happens to contain no duplicate rows. 

From an evaluation standpoint, the RM/V2 features defined in this book 
have been created with primary concern for those DBMS products that are 
designed to support multiple users concurrently accessing shared data and 
engaged in tasks that can be (and often are) conceived independently of one 
another. Therefore, some of the features are not applicable to a DBMS 
intended for very small computer systems, particularly single-user systems 
such as personal computers. 

An example of such a feature is concurrency control. Although locking 
as a form of concurrency control is mentioned in very few features of RM/ 
V2, it is accompanied by the phrase "or some alternative technique for 
concurrency control that is at least as powerful as locking (and provably 
so)." I plan to say more about the subject of locking in a forthcoming book 
on computer-aided development (CAD) and engineering extensions to the 
relational model. 

The logic that is usually encountered in data processing is propositional 
logic, often called Boolean logic, which deals with only two truth-values: 
TRUE and FALSE. In the field of database management, one reason that 
propositional logic was considered adequate in the past is that, before the 
relational model, logic was considered relevant to query products only, and 
such products normally supported the use of logic in the querying of single 
files only. Two truth values were considered adequate because no attempt 
was made to handle missing values in a uniform and systematic manner 
across the entire database. 
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Mathematical logic plays a central role in the relational model. In RM/ 
V1 the logic is three-valued, first-order predicate logic, where the three truth- 
values are TRUE,  FALSE, and MAYBE. This logic is substantially more 
powerful than propositional logic. The MAYBE truth-value means that the 
DBMS cannot decide whether a truth-valued expression is TRUE or FALSE 
due to values missing from the database. 

In RM/v2 this logic is extended to four-valued, first-order predicate 
logic, where the four truth-values are TRUE,  FALSE, MAYBE BUT 
APPLICABLE, and MAYBE BUT INAPPLICABLE. This is especially 
relevant when it becomes necessary to handle information that may contain 
some database values that are applicable but missing because they have not 
been entered yet, and some values that are missing because the property in 
question is inapplicable to the pertinent object (see Chapter 8 on missing 
information). 

1.6 m T e r m i n o l o g y  

In this account of RM/V2, several terms that are now popular in database 
management are used, instead of the longer established and more carefully 
defined mathematical terms. Any ambiguity that is perceived in the use of 
the database-oriented terms can be resolved by referring to Table 1.3. 

The degree n of a relation is the number of columns, which can be any 
positive integer, including the special case of a unary relation for which n 
= 1. A relational database is perceived by all users, whether application 
programmers or end users, as a collection of relations of assorted degrees. 
Each relation can be thought of as inter-relating the identifying properties 
of a type of object with the other immediate properties of that type of 
object. Every value appearing in a relation is treated by the DBMS as 
a tomic ,  except for certain special functions that are able to decompose 
certain kinds o f  values (see Chapter 19). 

The phrases "delete duplicates" and "delete redundant duplicates" mean 
delete all occurrences except one of an object (the object is determined by 
the context in which this phrase is used, and it is usually a complete row of 
an R-table). 

Table 1.3 M a t h e m a t i c a l  a n d  D a t a b a s e  T e r m s  

Mathematical Term 

Relation of degree n 
Attribute 
Domain 
Tuple 
Cardinality of relation 

Database Term 

R-table with n columns 
Column of R-table 
Extended data type 
Row of R-table 
Number of rows in R-table 
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In this book the terms "interrogation," "query," and "retrieval" are 
used synonymously. Each of these terms denotes a read-only operation. No 
data modification is involved. Notwithstanding their names, identifying the 
database languages SOL and OUEL as just query languages is quite incorrect, 
since both support much more than interrogation. 

The terms "modification" and "manipulation" are used whenever data 
modification is involved, whether it be data entry, deletion, or updating. 
Except where otherwise indicated, the term "updating" denotes a particular 
kind of modification, namely, modification applied to values already within 
the database. Therefore, updating is normally an operation that is distinct 
from both data entry and deletion. 

When applied to any database activity, the term "dynamically" means 
without bnnging any database traffic to a halt. 

1.7  • R o l e  o f  L a n g u a g e  i n  t h e  R e l a t i o n a l  M o d e l  

Early in the development of the relational model (1969-1972), I invented 
two languages for dealing with relations: one algebraic in nature, and one 
based on first-order predicate logic [Codd 1971a]. I then proved that the 
two languages had equal expressive power [Codd 1971d], but indicated that 
the logic-based language would be more optimizable (assuming that flow 
tracing was not attempted) and easier to use as an interface to inferential 
software on top of the DBMS. 

During subsequent development of the relational model, I have avoided 
the development of a specific language with specific syntax. Instead, it 
seemed appropriate that my work remain at a very high level of abstraction, 
leaving it to others to deal with the specific details of usable languages. 
Thus, the relational model specifies the semantics of these languages, and 
does not specify the syntax at all. 

The abbreviation RL denotes the principal relational language supported 
by the D B M S ~ a  language intended specifically for database management, 
and one that is not guaranteed to be usable for the computation of all 
computable functions. RM/V2 specifies the features that RL should have, 
and the specification is (as we just saw) semantic, not syntactic. Examples 
of existing relational languages are SOL and OUEL, although neither of these 
supports more than half the relational model. 

The power of RL includes that of four-valued, first-order predicate logic 
[Church 1958, Suppes 1967, Stoll 1961, Pospesel 1976]. The complete power 
of RL should be fully exploitable in at least the following contexts: 

• retrieval (database description, contents, and audit log); 

• view definition; 

• insertion, update, and deletion; 

• handling missing information (independent of data type); 
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integrity constraints; 

authorization constraints; 

if the DBMS is claimed to be able to handle distributed data, distributed 
database management with distribution independence, including auto- 
matic decomposition of commands by the DBMS and automatic recom- 
position of results by the DBMS (see Feature RP-4 in Chapter 20). 

One of the main reasons that "object-oriented" DBMS prototypes and 
products are not going to replace the relational model and associated DBMS 
products is these systems appear to omit support for predicate logic. It will 
take brilliant logicians to invent a tool as powerful as predicate logic. Even 
then, such an invention is not an overnight task~once invented, it might 
well take more than a decade to become accepted by logicians. Thus, features 
that capture more of the meaning of the data should be added to the 
relational model [Codd 1979], instead of being proposed as replacements. 

In the development of application programs, a relational language nor- 
mally needs as a partner a host language such as COBOL, PL/1, FORTRAN, 

or some more recently developed programming language. Some relational 
DBMS support several such host languages to be used as partners, although 
the user is normally required to select just one for developing an application 
program. In this book I occasionally use the term "HL" (for "host language") 
to denote such a language. 

Languages are being developed that are significantly higher in level than 
COBOL, PL/1, and FORTRAN; such languages frequently include statements 
that must be translated into RE. Thus, an important requirement for RL is 
that it be both convenient and powerful in two roles: as a source language 
and as a target language. 

Sometimes I am asked why I do not extend relational languages to 
include the features of PROLOG or  o f  someone's favorite "fourth-generation" 
language. My usual reply is that I do not wish to tie the destiny of the 
relational model to any tool that has not been overwhelmingly accepted or 
does not appear to be defined at the same level of abstraction as the relational 
model. Moreover, I believe that the days of monstrous programming lan- 
guages are numbered, and that the future lies with specialized sublanguages 
that can inter-communicate with one another. 

1.8 • K e y s  a n d  R e f e r e n t i a l  I n t e g r i t y  

The term "key" has been used in the computing field for a long time, and 
with a great variety of meanings. In the relational model the term is normally 
qualified by the adjectives "candidate," "primary," and "foreign," and each 
of these phrases has a precisely defined meaning. 

Each base R-table has exactly one primary key. This key is a combination 
of columns (possibly just one column) such that 



1.8 Keys and Referential Integrity • 23 

• the value of the primary key in each row of the pertinent R-table 
identifies that row uniquely (i.e., it distinguishes that row from every 
other row in that R-table); 

• if the primary key is composite and if one of the columns is dropped 
from the primary key, the first property is no longer guaranteed. 

Sometimes these two properties are called the uniqueness property and the 
minimality property, respectively. Note, however, that "minimality" in this 
context does not mean the shortest in terms of bits or bytes or the one 
having the fewest components. 

It is equally valid to interpret the uniqueness property in terms of object 
identification: the value of the primary key in each row of the pertinent 
R-table identifies the particular object represented by that row uniquely 
within the type of objects that are represented by that relation. Everywhere 
else in the database that there is a need to refer to that particular object, 
the same identifying value drawn from the same domain is used. Any column 
containing those values is called a foreign key, and each value in that column 
is called a foreign key value. 

Referential integrity is defined as follows: 

Let D be a domain from which one or more primary keys draw 
their values. Let K be a foreign key, which draws its values from 
domain D. Every unmarked value which occurs in K must also exist 
in the database as the value of the primary key on domain D of 
some base relation. 

Incidentally, a value in the database is marked if and only if it is missing. 
The subject of missing information is discussed in some detail in Chapters 
8 and 9. 

The case in which K is a combination of columns, and some (perhaps 
all) of the component values of a foreign key value are allowed to be marked 
as missing, needs special attention. Those components of  such a foreign key 
value that are unmarked should adhere to the referential-integrity constraint. 
This detail is not supported in many current DBMS products, even when 
the vendors claim that their products support referential integrity. 

To make use of this definition, it is necessary to understand primary 
keys (PK) and foreign keys (FK). The example in the following subsection 
is intended to give the reader some understanding of the semantic nature 
of these keys. 

1.8.1 S e m a n t i c  A s p e c t s  o f  Pr imary  a n d  Fore ign  Keys  

Notice that referential integrity applies to pairs of keys only, one a primary 
key PK and the other a foreign key FK. The keys may be simple (single- 
column) or composite (two or more columns). The DBMS should not require 
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that each and every combination of simple keys within a single relation be 
treated as a foreign key, even if that combination appears as a composite 
primary key in the database. This is clearly an issue that is related to the 
meaning of the data. 

Suppose, for example, that a database contains the relations listed in 
Table 1.4. 

Table 1.4 E x a m p l e  R e l a t i o n s  in  a D a t a b a s e  

Relation Meaning Primary Key 

R1 Suppliers S# 
R2 Parts p# 
R3 The capabilities of suppliers to supply parts, including (S#,P#) 

price and speed of delivery 
Orders for parts placed with specified suppliers, 
including date the order was placed 

R4 (S#,P#,  
DATE) 

To avoid an extra relation and keep the example simple, assume that every 
order is a one-line order (that is, only one kind of part appears on any 
order) and that it is impossible for two orders with the same order date to 
refer to identical kinds of parts. 

Suppose that each of two companies has a database of this kind. In 
company A, however, the relation R3 is used as advisory information, and 
there is no requirement that every combination of (S#,P#) that appears in 
R4 must appear in R3. In company B, on the other hand, R3 is used as 
controlling information: that is, if an order is placed for part p from supplier 
s, it is company policy that there must be at least one row in relation R3 
stating that p is obtainable from s, and incidentally indicating the price and 
the speed of delivery. Of course, there may be other rows in R3 stating that 
p is obtainable from other suppliers. Thus, if referential integrity were 
applied to the combination (S#,P#)  as primary key in R3 and foreign key 
in R4, it would be correct in company B, but incorrect in company A. 

There are two ways in which this example (and similar ones) could be  
handled: 

1. Make the referential integrity constraint applicable to all PK-FK pairs 
of keys (whether simple or composite) in which one key PK is declared 
to be primary, and the other key FK is declared to be foreign. In 
company B, declare the (S#,P#) combination in R4 as a foreign key 
that has as its target the (S#,P#) primary key of R3. In company A, 
avoid altogether the declaration that (S#,P#) in R4 is a foreign key. 

2. Make the referential integrity constraint applicable to simple PK-FK 
pairs of keys only, and require the DBA to impose a referential con- 
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straint on just those compound PK-FK pairs of keys for which the 
constraint happens to be applicable in his or her companymby specifying 
a user-defined integrity constraint, expressed in the relational language. 

Method 1 is the approach now adopted in the relational model. It makes 
the foreign-key concept a more semantic feature than does Method 2. After 
all, the concepts of keys in the relational model were ahvays intended to 
identify objects in the micro-world that the database is supposed to represent. 
In other words, keys in the relational model act as surrogates for the objects 
being modeled. Once again, Method 1 is adopted. 

1.8.2 P r i m a r y  K e y s  o n  a C o m m o n  D o m a i n  

Let us consider an example of the fact that primary keys on a given domain 
can occur in more than one base relation. This is the database in which 
there are two base R-tables that provide the immediate properties of sup- 
pliers: one for the domestic suppliers, one for the foreign suppliers. There 
would normally be some properties in the foreign suppliers table that do 
not occur in the domestic suppliers table. Each R-table has as its primary 
key the supplier serial number. Nevertheless, the database may contain 
several R-tables that include the supplier serial number as a foreign key 
without making any distinction regarding the R-tables in which the corre- 
sponding primary key value resides. In general, that value may reside as a 
primary key value in one, two, or even more R-tables. 

No assumption is made in either RM/V1 or RM/V2 concerning the 
adoption of the tighter discipline of the extended relational model RM/T 
[Codd 1979]. For example, there is no requirement that type hierarchies be 
incorporated in the database design, wherever they are appropriate. More- 
over, there is no requirement that, for each primary key, a unary relation 
(called the E-relation in RM/T) exists to list all of the distinct values in use 
for that primary key. 

A second example in the non-distributed case is that of a base relation 
R that happens to have many columns, but a large amount of traffic on only 
20% of these columns (call this A) and a very modest amount on the 
remaining 80% (call this B). In such a case the DBA may decide to improve 
performance by storing the data in the form of two base relations instead 
of one: 

1. a projection of R onto its primary key together with A; 

2. a projection of R onto its primary key together with B. 

A specific feature of the relational model that requires support in the 
DBMS for multiple primary keys from a common domain is RS-10, described 
in the next chapter. 

In the case of distributed database management, it is not at all uncommon 
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to have the information distributed in such a way that several relations 
at several sites all have a primary key based on a common domain. See 
Section 24.4 for a detailed discussion of the relational approach to distrib- 
uting data. 

1.8.3 C o m m e n t s  on  I m p l e m e n t a t i o n  

Referential integrity is discussed further in Chapter 13. It should be imple- 
mented as far as possible as a special case of user-defined integrity (see 
Chapter 14) because of their similarities. One such common need, for 
example, is to give the DBA or other authorized user the freedom to specify 
linguistically how the system is to react to any attempt to violate these 
integrity constraints, whether the constraints are referential or user-defined. 

Further, it should be remembered that referential integrity is a particular 
application of an inclusion constraint (sometimes called an inclusion depe n - 
dency). Such a constraint requires that the set of distinct values occurring 
in some specified column, simple or composite, must be a subset of the 
values occurring in some other specified column(simple or composite, 
respectively). In the case of referential integrity, the set of distinct simple 
FK values should be a subset of the set of distinct simple PK values drawn 
from the same domain. 

Inclusion constraints, however, may apply between other pairs of attri- 
butes also (e.g., non-keys). When declared and enforced, such additional 
constraints reflect either business policies or government regulations. One 
would then like the DBMS to be designed in such a way as to provide 
reasonably uniform support for referential integrity and these additional 
(user-defined) inclusion constraints. 

1.9 • M o r e  o n  T e r m i n o l o g y  

The following terms are used in connection with relational languages and 
user-defined functions. 

• retrieval targeting: specifying the kinds of database values to be extracted 
from the database, and then possibly specifying transformations to be 
applied to occurrences of these values; 

• retrieval conditioning: specifying a logical condition in a retrieval or 
manipulative statement of a particular relational language for the pur- 
pose of conditioning access; 

PK-targeting: finding the primary key(s) corresponding to any given 
foreign key; 

FK-targeting: finding the foreign key(s) corresponding to any given 
primary key; 
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• PK-based projection: a projection that includes the primary key of the 
operand R-table; 

• non-PK projection: a projection that does not include the primary key 
of the operand R-table. 

1 . 1 0  • P o i n t s  t o  R e m e m b e r  

Four important points concerning relations follow: 

1. every relation is a set; 

2. not every set is a relation; 

3. every relation can be perceived as a table; 

4. not every table is a correct perception of a relation. 

Designers of the relational DBMS products of many vendors appear to be 
ignorant of these facts or to have ignored them. 

E x e r c i s e s  

Note that, for some exercises, additional chapters are identified as sources 
of more information. 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

Identify the 18 classes of features in RM/V2. Supply a brief description 
of each class. 

When a relation is perceived as a table, what are the special properties 
of that table? Is the ordering of columns crucial? Is the ordering of 
rows crucial? Can the table contain duplicate rows? 

The terms "table" and "relation" are not synonymous. Supply a 
simple example of a table that is neither a relation of the relational 
model nor a relation of mathematics. 

What is your position on the entity-relationship approach? (See also 
Chapter 30.) Will it replace the relational model? Give five technical 
reasons for your answer. 

What is a transaction in the relational model? Describe an application 
that illustrates that there is a practical need for this concept. 

Are either of the following statements true about the structures of 
the relational model? 

They are merely flat files. 
They are merely tables. 

In each case, if your answer is no, give an example of a fiat file that 
is not a relation or an example of a table that is not a relation. 
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1.7 

1.8 

1.9 

1.10 

1.11 

What is your position on the object-oriented approach? (See also 
Chapter 30.) Will it replace the relational model? Give five reasons 
for your answer. You may wish to postpone this exercise, as well as 
Exercise 1.8, until you have absorbed Chapter 28. 

Can any object-oriented concepts be added to the relational model 
without violating any of the principles on which the model is based? 
Which concepts? (See also Chapter 30.) 

When designing a database, is it possible to anticipate all of the uses 
to which the data will be put? Is it possible to anticipate the batch 
load, on-line teleprocessing load, and interactive query load for the 
next three l five, or seven years? Conclude from your answer what 
properties the DBMS should have if it is to protect the user's invest- 
ment in application programs (See also Chapter 26.) 

Are duplicate rows needed in a relation? If so, what for? Supply an 
example. Should duplicate rows be allowed in any relation? State 
reasons whyor why not, whichever is applicable, and supply examples. 
(See also Chapters 2 and 23.) 

In RM/V2 does the prohibition of duplicate rows within every relation 
imply that no duplicate values (e.g,, currency values) can occur in 
any column? Explain. 
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S t r u c t u r e - O r i e n t e d  

and  D a t a - O r i e n t e d  

Features  

Chapters 2 through 25 describe and explain the 333 features of RM/V2. In 
this chapter attention is focused on the way a relational database is s tructured 
and how the information in various parts of the database is inter-related. 
Each feature has a brief title and a unique label of the type RY-n, where Y 
is a character that denotes the pertinent class of features and n is the feature 
number within this class. 

Reference is made occasionally to "the 1985 set" [Codd 1985]. This set 
of 12 rules, a quick means of distinguishing the DBMS products that are 
relational from those that are not relational, can still be used for coarse 
distinctions. The features of RM/V2, however, are needed for distinctions 
of a finer grain. 

2.1 • D a t a b a s e s  a n d  K n o w l e d g e  B a s e s  

As explained in Chapter 1, both a commercial database in the relational 
sense and a knowledge base consist largely of assertions. In commercial 
databases most of the assertions contain no variables. There are few distinct 
kinds of assertions, and very many assertions of each type (perhaps hundreds 
of millions). In knowledge bases, on the other hand, most of the assertions 
contain variables that are bound in the logician's sense. Moreover, there 
are many distinct kinds of assertions, and very few of each type (often just 
one). 

The relational model is intended to be applied primarily to commercial 
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and industrial databases. Thus, it takes advantage of the large numbers of 
assertions all of the same type. The predicate in the logician's sense that is 
common to all the assertions of one type is factored out and becomes the 
relation name. 

There is a component of every relational database, however, that is very 
similar to a knowledge base, and that is the database description. Further 
discussion of this subject is postponed until Chapter 15. In any event, due 
to the focus of the relational model on cleanly expressed assertions unen- 
cumbered with irrelevant structural details (for example, the clutter of 
pointers), this model has an outstandingly clean interface to knowledge 
bases. 

2.2 • G e n e r a l  F e a t u r e s  

R $ - I  T h e  I n f o r m a t i o n  F e a t u r e  

See Rule 1 in the 1985 set. The DBMS requires that all database 
information seen by application programmers (AP) and interactive 
users at terminals (TU) is cast explicitly in terms of values in 
relations, and in no other way in the base relations. Exactly one 
additional way is permitted in derived relations, namely, ordering 
by values within the relation (sometimes referred to as inessential 
ordering). 

This means, for example, that, in the database, users see no repeating 
groups, no pointers, no record identifiers (other than the declared primary 
keys), no essential (i.e., non-redundant) ordering, and no access paths. 
Obviously this is not a complete list. Such objects may, however, be supported 
for performance reasons under the covers because they are then not visible 
to users, and hence impose no productivity-reducing burden on them. 

2.2.1 Repea t ing  Groups 

Many people experienced with pre-relational systems express shock or dis- 
may at the exclusion of repeating groups from the relational model. Re- 
peating groups had their origin in the trailer cards of the punched-card era. 
Thus, it seems worthwhile to consider an example that illustrates how 
repeating groups can be avoided. 

Suppose that, at database-design time, it is decided that the database is 
to contain information concerning parts in the inventory and orders placed 
for more parts to be added to the inventory. An order usually consists of 
heading information such as the name and address of the supplier with whom 
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the order is to be placed, an appropriate employee in the supplier company, 
the telephone number of this employee, the date when the supplier promises 
to ship the parts, the expected cost, and possibly other items of information. 
The line items then follow, and it is here that some think that a repeating 
group is needed. 

In the relational approach the heading information for all orders is 
incorporated into a single relation, the heading relation. Similarly, the line 
items for all orders are incorporated into a single relation, the trailing 
relation. Each distinct order in the heading relation includes an order serial 
number as a unique identifier of the order. This identifier is, of course, the 
primary key of the heading relation. Every line item in the trailing relation 
includes the pertinent order serial number as a foreign key. This identifier, 
together with the line number for the pertinent line item, constitute the 
primary key of the trailing relation. 

It will be seen that in eliminating repeating groups from the database 
design no information has been lost. Now the question arises, "Why elimi- 
nate repeating groups? Surely, they are both natural and harmless!" 

In fact, they are not harmless. One of the principal penalties is that 
each repeating group must be positioned next to its heading information, 
and all members of a group must be positioned next to each other. The 
relational model avoids all decisions regarding positioning of information, 
allowing positioning to be used purely for performance purposes. 

A second penalty is that repeating groups represent an additional way 
of representing information. Hence, one more retrieval command, one more 
insertion command, one more update command, and one more deletion 
command are needed in the data-manipulation vocabulary. 

A third penalty is that logical database design now involves more de- 
cision making without a theoretical foundation upon which to base those 
decisions. Thus, if repeating groups were adopted, it would be necessary to 
conceive clear, concise, and rigorously established criteria for the database 
designers to choose whether or not to exploit repeating groups. 

2 . 2 . 2  M o r e  o n  t h e  I n f o r m a t i o n  F e a t u r e  

Returning to the information feature RS-1, even R-table names, column 
names, and domain names are represented as character strings in some 
R-tables. R-tables containing such names are normally part of the built-in 
database catalog (see Chapter 15). The catalog is accordingly a relational 
database itselfmone that is dynamic and active and that represents the meta- 
data. Meta-data consists of data that describes all of the data in the database, 
as well as the contents of the catalog itself. 

The information feature is supported for several reasons. First, as ex- 
plained in Chapter 1, this feature makes a simpler data sublanguage possible, 
and therefore supports user productivity. Second, it greatly simplifies the 
interface between the DBMS and software packages "on top of" the DBMS. 
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Examples of such software packages are application-development aids, ex- 
pert systems, and dictionaries. These packages must not only interface with 
relational DBMS but, by definition, must be well integrated with the DBMS. 
This integration is necessary because these packages retrieve information 
already existing in the database (including the catalog) and, as needed, put 
new information in the database (and possibly in the catalog also). 

An additional reason is to simplify the database administrator's task of 
maintaining the database in a state of overall integrity and to make this task 
more effective. There is nothing more embarrassing to a DBA than being 
asked whether the database contains certain specific information, and, after 
a week's examination of the database or of documents that allegedly describe 
the database, of having to reply that he or she does not know. 

R $ - 2  F r e e d o m  f r o m  P o s i t i o n a l  C o n c e p t s  

The DBMS protects the application programmers and terminal users 
from having to know any positional concepts in the database. 

Examples of positional concepts follow: 

• Where is a particular relation stored? 

• Which row is next to a given row? 

• Which column is next to a given column? 

In dealing with databases that contain R-tables with thousands (some- 
times millions) of rows, as well as hundreds of columns, it would place a 
heavy and unnecessary burden on users if the DBMS required them to 
remember which row or which column is next. User productivity would 
suffer seriously. 

R S - 3  Duplicate Rows Prohibited in 
Every Relation 

The DBMS prohibits the occurrence of duplicate rows in any relation 
(whether base, view, or derived), and in this way protects the user 
from the subtle complexities and reduced optimizability that stem 
from permitting duplicate rows. 

As mentioned in Chapter 1, for duplicate rows there is no precise, 
accepted definition that is context-independent. Consequently, there is no 
common interpretation that all users can share. Many of the present versions 
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of SQL fail to support Feature RS-3. The adverse consequences are discussed 
in some detail in Chapter 23. Note that Feature RS-3 refers to entire rows 
being duplicated. It does not prohibit the occurrence of duplicate values in 
any column. 

R $ - 4  I n f o r m a t i o n  P o r t a b i l i t y  

If a row of a base R-table is moved in any kind of storage by the 
DBMS, its information content as perceived by users remains un- 
changed, and therefore need not be changed. The entire information 
content of the DBMS as seen by users must not be dependent upon 
the site or equipment in which any of the data is located. 

An example of such a move is the archiving of a portion of an R-table. 
Another example is the re-distribution to different sites of parts of a dis- 
tributed database. Thus, any hashing of data done by the system must not 
be perceptible to users. Similarly, if the primary key value is ever system- 
generated, that value cannot be a pointer or an address, and cannot be 
location-dependent in any way. 

For the time being, this feature is not intended to include the case of 
vendor-independent physical representation of data stored in or retrieved 
from databases, especially on communication lines. This topic should be 
treated by standards organizations as a matter needing urgent attention. 
This feature is also not intended to apply to performance-oriented objects 
such as indexes. 

2.2.3 Three -Leve l  A r c h i t e c t u r e  

About 1976 the SPARC committee of the American National Standards 
Institute (ANSI) announced with great fanfare something called the "three- 
schema architecture." The definitions of the three levels supplied by the 
committee in a report were extremely imprecise, and therefore could be 
interpreted in numerous ways. Upon reflection, however, I believe the idea 
had been already conceived and published as part of the relational model 
and as part of the System R architecture [Chamberlin et al. 1981]. Of course, 
the definitions in the relational model and in System R were much more 
precise, but the terminology was different. 

Base relations are those relations represented directly by stored data 
(not by formulas or relational commands). Views are virtual relations defined 
in terms of the base relations and possibly other views using the relational 
operators. It is these definitions (either by formulas or by relational com- 
mands) that are stored in the catalog. Storage representation is the repre- 
sentation in storage for the information contained in base relations. 
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With an appropriate interpretation of the ANSI definitions, the corre- 
spondence in terms is as follows" 

ANSI term R-term 

External schema 
Conceptual schema 
Internal schema 

Views 
Base relations 
Storage representations 

R S - 5  Three-Level  Archi tec ture  

A relational DBMS has a three-level architecture consisting of views, 
base relations, and storage representations. 

This feature is concerned with the structural aspect only. Full support 
of the three-level architecture includes full support of view-manipulative 
Features RV-4, RV-5, and RV-6. It also includes a systematic approach to 
view updatability, which is the subject of Chapter 17. 

2.3 m D o m a i n s ,  Columns ,  and Keys 

Let us turn our attention to the concepts upon which the relations of the 
relational model are built. 

RS-6  Declarat ion  of D o m a i n s  as 
E x t e n d e d  Data  Types  

Each semantically distinct domain is distinctly named and declared 
separately from the R-table declarations (since it may be used in 
several R-tables). Each domain is declared as an extended data 
type, not as a mere basic data type. 

For an explanation of the differences between basic data types and 
extended data types, see the introductory text in Chapter 3 (preceding 
Feature RT-1). Feature RC-3 states in detail the kind of domain declaration 
that should be stored in the catalog. 

The concept of a domain is quite fundamental. It is essential in deter- 
mining whether a given relational database can be split into two or more 
independent databases without loss of meaningful derivable information~ 
or, to express it another way, without loss of inter-relatedness (see Chapter 
3). 

Many features of RM/V2, as well as the original RM/V1, depend on the 
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domain concept. Some of the advantages of supporting domains as extended 
data types are as follows: 

• a large component of the description of every column that draws its 
values from a given domain need be declared only once in the domain 
declaration (this is called the factoring advantage); 

m for every operator that involves comparing pairs of database values, the 
DBMS can ensure that each of the two components are semantically 
comparable by checking either at the start of the operation or (when 
possible) at compile time that both columns involved draw their values 
from a common domain (see Feature RM-14 in Chapter 12); 

• integrity checks are facilitated (see Chapters 13 and 14, and Feature 
RD-7 in Chapter 21). 

R S - 7  C o l u m n  D e s c r i p t i o n s  

For each column of each base R-table, there should be the capability 
of declaring (1)from which domain that column draws its values 
(thus identifying the extended data type) and (2)what additional 
constraints, if any, apply to values in that column. 

When the DBMS fully supports the domain concept, it can detect errors 
resulting from users forgetting which columns have values of a given ex- 
tended data type. Therefore, users can depend on the system to check 
whether the values in two given columns are semantically comparable (i.e., 
of the same extended data type). 

R S - 8  P r i m a r y  K e y  for E a c h  B a s e  R - t a b l e  

For each and every base R-table, the DBMS must require that one 
and only one primary key be declared. All of the values in this 
simple or composite column must be distinct from one another at 
all times. No value in any component column is allowed to be missing 
at any time. 

Whether the primary key is indexed or not is a purely performance 
concern, and therefore a decision to be made by some authorized user quite 
separately (see Feature RD-3 in Chapter 21). The primary key is constrained 
by the DBMS to contain distinct primary key values in distinct rows, and 
(because of Feature RI-3 in Chapter 13) is not permitted to have missing 
values. 
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The  constraints that values must be distinct and that missing values must 
be excluded may also, at the discretion of the DBA, be enforced on columns 
other than the primary key. Therefore, the mere existence of these con- 
straints on some column or combination of columns does not identify which 
column(s) constitute the primary key. 

A primary key may consist of a simple column or a combination of 
columns. When it consists of a combination of columns, the key is said to 
be composite. Each column participating in a composite primary key may 
be, but need not be, a foreign key. 

R S - 9  P r i m a r y  K e y  f o r  C e r t a i n  V i e w s  

For each view the DBMS must support the declaration of a single 
primary key whenever the DBA observes that the definition of that 
view permits the existence of such a key, including adherence to the 
entity-integrity feature (see Feature RI-7 in Chapter 13). Where 
possible, the DBMS must check that a primary key declaration for 
a view is consistent with primary key declarations for the base 
R-tables. 

Note that, in some cases, views can have instances of missing information 
in every column (although not all in one row, of course). In these cases, it 
is impossible to declare a primary key for the view and have it adhere to 
the entity-integrity feature. A simple example is a view that is a projection 
of a base R-table that does not include any column of the table from which 
missing values are prohibited (and thus does not include the primary key of 
that R-table). In these circumstances and in the view thus defined, use is 
made of the concept of a weak identifier, defined at the end of Section 5.3. 

Generally, it is clearer to limit the specification of all kinds of integrity 
constraints to base R-tables. It is helpful to users, however, to have a primary 
key declared for each view whenever possible, because such a key plays a 
significant role as a unique identifier of objects during user interaction with 
a relational database. Further, it is reasonable to expect users to interact 
with views rather than with base R-tables, because in this way they enjoy 
more logical data independence. (See Feature RP-2 in Chapter 20.) 

R S - I O  F o r e i g n  K e y  

The DBMS permits the declaration of any column or combination 
of columns of a base R-table as a foreign key (where this is se- 
mantically applicable). Included in this declaration are the target 
primary keys (usually just one) for this foreign key. However, the 
DBMS must not, through its design, constrain the target to be just 
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one primary key for a given foreign key, even though the most 
frequently occurring case may be just one. 

In supporting more than one primary key as the target for a given 
foreign key, the DBMS must no t  assume that the corresponding primary 
key values are partitioned into disjoint sets in distinct R-tables. Moreover, 
the DBMS must not  deduce foreign keys and their targets from the declared 
primary keys and their domains. In the case of composite foreign keys, the 
DBMS could be in error because of the semantic nature of key targeting 
(i.e., the association of foreign keys with primary keys). An example of this 
semantic nature is described in Section 1.8.1. 

R S - 1 1  C o m p o s i t e  D o m a i n s  

A user-chosen combination of simple domains can be declared to 
have a name, providing that name is distinct from that of any other 
domain (simple or composite). The sequence in which the compo- 
nent domains are cited in this declaration is part of the meaning of 
the combination. 

An example of a composite domain is the combination of two simple 
domains: the supplier serial number domain and the part serial number 
domain. Several composite columns in a database may draw their values 
from this composite domain. 

This declaration of combinations of domains enables them to be treated 
as unit pieces of information without specifying their components (in other 
words, as if they were simple domains). For example, if an equi-join (see 
Chapter 4) is required that involves comparing one combination of columns 
with another, and if both combinations happened to be based on the same 
composite domain, the user would be able to gain confidence more rapidly 
concerning the correctness of the join, and the DBMS would be able to 
check this correctness more rapidly. 

For each composite domain, of course, the sequence in which the 
domains are specified is a vital part of the definition. For any composite 
column based on a composite domain, the sequence in which the combination 
of columns is specified must match the sequence in which the simple domains 
are specified that participate in the composite domain. 

~ R S - 1 2  C o m p o s i t e  C o l u m n s  

A user-chosen combination of simple columns within a base R-table 
or view can be declared to have a name, providing that name is 
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distinct from that of any other column (simple or composite) within 
that R-table, and providing a composite domain has already been 
declared from which this composite column is to draw its values. 
The sequence in which the component columns are cited in this 
declaration is part of the meaning of the combination, and it must 
be identical to the sequence cited in the declaration of the corre- 
sponding composite domain. 

An example of a frequently needed composite column is a postal address: 
the combination of an apartment or suite number in a building, the building 
number on some street, the street name, the city name within a state or 
country, and finally the state or country. 

Note that, if a composite column is declared to contain every column 
of some R-table (admittedly a rare event), that combined column is not 
itself an R-table and should not be treated as if it were. In this case, the 
name of the R-table and the name of the composite column should be 
distinct. 

The naming and declaration of combinations of columns enables them 
to be treated as unit pieces of information without specifying their compo- 
nents (in other words, as if they were simple columns). For example, if an 
equi-join (see Chapter 4) is required that involves comparing one combi- 
nation of columns with another, and if these combinations happened to be 
declared and each named as such, it would be easier to express the com- 
parison in terms of the combination names. For each composite column, of 
course, the sequence of simple domains corresponding to the sequence of 
components in each combination would have to be identical in order for the 
values to be comparable with one another. 

Note that a composite column is restricted to combining simple columns 
within a single base R-table. This restriction should be interpreted in the 
sense that at present I am not taking a position either for or against the 
kind of composite columns that combine columns that may be simple or 
composite. Such columns are sometimes loosely referred to as "composites 
of composites." So far, I fail to see the practical need for them. 

The name of the composite column can be the same as the name of the 
composite domain from which the composite column draws its values (bar- 
ring ambiguity within the pertinent R-table). The name, however, should 
be distinct from that of any R-table (base or view), and it m u s t  be distinct 
from 

• any simple column within the pertinent base R-table, and 

• any other composite column already declared and still in effect for that 
R-table, and 

• any word assigned special meaning within the relational language (i.e., 
any keyword of RL). 
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To explain the meaning of a comparator such as LESS THAN (<) 
applied to a pair of composite columns, suppose that the composite column 
C, consisting of C1, then C2, then C3, is to be compared with a composite 
column D, consisting of D1, then D2, then D3. The condition C < D is 
equivalent to making a sequence of tests: 

C1 < D1, then C2 < D2, then C3 < D3. 

The first test that fails causes the whole test to fail for the truth-valued 
expression C < D and that application of it. If duplicate values occur in 
some or all of these columns, there is no guarantee that a request for an 
ordering based on them will deliver exactly the same sequence of tuples in 
repeated execution of the request. To obtain precise repeatability, requests 
for ordering should be based on columns, which contain values that are 
distinct from one another. 

The treatment is tantamount to C1 and D1 being treated as high-order, 
C2 and D2 as middle-order, and C3 and D3 as low-order in the usual 
arithmetic sense (whether the operands are numeric or character strings). 
The LESS THAN comparator applied to a pair of character strings makes 
use of a collating sequence established as a standard for database manage- 
ment and for data processing. 

2.4 a Miscel laneous Features  

R $ - 1 3  Missing Informat ion:  R e p r e s e n t a t i o n  

Throughout the database, the fact that a database value is missing 
is represented in a uniform and systematic way, independent of the 
data type of the missing database value. Marks are used for this 
purpose. (Note that RS-13 is the structural part of Rule 3 in the 
1985 set; see Feature RM-11 in Chapter 12 for the manipulative 
part.) 

The semantics of the fact that a database value is missing are quite 
different from the semantics of the value that is missing. See Chapters 8 
and 9 or [Codd 1986a and 1987c] for more details. Marks were previously 
called nulls, and occasionally null values~which is even more misleading 
because it suggests that nulls behave just like other database values. To be 
independent of data type, they must be distinguishable from all database 
values of all types. Thus, any value whose bit representation lies within the 
bit boundaries of a database value is unacceptable in the role of representing 
the fact that a database value is missing. For example, if the following are 
stored in the same R-column as the corresponding non-missing database 
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values, they are unacceptable as representations of missing values (whether 
built-in, default, DBA-declared, or user-declared): 

[] the empty character string, 

• a string of blank characters or any other character string, 

• zero or any other number, 

m any string of bits. 

An example of a conforming representation for missing information is 
that adopted in IBM's DB2. In this system, any column in which database 
values are permitted to be missing is assigned an extra byte outside the bit 
boundaries of the database values. This byte is reserved to indicate to the 
DBMS whether the corresponding value, which is represented by the bits 
within the bit boundaries of the database values in this column, is to be 
taken seriously as an actual value or as a fictitious value left over from some 
previous use. 

To support database integrity, the DBMS should deduce from the pri- 
mary key declaration that marks are not allowed for that column or com- 
bination of columns. It must be possible, however, for the DBA or some 
other suitably authorized user to specify "marks not allowed" for any other 
columns for which this happens to be an appropriate integrity constraint. 
An example would be certain foreign key columns. 

Note that the "marks not allowed" declaration is n o t  an alternative to 
an explicit declaration of the primary key. By itself, such a declaration is 
inadequate to distinguish primary key columns from other columns. 

Techniques in database management before the relational approach 
required users to reserve a special value peculiar to each column or field to 
represent missing information. This would be most unsystematic in a rela- 
tional database because users would have to employ different techniques for 
each column or for each domain. This is a difficult task because of the high 
level of language in use, and one that would lower the productivity of users 
significantly. 

R S - 1 4  Avoiding the Universal Relation 

Neither the collection of all base relations nor the collection of all 
views should be cast by the DBMS in the form of a single "universal 
relation" (in the Stanford University sense) [Vardi 1988]. The DBA, 
however, should have the option of creating such a relation as one 
of the many views. 

Generally, the database should be perceived as a collection of base 
relations and a collection of virtual relations (views), all of assorted degrees. 
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If all of the base relations or all of the views are each cast as a single 
universal relation (in the Stanford University sense), there are at least three 
adverse consequences: 

1. waste of space (disk and memory) due to the large number of values 
that must be marked "property inapplicable," and waste of channel time 
for the same reason; 

2. loss of adaptability to changes in the kinds of information stored in the 
database: 

a. more human effort is required when the counterpart of a new base 
R-table or view is defined, 

b. application programs will be adversely affected because their logic 
is not immune to the restructuring of the "universal relation," and 

c. more of a reorganizing load at the storage level is likely to be 
involved; 

3. the need for joins on non-key values is not decreased, and their coun- 
terpart is more difficult for the user to request, because the key-based 
join built into the "universal relation" must be decomposed before the 
join based on non-keys is constructed. 

In the relational model a database is treated as a collection of relations 
of assorted degrees. The Stanford University research on the universal 
relation concept was, I believe, motivated by the desire to eliminate the 
need for joins. In the universal relation approach, however, the combining 
of several relations (perhaps many) into a single relation is necessarily based 
on only one method of combination, and the method normally selected is 
by key-based equi-joins. 

One of the great advantages of the relational approach is that it supports 
joins of all kinds, whether based on keys or not. It is quite likely that a 
database that adheres to the relational model has more distinct kinds of 
non-key-based joins than key-based ones. The approach adopted in the 
relational model is far more flexible and more adaptable to  change. 

When new kinds of information are introduced into a database, one can 
merely define new domains, new columns, and new R-tables as necessary. 
On the other hand, using the Stanford approach, this new information would 
have to be carefully fitted into the existing universal relation, which is a 
much more complicated problem. For more detail, see Chapter 30. 

Exercises  

2.1 Does RM/V2 permit any information to be carded solely in the 
ordering of rows in base relations? State reasons why or why not, 
whichever is applicable. 
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2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

.8 

2.9 

2.10 

2.11 

2.12 

What is the precise definition of a domain in the relational model? 
Which of the following statements is always true, which always false, 
and which can be true in some cases and false in others? 
1. A domain determines the type and range of values that may occur 

in one or more columns. 
2. A domain determines the type and range of values that may occur 

in exactly one column. 
3. Exactly one column determines the type and range of values that 

may occur in a domain. 
4. One or more columns determine the type and range of values 

that may occur in a domain. 

How should domains be supported? What is wrong with storing for 
each and every domain all of the values that belong to it? (10, 17) 

IBM's DB2 supports the language SQL for database interrogation, 
manipulation, and control. Should the declaration of a primary key 
for each base relation be optional, as in the SQL of Version 2 of IBM's 
DB2? Give reasons for your answer. 

Define the candidate-key concept. Define the primary-key concept. 

Why does the primary-key concept preclude there being two or more 
primary keys in a base table? Explain the problems that result from 
having two or more primary keys per relation. 

Why is a single primary key mandatory for each base relation? Does 
this requirement reduce the range of applicability of the relational 
model? 

Does the fact that a column has been declared to be the primary key 
of some base relation mean that the column must be indexed? How 
about the reverse implication? 

Does RM/V2 require a relation to be stored as (1)a  table, (2)an 
array, (3)a  flat file, o r  (4)a  collection of records connected by 
pointers? (See also Chapter 20.) 

Does RM/V2 require a relation to be stored row by row? Does RM/ 
V2 require the components to be ordered within each row in storage 
in the same sequence as the columns are declared in the catalog? (See 
also Chapter 20.) 

What does it mean for a value to be atomic with respect to the 
DBMS? Is not an atomic value always atomic? 

Supply two reasons why the DBA should always control the intro- 
duction of new types of values into the database to ensure that these 
values are atomic in meaning as well as atomic with respect to the 
DBMS. 
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D o m a i n s  as E x t e n d e d  

D a t a  T y p e s  

3.1 • Bas ic  a n d  E x t e n d e d  D a t a  T y p e s  

The concept of domains has played a very important role in the relational 
model since the model was conceived. It is not overstating the case to say 
that the domain concept is fundamental. It participates crucially in the 
definition of numerous features of RM/V1 and RM/V2. Consequently, many 
of these features cannot be fully supported by a DBMS unless that DBMS 
supports domains. Omission of support for domains is the most serious 
deficiency in today's relational DBMS products. 

In my first two papers on the relational model [Codd 1969 and 1970], 
domains and columns were inadequately distinguished. In subsequent papers 
(e.g., Codd 1971a, 1971b, and 1974a), I realized the need to make this 
distinction, and introduced domains as declared data types, and attributes 
(now often called columns) as declared specific uses of domains. It has 
become clear that domains as data types go beyond what is normally under- 
stood by data types in today's programming languages. Consequently, as 
noted in Chapter 2, when domains are viewed as data types, I now refer to 
them as extended data types. With regard to the data types found in pro- 
gramming languages (excluding PASCAL and ADA), I refer to them as basic 
data types. 

An extended data type is intended to capture some of the meaning of 
the data. It is conceptually similar to a basic data type found in many 
programming languages. If, however, two semantically distinguishable types 
of real-world objects or properties happen to be represented by values of 

43 
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the same basic data type, the user nevertheless assigns distinct names to 
these types and the system keeps track of their type distinction. 

The description of an extended data type includes its basic data type 
together with information Concerning the range of values permitted, and 
whether the less than comparator (<) is meaningfully applicable to its values. 
The distinction between extended data type and basic data type is not that 
the first is user-defined and the second is built into the system, even though 
many of the extended data types will, in practice, be user-defined. 

Note that, unless it is built into the system, a domain, and hence an 
extended data type, must be declared as an object itself before any use can 
be made of it. Whenever an extended data type is built into the system, its 
name as an object must be available to users. 

In contrast, a basic data type is normally a property associated with an 
object at the time of the declaration of that object. As an aside, given the 
present state of the data sublanguages SQL and QUEL, a CREATE DOMAIN 
command must be added to each language. Table 3.1 lists some of the 
distinctionsbetween basic and extended data types. 

By now it should be clear that it is quite incorrect to equate either 
(1) basic data types with built-in data types, or (2) extended data types with 
user-defined data types. 

The distinction between built-in data types and user-defined data types 
is a purely temporary consideration based largely on the kind of hardware 
that is economically available; this boundary moves at least every decade, 
possibly more frequently. On the other hand, the distinction between basic 
and extended data types is both non-temporary and conceptual in nature: it 
is closely related to the question of levels of abstraction. 

In apparent opposition to the first row of Table 3.1, it has been con- 
tended that both basic data types and extended data types have names. In 
a sense this is true. The "names" of basic data types, however, can be used 
only in designating certain properties of data (e.g., in a program). On the 
other hand, the names of extended data types can be used not only in 
designating properties of data, but also as objects themselves, when the user 

Table 3.1 

Basic Data Type 

No object-oriented name 
A property of an object 
Not independently declarable 
Range of values is not specifiable 
Applicability of <, > is not specifiable 

B a s i c  v e r s u s  E x t e n d e d  D a t a  T y p e s  

Extended Data Type 

Object-oriented name 
An object 
Independently declarable 
Range of values is specifiable 
Applicability of <, > is specifiable 

Two database values with the same basic data type need not have the same 
extended data type. 
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wishes to interrogate them or modify them either interactively from a 
terminal or by using a program. This holds true of extended data types 
because their names and descriptions are stored as data in the catalog. 

3 .2  i N i n e  P r a c t i c a l  R e a s o n s  for S u p p o r t i n g  D o m a i n s  

Full support for many of the features of the relational model depends on 
full support of the domain concept. Some of the advantages of supporting 
domains fully follow. 

First, full support of the domain concept is the single most important 
concept in determining whether a given relational database is integrated. 
Consider the consequences of alleging that a relational database viewed as 
a collection CD of domains and a collection CR of relations could be split 
into two databases, without any loss of information or of retrieval capability. 
How would one check whether this assertion were true? 

One way of solving this problem is to look for a subset cd of the domains 
CD and a subset cr of the relations CR with the following two properties: 

1. the relations in cr make use of domains in cd only (no other domains); 

2. the relations in ( CR - cr ) make use of domains in ( CD - cd ) only 
(no other domains). 

Note that in Property 1 a relation makes use of a domain if at least one of 
its columns draws its values from that domain. In Property 2, the symbol "-" 
in ( CR - cr ) and ( CD - cd ) denotes set difference. 

When both these properties hold, the relational operators will not permit 
the derivation of any relations that include information from cr as well as 
information from ( CR - cr ), whether these two collections are regarded 
by the DBA or by anyone else as a single database or as two databases. 
There is a sound reason for this related to (1) value-comparisons that make 
sense and (2) value-comparisons that do not. (See the third practical reason 
for supporting domains later in this section.) 

This first reason for supporting domains can be concisely stated as 
follows: domains are the glue that holds a relational database together. Notice 
that I said domains, not primary keys and foreign keys. The concept of keys 
in the relational model provides an important additional and specialized 
kind of glue. 

Second, support of domains is necessary if the factoring advantage is to 
be realized in declaring the types of data permitted in columns. 

A large component of the description of every column that is defined 
on a given domain need be declared only once for that domain. As an 
example, consider a financial database that has 50 columns containing cur- 
rency of some type (e.g., all U.S. dollars). 

Using pre-relational DBMS, it was usually necessary to store 50 decla- 
rations, One for each column; this task was often left to numerous application 
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programmers, who inserted these declarations into their programs. With this 
approach, the usual result was that no two currency declarations were in 
precise agreement, placing an immense and unnecessary burden on the DBA 
and on the community of users. 

It was this phenomenon that spurred the development of add-on pack- 
ages called dictionaries. Control over names and declarations, however, 
should be handled by the DBMS itself, making it much more difficult for 
any user to circumvent such control. 

Using the relational approach, just one declaration of semantic data 
type for the currency domain will suffice for all 50 currency columns. Then, 
for any currency column that needs tighter control (an interval of permitted 
values more narrow than that declared for the domain), an extra range 
constraint can be declared for that column (type C or column integrity). All 
domain declarations and all additional constraints applicable to specified 
columns are stored by the DBA in the catalog, which is where they belong 
if users are to receive the important benefit of not having to change appli- 
cation programs whenever integrity constraints are changed. 

Third, support of domains is necessary if domain integrity is to be 
supported. Domain integrity consists of those integrity constraints that are 
shared by all the columns that draw their values from that domain. Three 
kinds of domain integrity constraints that are frequently encountered are 
(1) regular data type, (2) ranges of values permitted, and (3) whether or 
not the ordering comparators greater than (>)  and less than (<) are appli- 
cable to those values. 

Fourth, full support of domains includes domain-constrained operators 
and domain-constrained features of other kinds to protect users from costly 
blunders. For every operator that involves comparing pairs of database 
values, the DBMS ensures that the two components to be compared are 
semantically comparable. It does this by checking either at the start of the 
operation or (when possible) at compile time that both columns involved 
are defined on a common domain. This constraint is supported by a relational 
DBMS to help protect users from incorrectly formulating commands such 
as joins (for example, a join in which quantities of parts are being compared 
with quantities of people). If a special need arises "to compare apples with 
oranges," with special authorizat ion~and a DBA would grant such au- 
thorization rarely and for only short in tervals~a user may employ the 
DOMAIN CHECK OVERRIDE qualifier in his or her command. 

R T - I  Safety Feature when Comparing 
Database Values 

When comparing a database value in one column with a database 
value in another, the DBMS checks that the two columns draw their 
values from a common domain, unless the domain check is overrid- 
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den (see Feature RQ-9 in Chapter 10). When comparing (1) a 
computed value with a database value or (2) one computed value 
with another computed value, however, the DBMS checks that the 
basic data types are the same. 

The main reason for checking the weaker basic data types when computed 
values are involved is that the computing is likely to be expressed in some 
host-programming language. Most such languages do not yet support the 
extended data types of the relational model. 

The following operators and features of the relational model require 
implementation of domains to ensure that data is handled properly by the 
DBMS and by the user: 

Operators for retrieval and modifying: 

• theta-select (whenever two components of a tuple are being 
compared), 

• theta-join, 

• t-join, 

• relational division, 

• relational union, intersection, and difference, 

• all of the outer operators (outer join, outer union, outer intersection, 
outer difference), 

• primary key update. 

Integrity features: 

referential integrity (type R), 

• other inclusion dependencies, 

• user-defined integrity constraints (type U) involving any of the op- 
erators just listed, 

• every integrity constraint involving cascading the action to all equal 
values in all columns defined on the same domain (e.g., cascade 
delete, cascade update, cascade insert). 

Fifth, in the highly dynamic environment supported by a fully relational 
DBMS, it is necessary to support domains in order to support transactions 
that single out all occurrences of some value as a value of a specified extended 
data type. Consider an example: business activity with supplier s3 has been 
terminated in a completed state (no shipments are still due from this supplier 
and all bills have been paid). A company executive requests that all rows 
of a certain kind (wherever they occur in the database) be archivedm 
specifically, all rows of all relations that contain s3 as a supplier serial 
number. 
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In executing this action, it is important to avoid archiving rows that 
happen to contain s3 as something other than a supplier serial number (say, 
a part serial number), if these rows do not also contain s3 as a supplier 
serial number. It is inadvisable to expect any application programmer to 
remember the information as to which columns draw their values from the 
supplier serial number domain" this information may change even while the 
programmer is thinking about the transaction because of activities by other 
users and programmers. A relational DBMS supports a great variety of 
users engaged concurrently in actions conceived independently of one an- 
other. Most of these actions may be simple changes to the data, but some 
may be changes in the database description. Thus, while the application 
programmer is thinking about the transaction needed to archive all rows 
that contain s3 as a supplier serial number, some other user may be intro- 
ducing a new relation or adding a new column containing supplier serial 
numbers. That user or another one may then insert s3 in such a column. 

Consequently, it is essential that the DBMS retain in an extremely up- 
to-date state the information as to which columns draw their values from 
the supplier serial number domain. It is also essential that the relational 
language contain a command that is capable of referring to all columns 
currently drawing their values from a specified domain without the user 
having to list these columns within the command or elsewhere. At present, 
SOL and its dialects lack such a command. 

Sixth, support of domains facilitates certain user-defined integrity checks 
by the DBMS. An example is an inclusion constraint, in which the values 
appearing in one column C1 (simple or composite) are required to be a 
subset of the values appearing in another column C2. In this case, the 
relational model requires that C1 and C2 draw their values from a common 
domain. 

Seventh, the domain concept participates in many definitions in the 
relational model, including the definitions of primary domain, foreign key, 
all value-comparing operators (as noted earlier in the third reason), union 
compatibility, referential integrity, and inclusion constraints. 

Eighth, domains can be used by the DBMS to establish the extent of 
naming correspondence needed from the user when a union or similar 
relational operator is requested. When forming R UNION S in the relational 
model, it is required not only that the degree of R is equal to the degree 
of S, but also that there exist at least one mapping (one-to-one) of the 
columns of R onto the columns of S, such that the two columns of each pair 
belonging to the mapping have a common domain. 

Clearly, if all the domains of columns of R are distinct, then all the 
domains of S must also be distinct, and the domains can be used by the 
DBMS to determine the mapping of columns on columns completely. Thus, 
in this case, the user need not become involved at all in the pair of column 
names. 
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If two or more domains of columns of R are identical, however, the 
same must be true of S, and the user is faced with alternatives. He or she 
must therefore be involved in column correspondence between R and S to 
the extent of having to specify a mapping for just those columns of R that 
share a common domain and just those columns of S that share a common 
domain. Obviously, determining this correspondence can also affect the 
naming of columns of the result. 

Ninth, and last, it is necessary to support domains in order to support 
an important performance-oriented tool, namely domain-based indexes. While 
this tool is not itself part of the relational model, it is important because it 
can cause certain types of relational DBMS (specifically those that make 
use of indexes under the covers) to perform competitively with non-relational 
DBMS. 

A domain-based index is a single index on the combination of all the 
columns that draw their values from the specified domain. Such an index is 
usually a multi-relation index. However, not every multi-relation index is a 
domain-based index. It provides immediate direction for the DBMS to find 
all occurrences of each currently active value from that domain. 

Once such an index has been declared by the DBA, the introduction 
into the database of a new column drawing its values from the pertinent 
domain causes automatic expansion by the DBMS of the domain-based 
index. Similarly, whenever the DBA requests the dropping of a column that 
is referenced by a domain-based index, the DBMS automatically removes 
references to this column from the pertinent index. 

It is worth noting that domain-based indexes can do more than improve 
the performance of certain kinds of DBMS in the execution of joins and 
other value-comparing operations. Also, when applied to primary domains 
(domains from which primary keys draw their values), they can improve the 
performance of tests of referential integrity. 

One extreme case may be interesting, although I am not advocating it 
as a preferred approach: the case in which the entire collection of values in 
the database is stored in domain-based indexes only. Of course, in this case 
such indexes cannot be dropped without losing information from the database. 

3.3 • R M / V 2  F e a t u r e s  i n  t h e  E x t e n d e d  D a t a  T y p e  C l a s s  

3 .3 .1  G e n e r a l  F e a t u r e s  

R T - 2  E x t e n d e d  D a t a  T y p e s  B u i l t  

i n t o  t h e  S y s t e m  

The DBMS supports calendar dates, clock times, and decimal cur- 
rency as extended data types, including the various kinds of dates 
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and time units in common use, the computation of date intervals 
and time intervals, and the use of partial as well as full dates (see 
Features RT-3-RT-9, following). The DBMS must have access to 
the date of the current day and the time of day at all times. 

A justification for this feature is that very few institutions, whether 
commercial, industrial, or governmental, can manage themselves without 
these types of data. Incidentally, each built-in extended data type must have 
a name that is usable in the catalog for appending integrity constraints of 
type D to the data type. 

R T - 3  U s e r - d e f i n e d  E x t e n d e d  D a t a  T y p e s  

The DBMS permits suitably authorized users to define extended 
data types other than those for which it provides built-in support in 
accordance with Feature RT-2. These data types can be used to 
enrich the retrieval-targeting and retrieval-conditioning capabilities 
of the principal relational language (e.g., with respect to text ma- 
nipulation and computer-aided development/computer-assisted 
manufacturing). 

3.3.2 Ca lendar  D a t e s  a n d  Clock  T i m e s  

As described in Features RT-4-7, the treatment of dates and clock times 
(separately and in combination) in the relational model is intended to be 
flexible enough to be suitable for managing databases of any of the following 
types, among others: 

• genealogical types at the headquarters of the Mormon church in Salt 
Lake City, Utah; 

• air-traffic control at major air-traffic-control centers of the Federal 
Aviation Administration; 

commercial databases used by institutions operating in a variety of 
different time zones (possibly many time zones). 

R T - 4  C a l e n d a r  D a t e s  

From the user's standpoint, dates appear to be treated by the DBMS 
as if they were atomic values. However, the DBMS ,s/apports func- 
tions that are capable of treating as separate components the year, 
month, and day of the month. 
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4.1. 

4.2. 

4.3. 

4.4. 

4.5. 

4.6. 

The services provided by Feature RT-4 include the 14 that follow: 

Independence of date and time from particular time zones in which 
users are located, by use of Greenwich dates and Greenwich mean 
time. 

The function called NOW yields for any site the current date and 
time that are in effect in the time zone of the site. 

Extraction of any one or any pair of the three components, a form 
of truncation. 

Extraction with rounding of either year alone or year followed by 
month. 

Conversion of the combination year, month, day of the month to the 
year followed by day of the year, as well as conversion in the opposite 
direction. 

Computation of the difference between two dates of similar or distinct 
external types, where each argument is expressed as 
a. years only, or 
b. years and months, or 
c. years, months, and days of the month, or 
d. years, and days of the year. 

These four options must be available to users, and the result must be of  
the same external type as the argument that is coarser. 

4.7. 

4.8. 

4.9. 

4.10. 

4.11. 

4.12. 

4.13. 

4.14. 

Conversion of date intervals into years only or months only or days 
only, using truncation or rounding as specified, if the conversion is 
from fine units to coarser units. 

Arithmetic on dates, including computation of a date from a given 
date plus or minus a date interval, without the adoption of dates and 
date intervals as distinct data types. 

Pairwise comparison of dates, including testing of pairs of dates to 
see which is the more recent and which is the less recent. 

Finding the most recent date of a collection. 

Finding the least recent date of a collection. 

All varieties of joins based on comparing dates. 

The ability to report dates in at least one of the following formats: 
a. European format: D,M,Y; 
b. North American format" M,D,Y; 
c. computer format: Y,M,D; 
d. in the Indian calendar with lunar months. 

Two types of date-conversion functions" 
a. DATE__IN for transforming dates from external representation 

of dates to the internal representation; 
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b. DATEmOUT for transforming dates in the reverse direction, 
with the DBA having the option of putting into effect functions 
defined and specified by the DBA either for all users of a given 
DBMS or for specified classes of users (instead of or in addition 
to those supplied by the DBMS vendor). 

This option is needed because users with different responsibilities and 
those located in different countries (even within a single country) may 
employdifferent kinds of dates externally with respect to the DBMS. 
Table 3.2 shows an example of two distinct types of conversions that 
may be needed in countries that use the Gregorian calendar. 

Of course, the DBMS must know how many days there are in each of 
the calendar months, and which years are leap years. The DBMS should 
also have a standard internal representation of dates oriented toward arith- 
metic on dates. The preferred representation is a date origin established by 
the DBA (such as the first day of the year 1900), coupled with the number 
of days following that day. This representation is compatible with the han- 
dling of arithmetic operations upon dates (while abiding by all the usual 
laws of arithmetic) and of comparisons between pairs of dates (such as LESS 
THAN). Such a standard would ease the problem of communication between 
heterogeneous DBMS products. Finally, the DBMS must know the date Of 
the current day. 

Note that the DBA may impose bounds, both lower and upper, on 
acceptable values of dates using type D and type C integrity constraints. 
Dates occur in the numerous examples included in this book. The standard 
representation adopted is the computer format Y,M,D (year, month, day) 
cited earlier in the discussion of Feature RT-4.13. 

R T - $  Clock Times 

From the user's standpoint, clock times appear to be treated by the 
DBMS as if they were atomic values. The DBMS however, supports 

Table 3.2 

DOWN 

UP 

E x a m p l e s  o f  D a t e  C o n v e r s i o n s  

Type of Date 

Internal date 
Closest 
earlier date 
Closest later 
date 

Two examples 
Any Year Non-Leap Year 

September 31 February 29 
September 30 February 28 

October 1 March 1 
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functions that are capable of treating as separate components the 
hours, minutes of the hour, and seconds of the minute. The services 
provided include counterparts to the first 12 of the 14 services listed 
in the discussion of RT-4. 

Whenever it is necessary to store fractions of a second (e.g., milliseconds 
or microseconds) in one or more columns of the database, a user-defined 
extended data type should be established for each distinct and pertinent unit 
of time. 

R T - 6  C o u p l i n g  o f  D a t e s  w i t h  T i m e s  

The DBMS supports a composite data type consisting of the data 
type DATE coupled with the data type TIME, allowing the functions 
applicable to dates alone or times alone to be applied to combina- 
tions in which DATE plays the role of the high-order part and TIME 
the low-order part. 

R T - 7  T i m e - z o n e  C o n v e r s i o n  

The DBMS supports (1) the conversion of every date-time pair from 
any specified time zone to Greenwich date and Greenwich mean 
time, and (2) the inverse conversion of Greenwich date-time pairs 
back into a specified time zone. 

3.3.3 E x t e n d e d  D a t a  T y p e s  for  C u r r e n c y  

R T - 8  N o n - n e g a t i v e  D e c i m a l  C u r r e n c y  

The DBMS supports non-negative decimal currency as a built-in 
extended data type, but does not necessarily support automatic 
conversion between currencies of different countries. The basic data 
type is non-negative integers. 

This extended data type permits the DBMS to distinguish those non- 
negative integers representing currency from those that represent anything 
else (e.g., numbers of people). The basic data type represents the monetary 
amount expressed in terms of the smallest monetary unit in the currency 
(cents in U.S. currency, new pence in British sterling). 
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Monetary amounts can be expressed in larger units in selected columns. 
For example, there may be a need to express such amounts in units of one 
thousand dollars or one million dollars. If the DBMS does not support 
conversion functions to convert a monetary amount expressed in small units 
into much larger units (including either rounding up or truncation according 
to the user's request), a user-defined extended data type will be necessary 
for each column that employs units different from the smallest. 

If an attempt is made to introduce a negative number into any column 
drawing its values from the non-negative currency domain, the DBMS rejects 
the request with an explanatory error message. 

R T - 9  F r e e  D e c i m a l  C u r r e n c y  

The DBMS supports decimal currency (in which values may be 
negative, zero, or positive) as an extended data type. The basic data 
type is integer. 

The DBMS does not necessarily support automatic conversion between 
currencies of different countries. This requires user-defined functions, to- 
gether with a relation of degree of at least three, containing the current 
conversion rates. 

With some databases, the DBA may choose to use just one of the two 
built-in extended data types for currency, namely the free version, because 
of the need to compare currency values involving pairs of currency columns, 
for which one column is not permitted to have negative values and the other 
can accept both negative and positive values. If such comparisons are routine, 
the DBA may with good reason decide that the pairs of columns involved 
should be declared to have a common domain. Whenever the DBA makes 
this choice, the prohibition of negative values in certain currency columns 
be expressed as an extra constraint of type C for those columns only (not 
for the domain). 

Two additional extended data types (Features RF-9 and RF-10) built 
into the DBMS are described in this chapter and in Chapter 19. These types 
pertain to the names of functions and the names of arguments of functions. 
They make the relational model easier to interface with activities that really 
do not belong in the model. Their definitions are given here for ease of 
reference, but are expressed differently. 

R F - 9  D o m a i n s  a n d  C o l u m n s  C o n t a i n i n g  N a m e s  

o f  F u n c t i o n s  

The DBMS supports names of functions as an extended data type. 
The DBMS can use any one of these names to (1) retrieve the 
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corresponding code for the function, (2) formulate a call for this 
function as a character string, and (3) execute the string as an 
invocation of the function. 

Note that, prior to execution, the names of appropriate arguments must be 
plugged into the character string that represents the invocation. 

RF-IO D o m a i n s  a n d  C o l u m n s  C o n t a i n i n g  N a m e s  

of  A r g u m e n t s  

The DBMS supports names of arguments of functions as an extended 
data type. These arguments can be variables used in a host-language 
program. The names are character strings that can be incorporated 
with the name of a function to formulate a call for this function to 
be applied to the pertinent arguments. The names can also be 
incorporated in a source program expressed in RL, in the HL, or in 
both. 

3 .4  a T h e  F I N D  C o m m a n d s  

In the next two chapters the basic operators and the advanced operators of 
RM/V2 are described. Each of these operators transforms either one or two 
relations into a relation. None of them deals with the entire database, which 
may contain any number of relations. 

The FIND commands presented here are different in type, because" 

1. each has an operand that consists of all of the columns in the database 
that draw their values from a specified domain; and 

2. although the result is a relation, at least two of the columns are concerned 
with database descriptive values. 

The FIND commands are also intended for the DBA and his or her staff. 
That is why as features of RM/V2 they are labelled RE-1 and RE-2 (see 
Chapter 7). 

In the relational model what does it mean to find something? Disk 
addresses and memory addresses are concepts that do not belong to the 
model. However, each occurrence of every atomic value in a relational 
database has a uniquely identified "location." The identification of this 
location is the combination of a relation name, a primary key value, and a 
column name. The first two of these identify a row uniquely with respect to 
the entire database, while the third identifies a component of that row. Now 
it is possible to introduce the FIND commands one by one. 
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Normally the FIND commands are limited to finding character strings, 
because finding numeric values or the truth values of logic is not usually an 
interesting thing to do. 

3.4.1 T h e  F A O ~ A V  C o m m a n d  

RE-I  T h e  F A O ~ A V  C o m m a n d  

This command is intended to find all occurrences of all active values 
drawn from a specified domain. Note that for any domain (with the 
possible exception of those domains that have very few legal values) 
it is highly unlikely that all of its values are active (i.e., exist in the 
database) at any one time. 

Suppose the DBA believes that certain city names in the database are 
incorrectly spelled, and he wants to check all of them either by reading a 
list of all of them or by means of a spelling checker program along with a 
dictionary of city names. Then, the following query would be appropriate: 

Example: find all occurrences of all city names that exist anywhere in 
the database. 

If the domain of city names happens to be called CITY, and if the result- 
ing relation is to be called CITY__DOM, this query could be expressed as: 
C I T Y _ _ D O M ( - F A O ~ A V  domain CITY. 

The result is a relation CIT~__DOM (RELNAME COLNAME PK 
VALUE) where the RELNAME and COLNAME columns are always sim- 
ple columns, (degree one) the VALUE column is either simple or composite 
depending on the example, and the PK column is usually a composite column 
of degree n (consisting of n simple columns), where n is adequate to hold 
values for the primary key of highest degree in the entire database. Note 
that, whenever the value of a primary key of degree p is inserted in the 
result and p < n, the excess components in that row (there are n-p of them) 
are marked as inapplicable (see chapter 8). 

To find all these city names the DBMS takes the first step of searching 
the catalog to find a column in some base relation that draws its values from 
the domain CITY. Suppose it finds that column C1 of relation R1 is such a 
column, and that R1 has N1 rows. It then copies the value part of the 
primary key column of R1 (possibly composite)along with the value part 
of column C1 into the relation CIT~__DOM being developed. To this partial 
relation it appends a pair of columns containing the name of the relation 
R1 and the name of the column C1 repeated N1 times. It names these two 
columns RELNAME AND COLNAME. 

The DBMS then takes the second step searching the catalog again and 
finds another column C2 of a relation R2 that draws its values from the 
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domain CITY. If R1 happens to have two such columns, then R1 and R2 
are the same relation. However, the pair R1 and C1 cannot be identical to 
the pair R2 and C2. It copies the value part of the primary key column of 
R2 (possibly composite) along with the value part of column C2. 

This process continues step by step until the last column in the database 
based on the CITY domain has been treated. Now a spelling checker 
program along with a dictionary of city names can be used as a utility to 
check the spelling of each and every occurrence of the city names as listed 
in a column of the relation C I T Y ~ D O M .  

This FIND command (FAO__AV) can be applied not only to a simple 
domain, but also to a composite domain: for example, the domain CITY- 
STATE. Then the VALUE column is also composite (in this case, degree 
2), since it has to hold pairs of simple values, where each pair consists of a 
city name together with a state name. 

3.4.2 T h e  F A O ~ L I S T  C o m m a n d  

R E - 2  T h e  F A O ~ L I S T  C o m m a n d  

This command is intended to find all occurrences in the database of 
each of the currently active values in a given list of distinct values, 
all of which are drawn from one domain, and that domain is specified 
in the command. 

Suppose the DBA wishes to inquire whether any of ten city names occur 
in the database, and if so where they occur. 

Example" find all occurrences in the database of each of the eight city 
names in a given list L drawn from the domain CITY (where L is a 
unary relation). 

Suppose that the resulting relation is to be called OCC. Then, this command 
could be expressed as: 

OCC ~ FAO___LIST L domain CITY. 

The result is a relation OCC (RELNAME COLNAME PK VALUE),  where 
PK is usually a composite column consisting of n simple columns and n is 
adequate for the primary key of highest degree in the entire database. Note 
that, whenever the value of a primary key of degree p is inserted in the 
result and p < n, the excess components in that row (there are n-p of them) 
are marked as inapplicable (see chapter 8). 

Incidentally, when the FAO__LIST command is executed, it is possible 
that the resulting relation OCC is entirely empty. This means that each and 
every one of the eight city names does not occur at all in the database. Of 
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course, the list L could have contained any strictly positive number of city 
names. 

Just like the FIND command introduced in section 3.4.1, this FIND 
command (FAO___LIST) can be applied not only to a simple domain, but 
also to a composite domain: for example, the CITY-STATE domain. Then 
the VALUE column is also composite (in this case, degree 2), since it has 
to hold pairs of simple values, where each pair consists of a city name 
together with a state name. 

Another feature of this FIND command is that a qualifier called 
SUBSTRING may be attached to it, and this indicates that the list of values 
is actually a list of substrings that the DBMS must search for in all columns 
of the database that draw their values• from the specified doma!n. Whenever 
a value is found in such a column that has as a substring one of the strings 
in the given list, then that value and its location in the database are included 
as a row in the resulting relation. 

In both types of FIND command, if a domain is specified that the DBMS 
discovers does not exist in the catalog, it turns on the DOMAIN NOT 
DECLARED indicator (see chapter 11), and the relation that is generated 
is empty. 

Frequently, people get confused about the meaning of the following two 
questions, although they are quite different. The first question is Q I" "Is v 
a legitimate value for currency in this database?" The second question is 
Q2" "Is v in the database at this time as a currency value?" 

To check Q1 the user simply examines the declaration pertaining to 
currency for this database, and of course this declaration is stored in the 
catalog. Then he or she examines the value v to determine if its data type 
is within the scope of the currency data type. I f  and only if it is, v is a 
legitimate value for currency in the database. 

Before checking Q2 let us assume that Q1 has been answered affirma- 
tively. Then one can (1) establish v as a single member of a unary relation 
L; and (2) issue the request F A O ~ L I S T  L CURRENCY. This will find all 
occurrences of v in the entire database as a value drawn from the currency 
domain. If the result is an empty relation, the proper conclusion is that v is 
admissible as a currency value, but v does not occur in this role in this 
database at this time. 

Of course, if Q1 is answered negatively, then the proper answer for Q2 
is that v does not occur in the database as a value of currency, but it is also 
inadmissible in this role. 

Exercises  

3.1 Give at least eight reasons why domains should be fully supported in 
a DBMS. List at least 10 features of RM/V2, other than Feature 
RS-5, that a DBMS will be unable to support if it does not support 
domains as extended data types. 
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3.2 

3.3 

3.4 

3.5 

3.6 

Your DBA makes the whole of the catalog available to you for reading. 
How would you determine where there exist parts of the database that 
are not inter-relatable? 

A critic has stated that basic data types and extended data types are 
really built-in and user-defined, respectively. Supply the pertinent def- 
initions and defend whatever position you take on this subject. 

According to Feature RT-1, which extended data types are required 
to be built into the DBMS? 

List 10 of the 14 requirements for full support of calendar dates. 

Assume that you have currency values expressed as follows: 

w in U.S. dollars in column C of R-table S, 

m in British sterling in column D of R-table T. 

By introducing a currency-conversion relation, develop a method of 
supporting automatic conversion to pounds sterling whenever a join 
between S and T is executed using columns C and D as comparand 
columns. 
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The Basic Operators 

The basic operators are intended to enable any user to retrieve information 
from all parts of the database in a very flexible and powerful way, but 
without requiring him or her to be familiar with programming details. First- 
order predicate logic is a standard against which such power can be meas- 
ured. (See the listing under "Texts Dealing with Predicate Logic" in the 
reference section.) It has been proved [Codd 1971d, Klug 1982] that, col- 
lectively, these operators have the same expressive power as first-order 
predicate logic. 

This logic is the standard adopted by the relational model. The operators 
are not intended to be directly incorporated into a relational language. 
Instead, a language based more directly on first-order predicate logic, such 
as  A L P H A  [Codd 1971a], is more capable of supporting better performance, 
because in use its statements are more likely to be optimizable to a greater 
degree. 

The operators of the relational model transform either a single relation 
or a pair of relations into a result that is a relation. The operators are 
designed to be able to express a class of queries that, if expressed in terms 
of a logic, would require the power of at least four-valued, first-order 
predicate logic. Such a logic is more powerful than any supported by pre- 
relational database management systems. 

The main reason for insisting on operators that yield relations from 
relations is that this form of operational closure permits an interrogator to 
conceive his or her ongoing sequence of queries based on the information 
gleaned to date. In this "detective" mode, it is essential that any result 
produced so far in the activities be capable of being used as an operand in 
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later activities. This operational closure is similar to the operational closure 
in arithmetic: every arithmetic operator acting upon numbers yields numbers 
(except for the case of dividing by zero). It would be next to impossible to 
handle accounting were it not for the operational closure in integer arith- 
metic. In a few decades, I predict, we shall comment similarly on the virtual 
impossibility of managing databases if the operational closure property in 
relational DBMS were abandoned. 

In this chapter we adopt the algebraic approach to explaining how a 
relational language works, for two reasons: 

, 

2. 

upon first encounter, that approach appears easier to understand; 

it is much easier to explain integrity constraints, the authorization mech- 
anism, and the view-updatability algorithms described in Chapter 17 
using the relational algebra than in terms of predicate logic. 

It should not be assumed, however, that an algebraic approach is to be 
preferred over a logic-based approach when it comes to designing a relational 
language, even though both approaches are at the same level of abstraction. 
Quite the contraryma logic-based approach encourages users who have 
complicated queries to express each query in a single command, whereas 
an al~;ebraic approach seems to encourage users to split their queries into 
several commands per query. The optimizers of existing relational DBMS 
products are unable to optimize more than one command at a time. There- 
fore, they accomplish more if more activity is packed into each single 
command. The net result is that improved performance can be obtained 
with a logic-based approach over that achievable with an algebraic approach. 

In this connection, it is important to remember that very few optimizers 
in the compilers for programming languages, and even fewer optimizers in 
relational DBMS, attempt to optimize across more than a single command. 
Otherwise, the optimizers would have to engage in flow tracingma difficult 
problem at best, and often impossible because the flow may not be traceable 
at all when it is expressed in certain programming languages. 

Some consider it incongruous that the algebra is used as an explicative 
tool, when logic is preferred as the basis for a relational language. The 
example at the end of Section 4.2 illustrates the algebraic and logic-based 
alternatives. It may also show the reader why it is easier to introduce the 
query and manipulative capabilities step by step using the algebra. 

Every relational operator in the relational model is designed to work 
with operands that are relations free of duplicate rows, and to generate as 
a result a relation that is also free of duplicate rows. 

The feature of permitting duplicate rows in any relation, base or derived, 
was added to SOL with the idea of making that language more powerful in 
some sense. In fact, this feature made SOL less powerful, because duplicate 
rows made use of the language more error-prone and damaged the inter- 
changeability of ordering of the relational operators (see Chapter 23 for 
more detail). I call this mistaken be l ie f~tha t  one more feature cannot 



4.1 Techniques for Explaining the Operators • 63 

possibly detract from a system's usability and power~the  "one-more-feature 
trap." 

Section 4.1 deals with the techniques used in explaining the operators. 
Section 4.2 describes the basic operators, which may help the reader to 
understand the power of relational languages. Section 4.3 discusses the 
manipulative operators such as relational assignment, insert, update, and 
delete. Chapter 5 deals with certain advanced operators, including outer equi- 
joins, outer unions, T-joins, user defined joins, and recursive joins. 

The explanation of each operator includes a rough idea of what it does 
and how it is intended to be used. Also included are a precise definition, a 
formal algebraic notation, and some practical examples. 

The notations used in this chapter are not intended to be taken as a 
serious proposal for a data sublanguage, but as illustrative and primarily for 
conceptual purposes. The operators are, however, intended to be interpreted 
as one definition of the power a relational language should possess. In 
Chapter 8, the way these operators deal with operands, from which certain 
kinds of information are missing, is discussed. 

4.1 m T e c h n i q u e s  f o r  E x p l a i n i n g  t h e  O p e r a t o r s  

Consider a relation S of degree m that has the following attributes: 

Attribute A1 drawing its values from domain D1. 
Attribute A2 drawing its values from domain D2. 

Attribute Am drawing its values from domain Din. 

The relation S is abbreviated 

S ( AI:D1 A2:D2 . . . Am:Dm), 

and often 

S ( A 1 A 2 . . .  Am) 

when the domains are listed separately. 

It must be remembered that the ordering 

A1, A 2 , . . .  Am 

is insignificant in practice even to the user (except in the few cases where 
the command being explained requires the column ordering to be made 
explicit). Normally, we shall make use of column ordering for explanatory 
purposes only, just as is done in mathematics. There is no implication that 
components of tuples (i.e, rows) must be stored in any of the sequences 
used in explaining how the operators transform the operands into results. 
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In explaining the basic relational operators, we shall make use of the 
relation S of degree m just cited, and also a relation T of degree n, denoted 

T ( Bi:E1 B2:E2 . . . Bn:En). 

We shall consider the example of Cartesian product to illustrate the 
explanatory techniques. Incidentally, the major use of this operator is itself 
explanatory. Definitions of some of the other operators (such as relational 
division) make conceptual use of it. The designer of a DBMS product is 
advised to implement Cartesian product as a special case of the theta-join 
discussed later because it is rarely needed in practice. 

To introduce the relational version of Cartesian product gradually, let 
us consider a simple example first. Suppose that a database contains infor- 
mation about suppliers and shipments received from these suppliers. The 
supplier relation S contains the serial number S# of all the suppliers in the 
database, their names SNAME, and other immediate properties (marked 
" . . . " ) .  The shipment relation SP contains the serial number S# of the 
supplier making each shipment, the serial number P# of the part shipped, 
the date S H I P _ D A T E  the shipment was received, and other immediate 
properties of the shipment (marked " . . . " ) .  

To keep the example simple, suppose that relation SP" is SP restricted 
to those shipments with SHIP__DATE between 89-01-01 and 89-03-30 in- 
clusive. Relation S has three rows; relation SP", four rows" 

S ( S #  S N A M E  . . . )  SP" ( S #  P #  S H I P _ D A T E  . . .  ) 

s l  J o n e s  . . . s l  p l  8 9 - 0 3 - 3 1  . . . 

s 2  S m i t h  . . . s l  p 2  8 9 - 0 3 - 2 0  . . . 

s 3  C l a r k  . . . s 2  p 7  8 9 - 0 2 - 1 9  . . . 

s 3  p 2  8 9 - 0 1 - 1 5  . . . 

In the relational model, the Cartesian product C of relation S with 
relation SP" is as shown in the following 12-row relational table" 

C (. . . S N A M E  S #  S #  P #  S H I P _ D A T E  . . .) 

• . . J o n e s  s l  s l  p l  8 9 - 0 3 - 3 1  . . . 

• . . J o n e s  s l  s l  p 2  8 9 - 0 3 - 2 0  . . . 

• . . J o n e s  s l  s 2  p 7  8 9 - 0 2 - 1 9  . . . 

• . . J o n e s  s l  s 3  p 2  8 9 - 0 1 - 1 5  . . . 

• . . S m i t h  s 2  s l  p l  8 9 - 0 3 - 3 1  . . . 

• . . S m i t h  s 2  s l  p 2  8 9 - 0 3 - 2 0  . . . .  

• . . S m i t h  s 2  s 2  p 7  8 9 - 0 2 - 1 9  . . . 

• . . S m i t h  s 2  s 3  p 2  8 9 - 0 1 - 1 5  . . . 

• . . C l a r k  s 3  s l  p l  8 9 - 0 3 - 3 1  . . . 

• . . C l a r k  s 3  s l  p 2  8 9 - 0 3 - 2 0  . . . 

• . . C l a r k  s 3  s 2  p 7  8 9 - 0 2 - 1 9  . . . 

• . . C l a r k  s 3  s 3  p 2  8 9 - 0 1 - 1 5  . . . 



4.1 Techniques for Explaining the Operators • 65 

The ordering of columns shown is there merely because the result must be 
displayed on paper. This ordering should be ignored. Note how each row 
of S is combined with each and every row of SP". The same result is generated 
if the relational version of the Cartesian product of SP" with S is requested. 

Clearly, the Cartesian product has two operands, each one a relation. 
Consider the Cartesian product of S and T, denoted S x T. To form the 
Cartesian product U = S x T, concatenate each and every tuple of S with 
each and every tuple of T. In textbooks on mathematics the usual explanation 
is that U is the set of all tuples of the form 

< < a l , a 2 , . . . , a m  > , <  b l , b 2 , . . . , b n  > > ,  

where < a l , a 2 , . . . , a m  > is a tuple of S and < b l , b 2 , . . . , b n  > is a tuple 
of T. In this case, U would be a binary relation whose pairs have an 
m-tuple as the first component,  and an n-tuple as the second component. 
For purposes of database management,  it is more useful to adopt a slightly 
different definition, and to say that U is the set of all tuples of the form 

< a l , a 2 , . . . , a m , b l , b 2  . . . .  ,bn >. 

In this case, U is a relation of degree m + n. Actually, because positional 
concepts are de,emphasized in the relational model, it is preferable to define 
U as a relation of degree m + n that has the form 

U ( Ai :D1 A2:D2 . . . Am:Din BI:E1 B2:E2 . . . Bn:En ), 

where column names and domain names are used rather than the positioning 
of typical elements of these columns in tuples. Note that, with this de- 
emphasis on positioning concepts, a surprising consequence is that 

S x T = T x S ,  

which holds true for all relations S and T. 
It is necessary, however, to face up to the problem that, for some i and 

some j, it may happen that the pair of names in the expression Ai:Di may 
be the same as the pair of names in the expression Bj :E j - - the  A and D 
names come from S, whereas the B and E names come from T. According 
to Feature RN-3 of the relational model (see Chapter 6), it is required that, 
given any relation, every one of its columns must have a distinct name. 

Assume that S and T do not refer to one and the same relation. Then, 
all we need do to make sure the columns of the result are distinctly named 
is to attach the prefix S to Ai (where S is the name of the relation from 
which Ai came), and attach the prefix T to Bj (where T is the name of the 
relation from which Bj came). Prefixing in these cases means adopting a 
syntax such as S.Ai and T.Bj. 

This technique will not work if S = T. In this case, if m is the degree 
of S, there will be m pairs of columns having the property that each member 
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of the pair has the same name, as well as precisely the same database values. 
To make the column names distinct for each of the members of these pairs 
of columns, eachcolumn name is qualified by the name of the source relation 
(namely S in each case), followed by a punctuation mark (such as a period), 
followed by a citation number, followed by a second punctuation mark (this 
can be a period also). The citation number is either 1 or 2, depending on 
whether the first-cited or the second-cited occurrence of relation S is the 
source of the pertinent column in the result. In Chapter 6 we discuss column 
naming and column ordering in more detail. 

R B - 1  D e - e m p h a s i s  o f  C a r t e s i a n  P r o d u c t  as  

a n  O p e r a t o r  

A relational DBMS must not support Cartesian product as an ex- 
plicitly separate operator. A relational command, however, may 
have an extreme case that is interpreted by the DBMS as a request 
for a Cartesian product. 

Note that the Cartesian product U contains no more information than 
its components S and T contain together. However, U consumes much more 
memory or disk space and channel time than the two relations S and T 
consume together. These are two good reasons why, in any implementation 
of the relational model, Cartesian product should be de-emphasized, and 
used primarily as a tool for explanatory or conceptual purposes. The main 
purpose in discussing this operator in some detail at this point is to show 
how the relational operators will normally be treated. 

One may ask, "Why is it necessary to discuss column naming and column 
ordering at all?" The simple answer is that every result of executing a 
relational operation can be either an intermediate or a final result of a 
relational command. In either case, a subsequent relational operation may 
employ this result as an operand, and, as we shall see, the specification of 
some kinds of relational operation involves employing the names of columns 
of one or other of the operands and sometimes the ordering of these columns 
also. 

Of course, we are not referring to "stored ordering" when we speak of 
column ordering. We are referring either to the citation ordering (the or- 
dering in which columns are cited in some relational command) or to an 
ordering derived from such citation. 

4.2 • T h e  B a s i c  O p e r a t o r s  

The basic operators of RM/V2 include projection, theta'selecti°n' theta-join, 
natural join, relational division, relational union, relational difference, and 
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relational intersection. Projection and theta-selection act upon one operand 
only, while each of the remaining operators acts upon two operands, In 
every case, operands and results are true relations with no duplicate rows. 

Figure 4.1 is a simple guide to the Basic operators of the relational 
model. All of the operators except Cartesian product are intended to be 
implemented in a relational DBMS. Cartesian product, although a good 
conceptual tool, wastes storage space and channel time if implemented in 
the DBMS and used by application programmers or invoked interactively 
from terminals. 

R B - 2  T h e  P r o j e c t  O p e r a t o r  

The project operator employs a single R-table as its operand. The 
operator generates an intermediate result in which the columns listed 
by name in the command are saved, and the columns omitted from 
the command are ignored. From this R-table it then generates the 
final result by removing all occurrences except one of each row that 
occurs more than once. 

Suppose that the project operator is applied to the following R-table 
EMP of degree five. Suppose that the columns are named as follows: 

EMP# (primary key), ENAME, BIRTH__DATE, SALARY, and 
H___CITY. 

EMP ( EMP# ENAME BIRTH_DATE SALARY H_CITY ) 

E107 R o o k  23-08-19 10,000 Wimborne 
E912 Knight 38-11-05 12,000 Poole 
E239 Knight 38-11-05 12,000 Poole 
E575 P a w n  31-04-22 11,000 Poole 

Note that there are two employees named "Knight," and that these two 
Knights have the same birthdate, earn the same salary, and live in the same 
city. The only piece of information that tells us that these are distinct 
employees is the primary key EMP# (E912 for one person, E239 for the 
other). If the primary-key values were not in the database, there would be 
clear ambiguity in the data: specifically, do the two rows represent two 
distinct persons, or are the duplicate rows there by accident? This is one of 
the many reasons why the primary-key concept should be explicitly supported 
in every relational database management system. 

The intermediate result that is generated when applying project onto 
ENAME, BIRTH__DATE, SALARY, and H-CITY is a table (but not an 
R-table) obtained by selecting only those columns cited in the project 
command: 
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X (ENAME BIRTH_DATE SALARY H_CITY ) 

Rook 23-08-19 10,000 Wimborne 
Knight 38-11-05 12,000 Poole 
Knight 38-11-05 12,000 Poole 
Pawn 31-04-22 11,000 Poole 

The final result, in which duplicate rows are removed, is the following 

Y (ENAME BIRTH_DATE SALARY H CITY ) 

R-table' 

Rook 23-08-19 10,000 Wi m borne 
Knight 38-11-05 12,000 Poole 
Pawn 31-04-22 11,000 Poole 

Notice how, in generating the R-table Y from the table X, the duplicate 
row for "Knight" was removed. It has been asserted that duplicate rows 
should not be removed, and in fact the language SQL fails to remove duplicate 
rows unless the user adds to the command the qualifier DISTINCT. When 
the user fails to add this SQL qualifier, the result is then no longer a true 
relation in the mathematical sense. If such tables are permitted, the con- 
sequences are devastating. The power of any relational language is severely 
reduced because of the reduced interchangeability in the ordering of rela- 
tional operators (see Chapter 23). The form of projection in which duplicate 
rows are not removed from the result is called a corrupted version of the 
project operator. 

If the user must retain the two occurrences of rows containing the name 
"Knight," he or she should retain the primary key EMP#  as well by 
projecting onto EMP#,  ENAME, together with zero or more of the re- 
maining columns of EMP. In Chapter 17 on view updatability, much em- 
phasis is placed on retaining the primary key in defining a virtual relation 
(usually called a view). When this is done, the user normally gains the 
advantage of being able to perform inserts, updates, and deletes on this view. 

A second example shows that removing duplicates can be precisely what 
the user needs. Suppose we wish to find the cities in which the employees 
live. By taking the projection of EMP onto H_.CITY, we obtain 

Z (H__CITY ) 

Wimborne 
Poole 

which is exactly what was requested. If 100 employees happen to live in 
Poole, why obtain 100 copies of the name Poole? If the number living in 
each city is needed, the DBMS should be capable of counting these numbers 
(as is RM/V2) and capable of providing the information as output in the 
form of a second column (this one computed). 

Using the notation I introduced in early papers on the relational model 
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[Codd 1970, 1971a-d], the three applications of the project operator just 
introduced are represented as follows" 

Example 1" 

Example 2: 

Example 3: 

Z ~-- EMP [ ENAME, B I R T H ~ D A T E ,  SALARY, 
H__CITY] 

Z ~- E M P [  EMP#,  SALARY, H__CITY ] 

Z ~- E M P [  H _ C I T Y  ] 

The naming and virtual ordering of columns pertinent to the result of a 
project operation are discussed in Chapter 6. 

The version of the project operator just described is useful whenever 
few columns are to be saved (and possibly many dropped). A second version 
is useful whenever few columns are to be dropped (and possibly many 
saved). In this version the columns to be dropped are listed, instead of the 
columns to be saved. However, this version is less adaptable to changes in 
the source relation. For example, if a new column is added to the source 
relation, its name may have to be added to the list of columns to be dropped 
in the projection. 

R B - 3 - R B - 1 2  The Theta-Select  Operator 

The theta-select operator, originally called theta-restrict, employs a 
single R-table as its operand. In normal use the term theta-select is 
abbreviated to select, and this means that the equality comparator 
' = '  should be assumed unless there is an explicit alternative com- 
parator specified. It generates as a result an R-table that contains 
some of the same complete rows that the operand contains--those 
rows, in fact, that satisfy the condition expressed in the command. 
To distinguish theta-select from the select command of SOL, we shall 
sometimes refer explicitly to theta-select as the algebraic select, and 
refer explicitly to SQL'S select as the select of SQL. It is important to 
remember that the operand contains no duplicate rows, and that 
therefore neither does the result. 

The complete class of select operators is called theta-select, where theta 
stands for any of the 10 comparators listed on page 70. Features RB-3- 
RB-12 are the 10 types of theta-select operators corresponding respectively 
to the 10 comparators. An extension of the select operator (Feature RB-13) 
and an extension of the join operator (Feature RB-25) are also discussed. 
These extensions permit Boolean combinations of comparisons. 

Suppose that the select operator is applied to the same R-table as used 
in the explanation of project, and that the rows specified to be saved are 
those for which the SALARY has a specified value. In the three examples 
of this kind of query cited next, I again use the notation introduced in my 
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early papers on the relational model [Codd 1970, 1971a-d]. The result for 
each query is listed immediately after the query. 

Example 4: Z ~-- EMP [ SALARY = 12,000 ] 

Z ( EMP# NAME BIRTH_DATE SALARY H_CITY  ) 

E912 Knight 38-11-05 12,000 Poole 
E239 Knight 38-11-05 12,000 Poole 

Example 5: 

Z (EMP# 

Z ~ EMP [ SALARY = 11,000 ] 

NAME BIRTH_DATE SALARY H__CITY ) 

E575 Pawn 31-04-22 11,000 Poole 

Example 6: 

z (EMP# 

Z ~ EMP [ SALARY = 20,000 ] 

NAME BIRTH_DATE SALARY H_CITY ) 

Example 6 yields an R-table that happens to have no rows at all (since 
no employee earns this amount); the five columns have the same headings 
as the R-table EMP. An R-table of this kind is perfectly legitimate. It 
represents an empty relation of degree five with the same column headings 
as EMP. In each of the three examples (4, 5, and 6), the result is union- 
compatible with EMP (.see RB-26 for an explanation of union-compatibility). 

All of the select operators discussed so far involve the comparison of 
database values, on the one hand, with a constant, on the other hand; the 
comparator in each case has been equality. The theta-select operator can be 
used to compare a database value within a row of an R-table with another 
database value within the same row, and to execute this comparison for all 
rows of that R-table (see Example 8). 

Further, any of the following 10 comparators may be used: 

° 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

EQUALITY 

INEQUALITY 

LESS THAN 

LESS THAN OR EQUAL TO 

GREATER THAN 

GREATER THAN OR EQUAL TO 

GREATEST LESS THAN 

GREATEST LESS THAN OR EQUAL TO 

LEAST GREATER THAN 

LEAST GREATER THAN OR EQUAL TO 

In the following example of theta-select, theta is taken to be the LESS 
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THAN comparator (<): 

Example 7: Z , -  EMP [ SALARY < 12,000 ]. 

Z ( EMP# ENAME BIRTH~DATE SALARY H_CITY ) 

E912 R o o k  23-08-19 10,000 Wimborne 
E575 Pawn 31-04-22 11,000 Poole 

The relational model provides a very important safety feature, intro- 
duced at the beginning of Chapter 3 and repeated here for convenience: 

R T - I  Safety Feature when  Comparing 
Database Values 

When comparing a database value in one column with a database 
value in another, the DBMS checks that the two columns draw their 
values from a common domain, unless the domain check is overrid- 
den (see Feature RQ-9 in Chapter 10). When comparing (1) a 
computed value with a database value or (2) one computed value 
with another computed value, however, the DBMS merely checks 
that the basic data types are the same. 

Table 4.1 shows the columns of EMP and the domains from which the 
columns draw their values. Note that no two columns of EMP draw their 
values from a common domain. Therefore, let us expand the EMP relation 
by appending another column with the heading BONUS, and assume certain 
values for the bonus component. All of the BONUS values are drawn from 
the currency domain. The modified version of EMP follows: 

EMP" (EMP# ENAME BIRTH~DATE SALARY H~CITY BONUS) 

E107 R o o k  23-08-19 10,000 Wimborne 15,800 
E912 Knight 38-11-05 12,000 Poole 6,700 
E239 Knight 38-11-05 12,000 Poole 13,000 
E575 Pawn 31-04-22 11,000 Poole 3,100 

Table 4.1 C o l u m n s  o f  E M P  a n d  D o m a i n s  f r o m  w h i c h  V a l u e s  
are  D r a w n  

Column Domain 

EMP# Employee serial numbers 
ENAME Employee names 
BIRTH_._DATE Dates 
SALARY Currency 
H__CITY City names 
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Now consider Example 8: 

Z ~ EMP" [BONUS > SALARY]. 

This command yields the following R-table" 

Z ( EMP# ENAME BIRTH_DATE SALARY H_CITY BONUS) 

E107 R o o k  23-08-19 10,000 Wimborne 15,800 
E239 Knight 38-11-05 12,000 Poole 13,000 

The naming and virtual ordering of the columns in the result of a select 
operator are discussed in Chapter 6. 

RB-13  T h e  B o o l e a n  E x t e n s i o n  o f  T h e t a - S e l e c t  

Let R denote any relation whose simple or composite columns 
include A and B. Let @ denote one of the 10 comparators used in 
theta-seleet, and let x denote a host-language variable or constant. 
Suppose that R [ A @ x ] and R [ A @ B ] denote theta-select 
operations. Then A @ x and A @ B are called comparing terms, 
and each comparing term is truth-valued. 

The usual comparing terms in all 10 types of theta-select can be used in 
any Boolean combination within a single operator. Such an operator is called 
extended theta-select. A Boolean combination of the comparing terms, each 
of which is truth-valued, is any combination of these terms using the ele- 
mentary logical connectives NOT, OR, AND, and IMPLIES. 

Clearly, this operator is redundant from the user's viewpoint in the sense 
that a query involving extended theta-select can be re-expressed in terms of 
simple theta-selects, together with some combination of relational unions, 
differences, and intersections. However, it permits such queries to be ex- 
pressed more clearly and concisely. 

Consider a simple example of the practical use of this extended join. 
Suppose that a database includes a relation E describing employees, and 
that two of the immediate properties recorded are the gender (male M or 
female F) and present salary. The Boolean extension of theta-select can be 
used to place a request for the names of the employees who are female and 
earn more than $20,000: 

E [ (GENDER = F) A (SALARY > 20,000)]. 

One DBMS product on the market in the mid-1980s supported this single 
feature of the relational model and no others. The vendor falsely advertised 
that the product was a relational DBMS. 
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R B - 1 4 - R B - 2 3  The Theta-Join Operator 

The theta-join operator employs two R-tables as its operands. It 
generates as a result an R-table that contains rows of one operand 
(say S) concatenated with rows of the second operand (say T), but 
only where the specified condition is found to hold true. For brevity, 
this operator is often referred to as join. 

The condition expressed in the join operator involves comparing each 
value from a column of S with each value from a column of T. The columns 
to be compared are indicated explicitly in the join command; these columns 
are called the comparand columns. This condition can involve any of the 10 
comparators cited in the list presented on page 74 (after a description of 
the operator applied with equality as the comparator). 

Suppose that the join operator is applied to the following two relational 
tables: 

S (EMP# ENAME H_CITY ) T (WHSE# W__CITY ) 

E107 Rook Wimborne W17 Wareham 
E912 Knight Poole W34 Poole 
E239 Pawn Poole W92 Poole 

For this example, we shall assume that the only pair of columns having a 
common domain are S.H__CITY and T . W ~ C I T Y ;  each of these two col- 
umns draws its values from the CITY domain. Therefore, in this example, 
these are the only two columns that can be used as comparand columns in 
a join of these two relations. Normally, there are several pairs of potential 
comparand columns, not just one pair. 

The join operator based on equality that is now being discussed is called 
equi-join. An equi-join of S on H ~ C I T Y  with T on W ~ C I T Y  finds all of 
the employees and warehouses that are located in the same city. The formula 
for this join is 

U = S [  H _ C I T Y  = W _ C I T Y  ]T .  

The result obtained assuming the values cited earlier is as follows: 

(EMP# NAME H_CITY WHSE# W_CITY) 

E912 Knight Poole W34 Poole 
E912 Knight Poole W92 Poole 
E239 Pawn Poole W34 Poole 
E239 Pawn Poole W92 Poole 
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Some people find it easier to think of the equi-join of S on H__CITY 
with T on W ~ C I T Y  as the Cartesian product of S with T, followed by the 
selection of just those rows for which 

H___CITY = W ~ C I T Y .  

Naturally, if the goal is good performance, the designer of a DBMS should 
not implement equi-join in this way. 

Any of the following 10 comparators may be used in a join: 

1. EQUALITY 

2. INEQUALITY 

3. LESS THAN 

4. LESS THAN OR EQUAL TO 

5. GREATER THAN 

6. GREATER THAN OR EQUAL TO 

7. GREATEST LESS THAN 

8. GREATEST LESS THAN OR EQUAL TO 

9. LEAST GREATER THAN 

10. LEAST GREATER THAN OR EQUAL TO 

The complete class of joins is called theta-join, where theta stands for 
any of the 10 comparators just listed. As an example, consider 

U = P A R T [ O H _ _ Q  < SHIP Q ] S H I P .  

The result U is generated from the following operands" 

PART (P# PNAME OH__Q) SHIP (WHSE# 

N12 nut 1000 W34 
B39 bolt 1500 W92 

U ( P# PNAME OH_Q WHS# 

1200 
2000 

SHIP_Q) 

Just as mentioned in the discussion of the select operator, when com- 
paring a database value in one column with a database value in another, 
the DBMS checks that the two columns draw their values from a common 
domain, unless the domain check is overridden (see Feature RQ-9 in Chapter 
10 and Feature RJ-6 in Chapter 11). The practical reasons for this check 
and its override were discussed in Chapter 3 (see the fourth reason to 
support domains in a DBMS together with Feature RT-1). 

It is possible to conceive of each of the 10 theta-joins of S with T as a 
subset of the Cartesian product of S with T. However, as stated for equi- 

SHiP_Q) 

N 12 nut 1000 W34 1200 
N 12 nut 1000 W92 2000 
B39 bolt 1500 W92 2000 
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join, Cartesian product should not be used in the implementation of any 
one of the 10. The result of each of the 10 theta-joins has a degree equal to 
the sum of the degrees of the operands. 

The result of a join based on Comparators 3, 4, 5, or 6 in the preceding 
list is often quite large in terms of the number of rows. Not surprisingly, 
this number is often nearly as large as the number of rows in the Cartesian 
product. If, on the other hand, any one of Comparators 7, 8, 9, or 10 in 
the list is selected, the resulting relation is quite modest in size. That is one 
of the more important reasons why a user may choose one of these com- 
parators instead of Comparators 3, 4, 5, or 6. 

It is certainly possible to join a relation with itself, provided that it has 
two or more columns on a common domain. Let us modify the relation 
EMP by adding a column that identifies the immediate manager for each 
and every employee. 

EMP (EMP# ENAME BIRTH_DATE SALARY CITY MGR#) 

E107 Rook 23-08-19 10,000 Poole E321 
E912 Knight 38-11-05 12,000 Wareham E321 
E239 Knight 38-11-05 12,000 Wa reham E 107 
E575 Pawn 31-04-22 11,000 Poole E239 
E321 Queen 27-02-28 20,000 Wimborne m 

In this table, M G R #  is the employee serial number of the immediate 
manager of the person designated by the left-most component (EMP#).  The 
employee designated E321 appears to be "top dog," since the serial number 
of his or her immediate manager is unknown. 

Because the columns EMP# and M G R #  both draw their values from 
the common domain of employee serial numbers, it is clear that we may 
join EMP with itself, using the EMP# and M G R #  columns as comparands. 
The assignment could be 

Z ~ EMP [EMP# = MGR#]  EMP, 

but fewer columns are needed in the final result. Suppose that projection is 
applied to the result from the join, 

Z +- (EMP [EMP# = MGR#]  EMP)[EMP#, ENAME, CITY, 
M G R # ,  MGR__NAME], 

where MGR__NAME denotes the employee name ENAME of the manager. 
The result of this evaluation is as follows' 

Z ( EMP# NAME CITY MGR# MGR~NAME) 

E107 Rook Poole E321 Queen 
E912 Knight Wareham E321 Queen 
E239 Knight Wareham E107 Rook 
E575 Pawn Poole E239 Knight 
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The tuple < E321, Queen, Wimborne, m ,  __ > is omitted because it 
does not satisfy the equality condition. The query "Who earns a higher 
salary than his immediate manager?" can be answered by a join of EMP 
with itself, once again using EMP#  and M G R #  as comparand columns. 

Under certain quite broad conditions, the project, select, and join op- 
erators can be executed in any sequence and yield a result that is independent 
of the sequence chosen. This fact is important when the DBMS is attempting 
to generate the most efficient target code from a relational language acting 
as source code. This process is called optimization; the DBMS component 
involved is called the optimizer. This inter-changeability of ordering of the 
operators is damaged when duplicate rows are allowed. More is said about 
this point in Chapter 23 

The following observations are intended to complete the discussion of 
theta-joins. Users who are wedded to the approaches of the past often think 
that the only kind of join in the relational model is either the equi-join or 
the natural join (discussed later in this section), and that the only comparand 
columns allowed are primary keys or foreign keys. In other words, these 
users see joins as key-based equi-joins only. This tunnel vision may be due 
to the fact that DBMS products of the pre-relational variety tended to 
support pointers or links only where the relational model supports primary 
and foreign keys. 

Theta-joins are the algebraic counterparts of queries that use the exis- 
tential quantifier of predicate logic. A brief explanation of these quantifiers 
appears later in the explanation of relational division (Feature RB-29). 
Incidentally, the result of an equi-join can be empty, even if neither of its 
operands is empty. 

Note the following identities: 

R [ A  = B I S  = S [ B  = A I R  
R [ A <  B ] S  = S [ B >  A I R .  

Equi-join is commutative, whereas join on LESS THAN (<) is related simply 
to join on G R E A T E R  THAN (>),  and is not commutative. 

R B - 2 4  T h e  B o o l e a n  E x t e n s i o n  o f  T h e t a - J o i n  

Let R, S denote any relations whose simple or composite columns 
include R.B and S.C. Suppose that R.B and S.C draw their values 
from a common domain. Let @ denote one of the 10 comparators 
used in theta-join. Suppose that R [ B @ C ] S denotes a theta-join 
operation. Then B @ C is called a comparing term, and each 
comparing term is truth-valued. 
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The usual comparing terms in all 10 types of theta-join can be used in 
any Boolean combination within a single operator of the extended type. It 
is important to remember that each pair of comparand columns cited in the 
comparing terms must draw their values from a domain common to the pair. 
Such an operator is called extended theta-join. A Boolean combination of 
the comparing terms, each of which is truth-valued, is any combination of 
these terms using the elementary logical connectives NOT, OR, AND, and 
IMPLIES. 

Consider a simple example of the practical use of this extended join. 
Suppose that a database includes two relations T1 and T2, respectively 
describing the members of two teams of employees (each team is assigned 
to a different project). Suppose that the need arises to pair off individual 
members of Team 1 with individual members of Team 2 based on both of 
the following: 

• equality in jobcode (abbreviated J1, J2); 

• birthdate B1 of the Team 1 member being earlier than the birthdate B2 
of the Team 2 member. 

The Boolean extension of theta-join can be used to place a request for all 
the eligible pairs of team members who satisfy both of these conditions: 

T1 [(J1 = J2) A (B1 < B2)] T2. 

Note that, if jobcode happened to have the same column name in T1 as in 
T2, the name would have to be prefixed by the pertinent relation name 
(e.g., T1.J). The same applies to the birthdate columns. 

R B - 2 5  T h e  N a t u r a l  J o i n  O p e r a t o r  

As described in the last section, an equi-join generates a result in 
which two of the columns are identical in values, although different 
in column names. These two columns are derived from the com- 
parand columns of the operands; of course, the columns may be 
either simple or composite. Of the 10 types of theta-join, equi-join 
is the only one that yields a result in which the comparand columns 
are completely redundant, one with the other. The natural join 
behaves just like the equi-join except that one of the redundant 
columns, simple or composite, is omitted from the result. To make 
the column naming clear and avoid impairing the commutativity, 
the retained comparand column is assigned whichever of the two 
comparand-column names occurs first alphabetically. 
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The degree of the result generated by natural join is less than that 
generated by equi-join on the same operands. The degree of the former 
result is the sum of the degrees of the operands reduced by the number of 
simple columr/s in the comparand column of either operand. 

Natural join is probably most useful in the theory of database design, 
especially in normalizing a collection of relations. It is included here pri- 
marily for that reason. 

As an aid to understanding the following three operators~relational 
union, relational intersection, and relational difference~the reader may wish 
to refer to Figure 4.1. 

R B - 2 6  T h e  U n i o n  O p e r a t o r  

The relational union operator is intentionally not as general as the 
union operator in mathematics. The latter permits formation of the 
union of a set of buildings with a set of parts and also with a set of 
employees. On the other hand, relational union permits, for exam- 
ple, (1) a set of buildings to be united with another set of buildings, 
(2) a set of employees to be united with another set of employees, 
or (3) a set of parts to be united with another set of parts. 

Figure 4.1 The Basic Operators of the Relational Model  
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Relational union is intended to bring together in one relation all of the 
facts that happen to exist in whatever two relations are chosen to be its 
operands, provided these two relations contain the same kind of facts. It 
does this by copying rows from both of its operands into the result, but 
without generating duplicate rows in the result. The relations that are com- 
bined by the relational union operator must be compatible with one another 
in having rows of similar type, thus ensuring that the result is a relation. It 
must be remembered that all relations are sets, but that not all sets are 
relations. Thus, relational union is intentionally not as general as set union. 
Union compatibility is now discussed in more detail. 

Suppose that S and T are two relations. Then, S and T are union- 
compatible if they are of the same degree and it is possible to establish at 
least one mapping between the columns of S and those of T that is one-to- 
one, and with the property that, for every column A of S and every column 
B of T, if column A is mapped onto column B, then A and B draw their 
values from a common domain. Of course, the number of such mappings 
between S and T may be zero, one, two, or more. If it happens that no 
such mapping exists, then S and T are not union-compatible, and any request 
from the user to form S UNION T causes an error code to be returned. 

The union operator requires that its two operands (which are relations, 
of course) be union-compatible. In practice, it is rare that two base relations 
are union-compatible, but not at all rare that two derived relations are. The 
union operator also requires that the column alignment for its two operands, 
whether explicit or implied, be in conformity with one of the mappings that 
guarantees union compatibility (this is discussed further later in this section). 

The result of applying union to relations S and T is a relation containing 
all of the rows of S together with all of the rows of T, but with duplicate 
rows removed. The removal of duplicate rows becomes necessary when it 
happens that relation S has some rows in common with relation T. Those 
DBMS implementations that either require or permit the retention of du- 
plicate rows in the final result of a union will give rise to the same severe 
problems cited earlier in the description of the project operator. 

The principal reason why relational union, intersection, and difference 
are not as general as their mathematical counterparts is that, in a relational 
system, it must be easy to find any desired information in the result. Hence, 
the result is required to be a relation. The result of these operators is also 
constrained to be a relation because this is necessary for operational closure 
(see Feature RM-5 in Chapter 12). 

Consider an example involving domestic suppliers S and overseas sup- 
pliers T. These relations are likely to be separated from one another because 
certain properties are applicable to one but not the other. For the example, 
suppose that we take the projection S" of S and the projection T" of T on 
certain columns common to both S and T, namely, supplier serial number 
and supplier name. 

Suppose that the corresponding snapshots are as follows: 
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S" ( S# NAME) 

Sl l  Peter 
S12 Smith 
S17 Clark 
S23 Rock 
$25 Roth 

T" ( S#  NAME ) 

S2 Jones 
S17 Clark 
S3 Blake 
S7 Tack 

Applying the operator union, we obtain the following: 

Z ( S# NAME)  Z ~ S" union T" 

Sl l  Peter 
S12 Smith 
S17 Clark 
S23 Rock 
S25 Roth 
S2 Jones 
S3 Blake 
S7 Tack 

We observe that Clark, with the serial number S17, is both a domestic and 
an overseas supplier. Note that the row < S17, Clark > is not repeated in 
the result. 

The designer of a relational language must face the difficulty that, when 
applying the union operator in some circumstances, the user must specify in 
some detail which columns of one relation are to be aligned with which 
columns of the second relation. This alignment is particularly relevant when 
two or more columns of one operand have the same domain. When this is 
true of one operand, it must be true of the other, if they are to satisfy the 
requirement of union compatibility. 

The simplest approach appears to be as follows: 

if all the domains of one relation are distinct, then the DBMS aligns 
the columns by ensuring that aligned pairs have the same domain; 

if not all the domains of one relation are distinct, then 

1. for those columns of one operand that have distinct domains within 
that operand, the DBMS aligns them with the columns of the other 
operand by ensuring that aligned pairs have the same domain; and 

2. it aligns the remaining columns by accepting the pairing of these 
columns as specified by the user in his or her request or, if no such 
pairing is specified, it pairs columns by name alphabetically (lowest 
alphabetically from one operand with lowest alphabetically from the 
other, and so on). 

The relational model requires this approach to be adopted within the DBMS 
for the operators relational union, intersection, and difference. 
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in  countries that do not use the Roman alphabet, it may be necessary 
to replace the alphabetic default by some other kind of default. 

The DBMS sends an error message if either the implicit alphabetic 
ordering or the explicit alignment declared by the user fails to satisfy the 
constraint that pairs of columns that are aligned for the union operator must 
draw their values from a common domain. This approach to column align- 
ment is required by the relational model until such time as a simpler 
technique is devised to deal with this column-alignment problem. 

The following special case is noteworthy. Whenever the two operands 
of a union have primary keys PK1 and PK2, which draw their values from 
a common domain, and whenever PK1 and PK2 happen to be aligned for 
a requested union, then the DBMS deduces that the primary key of the 
result is a column PK that is formed by uniting PK1 with PK2. One con- 
sequence of this is that the DBMS rejects duplicate values in column PK of 
the result. 

R B - 2 7  T h e  I n t e r s e c t i o n  O p e r a t o r  

SuPpose that S and T are two relations that are union-compatible. 
Then, they are sufficiently compatible with one another for the 
intersection operator to be applicable. Columns have to be aligned 
in the same way as for the union operator. The result of applying 
intersection to relations S and T is a relation containing only those 
rows of S that also appear as rows of T. Of course, the resulting 
relation contains no duplicate rows, since neither of the operands 
contain any. 

Consider the same example as before involving domestic suppliers S 
and overseas suppliers T. Assume that the same projections as before have 
been made to generate relations S" and T". 

S" ( S#  N A M E  ) T" ( S #  N A M E  ) 

$11 Peter $2 Jones 
$12 Smith $17 Clark 
$17 Clark $3 Blake 
$23 Rock $7 Tack 
$25 Roth 

Applying the operator intersection, we obtain the following R-table: 

Z ( S #  NAME)  Z ~- S" intersection T" 

$17 Clark 

The supplier Clark with the serial number S17 is both a domestic and an 
overseas supplier. Note also how the row < S17, Clark > was not repeated 
in the result. 
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The approach to column alignment is the same as with union: 

if all the domains of one relation are distinct, then the DBMS aligns 
the columns by ensuring that aligned pairs have the same domain; 

if not all the domains of one relation are distinct, then 

1. for those columns of one operand that have distinct domains within 
that operand, the DBMS aligns them with the columns of the other 
operand by ensuring that aligned pairs have the same domain; and 

2. it aligns the remaining columns by accepting the pairing of these 
columns as specified by the user in his or her request or, if no such 
pairing is specified, it pairs columns by name alphabetically (lowest 

; alphabetically from one operand with lowest alphabetically from the 
other, and so on). 

In countries that do not use the Roman alphabet, it may be necessary to 
replace the alphabetic default by some other kind of default. 

The DBMS sends an error message if either the implicit alphabetic 
ordering or the explicit alignment declared by the user fails to satisfy the 
constraint that pairs of columns that are aligned for the intersection operator 
must draw their values from a common domain. 

R B - 2 8  T h e  D i f f e r e n c e  O p e r a t o r  

Suppose that S and T are two relations that are union-compatible. 
Then, they are sufficiently compatible with one another for the 
relational difference operator to be applicable. Columns must be 
aligned in the same way as for the union operator. The result of 
applying relational difference to relations S and T is a relation 
containing only those rows of S that do not appear as rows of T. 
Of course, the resulting relation contains no duplicate rows. 

Consider the same example involving domestic suppliers S and overseas 
suppliers T. Assume that the same projections as before have been made 
to generate relations S" and T"" 

S" ( S# NAME) T" ( S# NAME ) 

Sl l  Peter $2 Jones 
S12 Smith $17 Clark 
S17 Clark $3 Blake 
S23 Rock S7 Tack 
S25 Roth 

Applying the operator relational difference, we obtain the following: 
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Z ( S #  N A M E )  

$11 Peter 
S12 Smith 
S23 Rock 
S25 Roth 

Z ~-  S" - T" 

The supplier Clark with the serial number S17 is both a domestic and an 
overseas supplier, which explains why the row < $17, Clark > does not 
appear at all in the result. 

The approach to column alignment is the same as with union: 

if all the domains of one relation are distinct, then the DBMS aligns 
the columns by ensuring that aligned pairs have the same domain; 

if not all the domains of one relation are distinct, then 

1. for those columns of one operand that have distinct domains within 
that operand, the DBMS aligns them with the columns of the other 
operand by ensuring that aligned pairs have the same domain; and 

2. it aligns the remaining columns by accepting the pairing of these 
columns as specified by the user in his or her request or, if no such 
pairing is specified, it pairs columns by name alphabetically (lowest 
alphabetically from one operand with lowest alphabetically from the 
other, and so on). 

In countries that do not use the Roman alphabet, it may be necessary to 
replace the alphabetic default by some other kind of default. 

The DBMS sends an error message if either the implicit alphabetic 
ordering or the explicit alignment declared by the user fails to satisfy the 
constraint that pairs of columns that are aligned for the relational difference 
operator must draw their values from a common domain. 

R B - 2 9  T h e  R e l a t i o n a l  D i v i s i o n  O p e r a t o r  

Relational division is similar in some respects to  division in integer 
arithmetic. In relational division, just as in integer arithmetic divi- 
sion, there is a dividend, a divisor, the quotient, and even a re- 
mainder. Thus, relational division has similarly named operands and 
results. Instead of being integers, however, these operands and 
results are all relations. None of them need contain any numeric 
information at all, and even if the operands do contain such infor- 
mation, it need not be the numeric components that play a crucial 
role in relational division. 
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Consider an example of division in integer arithmetic. Suppose that we 
are dividing 29 by 7. One must find the largest multiplier for 7 that yields a 
product that is equal to or less than 29. That multiplier is 4, since 4 × 7 = 
28, and 28 is less than 29; while 5 × 7 = 35, and 35 is greater than 29. 

In relational division the relational operator corresponding to multipli- 
cation is Cartesian product. The relational comparator corresponding to 
LESS THAN OR EQUAL T O ( -  < ) is SET INCLUSION. 

When dividing one relation by another, at least one pair of columns 
(one column of the pair from the dividend, the other column from the 
divisor) must draw their values from the same domain. Such a pair of 
columns can be used as comparand columns (just as if we were attempting 
an equi-join). 

Suppose that (1) relation S is the dividend, (2) relation T is the divisor, 
(3) the comparand columns are B from S and C from T, and (4) the column 
A from S is to be the source of values for the quotient. Then suppose that 
Q is the quotient obtained by dividing S on B by T on C. The assignment 
to Q is represented by 

Q ~--S [ A , B / C ]  T, 

and we obtain the largest relation Q, such that Q[A] × T[C] is contained 
in S[A,B]. The term "largest relation" in this context means the relation 
that has the most tuples (rows), while still satisfying the specified condition. 

As an example, suppose that we have a list of parts required for a 
certain job, and that the list is presented as a unary relation named LIST 
containing part serial numbers. LIST is an R-table with one column named 
P#.  Suppose also that CAP has the same meaning as the CAPABILITY 
relation used in Section 1.2.3. Suppose that CAP and LIST have the follow- 
ing extensions: 

CAP (S# P# S P E E D  U N I T _ _ Q  PRICE) 

Sl P1 5 100 10 
$1 P2 5 100 20 
Sl P6 12 10 600 
S2 P3 5 50 15 
$2 P4 5 100 15 
S3 P6 5 10 700 
S4 P2 5 100 15 
S4 P3 5 50 17 
S4 P5 15 5 300 
$4 P6 10 5 350 

LIST (P#) 

P2 
P5 
P6 
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Note that SPEED denotes speed of delivery in number of working days. 
Consider the query "Find the suppliers each of whom can supply every 

one of the parts listed in the given R-table LIST." This query is equivalent 
to 

QUOT ~ CAP[  S#, P# / P #  ]LIST. 

This query calls for CAP on S#, P# to be divided by LIST on P#. The 
result obtained is as follows: 

QUOT (S# S P E E D  UNIT_Q PRICE) 

S4 5 100 15 
S4 15 5 300 
S4 10 5 350 

Note that the relation QUOT [S#] contains only one row, and this row 
contains only one component $4. Thus, the Cartesian product 

CP ~-- QUOT [ S# ] × LIST [ P# ] is as follows: 

CP (S# P#) 

S4 P2 
S4 P5 
S4 P6 

This is contained in CAP [ S#, P# ]. The quotient is accordingly the relation 
QUOT of degree four just shown. The remainder is simply the dividend 
with some of its rows removed~namely, those appearing in the quotient 
QUOT with the P# column removed: 

RMDR (S# P# S P E E D  UNIT_Q PRICE) 

Sl P1 5 100 10 
Sl P2 5 100 20 
S 1 P6 12 10 600 
S2 P3 5 50 15 
$2 P4 5 100 15 
$3 P6 5 10 700 
$4 P3 5 50 17 

Note the degrees of the relations: 

Dividend CAP Degree 5 

Divisor LIST Degree 1 

Quotient QUOT Degree 4 

Remainder RMDR Degree 5 
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More generally, the degree of the quotient is equal to the degree of the 
dividend minus the degree of the divisor. The degree of the remainder is 
equal to the degree of the dividend. 

Relational division is the principal algebraic counterpart of queries that 
involve the universal quantifier of predicate logic. Now follows the promised 
and brief explanation of the quantifiers of predicate logic. The example just 
used to explain relational division is now used with more concise notation 
to explain the two quantifiers: the existential and the universal. 

Suppose that the relations in a database include S, P, and C, where S 
describes suppliers, P describes parts, and C describes capabilities of sup- 
pliers in supplying parts. Let the primary key of suppliers be supplier serial 
numbers S#; for parts, the primary key is part serial numbers P#;  for 
capabilities, the primary key is the combination of S# and P#.  Let the 
description of suppliers include for each supplier its name; the corresponding 
column is called SNAME. Suppose also that a list of parts needed for some 
project is given as a unary relation L whose only column P#  draws its values 
from the part serial number domain P#.  

Two quite different kinds of queries are now discussed from the stand- 
point of a relational language ALPHA [Codd 1971a], which is based on 
predicate logic, rather than algebra, and uses tuple variables, rather than 
domain variables. Q1 requires the existential quantifier, and Q2 requires 
the universal quantifier. 

Q l: Retrieve the names of all suppliers, each of whom can supply at 
least one of the parts listed in L. 

range of s is S 

range of p is L 

range of c is C 

s, p, and c are tuple variables. 

get s.SNAME where 

EXISTS p EXISTS c (c.s# = s.s# AND c.p# = p.p#). 

The term "EXISTS" denotes the existential quantifier of predicate logic. 
It corresponds to the theta-join operators. It does not denote the same use 
of the term "EXISTS" as in the language SQL. 

Q2: Retrieve the names of all suppliers, each of whom can supply all 
of the parts listed in L. 

Assuming the same three range statements as listed under Q1, 

get s. SNAME where 

FOR ALL p EXISTS c (c.s# = s.s# AND c.p# =p.p#) 

The phrase "FOR ALL," which denotes the universal quantifier of 
predicate logic, corresponds to relational division. Present versions of the 
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language SQL cannot express relational division in any direct manner. Con- 
sequently, SQL users must translate Q2 into the following: 

Q2": Retrieve the name of every supplier, for whom it is not true that 
there exists a part in the list L that it cannot supply. 

This kind of translation represents a significant burden on users that is 
completely unnecessary. (Refer back to Figure 4.1 on page 78 for a sum- 
mation of all the basic operators.) 

4 .3  m T h e  M a n i p u l a t i v e  O p e r a t o r s  

The manipulative operators are those concerned with making changes to 
the contents of the database. Eight such operators are described: 

RB-30 

RB-31 

RB-32 

RB-33 

RB-34 

RB-35 

RB-36 

RB-37 

Relational assignment 

Insert 

Update 
Primary key update with cascaded update 
Primary key update with cascaded marking 

Delete 
Delete with cascaded deletion 

Delete with cascaded marking. 

In contrast to pre-relational DBMS, each one of these operators is 
capable of handling multiple-records-at-a-time, where "multiple records" 
means zero, one, two, or more rows of a relation. No special treatment is 
given to any data on account of the number of records. 

R B - 3 0  R e l a t i o n a l  A s s i g n m e n t  

When querying a database, the user may wish to have the result of 
the query (a relation, of course) retained in memory under a name 
of his or her choosing. The user may also wish to be able to require 
this retained relation to participate in some later relational query or 
manipulative activity. Both of these desires are satisfied to a certain 
extent by relational assignment. This operator is denoted by ~-- in 
the expression T ~- rye, where (1) rve denotes a relation-valued 
expression (an expression whose evaluation yields a relation), and 
(2) T denotes a user-selected name for the relation that is specified 
by rve and that is to be retained in memory. 
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Note that the relatien obtained by executing rve may, as usual, contain zero, 
one, two, or more rows. 

Since a relation may consist of a very large number of rows, and since 
each row is likely to consist of a combination of character strings, numbers, 
and logical truth-values, a relational assignment is beyond the capability of 
most programming languages. However, a fully relational language must be 
able to express relational assignment, while a fully relational DBMS must 
be able to execute such an assignment. 

If the qualifier SAVE is attached to the command, the DBMS establishes 
the data description of T in the catalog, unless an appropriate description 
of T is already there. The domain of any column of T in which the values 
are derived by means of a function is identified as function-derived, because 
the DBMS usually cannot be more specific than that. 

When the qualifier SAVE is attached, the user should be required to 
declare which simple column or combination of simple columns constitutes 
the primary key. 

If the user needs this relation only temporarily (within a particular 
interactive session or within a single execution of an application program), 
the qualifier SAVE may be omitted. Then, 

1. the DBMS does not record the description of T in the catalog; 

2. if T still exists, T is dropped by the DBMS at the end of the interactive 
session or at the end of execution of the program. 

RB-31  T h e  I n s e r t  O p e r a t o r  

The insert operator permits a collection of one or more rows to be 
inserted into a relation. The user has no control, however, over 
where these rows go. They may even be appended by the DBMS 
"at one end or the other" of the target relation. I place this phrase 
in quotation marks because there is no concept of the end of a 
relation in the relational model. It is the responsibility of the DBMS 
alone to determine exactly where the rows should be stored, al- 
though this positioning may be affected by the access paths already 
declared by the DBA for that relation. It is assumed that, for 
insertion of new rows into a relation T, the catalog already contains 
a detailed description of T. 

If the collection of rows to be inserted includes two or more rows that 
are duplicates of one another, only one of these rows is inserted. If the 
collection of rows to be inserted includes a row that duplicates any one of 
the rows in the receiving relation, that row will not be inserted. Thus, at 
the end of the insertion the resulting relation contains no duplicate rows; to 
achieve this, several rows in the collection to be inserted may have been 
withheld. Whenever rows are withheld by the DBMS from insertion (to 
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avoid duplicate rows in the result), the duplicate row indicator is turned on 
(see Feature RJ-8 in Chapter 11, "Indicators"). 

One or more rows in the collection to be inserted may be withheld by 
the DBMS for another reason: the resulting relation is not allowed to have 
duplicate values in its primary key. In the event that such a withholding 
occurs for this reason, the duplicate primary-key indicator is turned on (see 
Feature RJ-9 in Chapter 11). This constraint is more restrictive than the no- 
duplicate-row constraint, since it is entirely possible that the non-primary- 
key components may be different from one another, even though the primary- 
key values are identical. 

If one or more indexes exist for the target relation, the DBMS will 
automatically update these indexes to support the inserted rows. 

If the new rows for relation T are derived from one or more other 
relations in the same relational database in accordance with a relation-valued 
expression rve, then an alternative way of obtaining the result of inserting 
these rows into T is by using the union operator and relational assignment- 

T ~- T UNION rve. 

However, to be able to use this method, T must be either a base relation 
or a special kind of v i ew~the  kind that the DBMS at view-definition time 
has determined can accept insertions. It is worth noting that not all views 
can accept insertions, a point discussed in detail in Chapter 17, "View 
Updatability." It is worth noting that the insert operator eliminates duplicate 
rows and duplicate primary-key values just as the union operator does. 

R B - 3 2  T h e  U p d a t e  Operator  

In managing a database, it may be necessary occasionally to change 
the values of one or more components of one or more rows that 
already exist within a relation. This is usually distinguished from 
inserting entirely new rows because the components to be changed 
in value may represent a very small percentage of the number of 
components in each row. 

This observation is the justification for the update operator. The information 
that must be supplied with this operator consists of the name of the relation 
to be updated, the specification of the rows in that relation to be updated, 
and the column names that identify the row components of these rows to 
be identified, and the new values for these components. The DBMS should 
provide two options for identifying the rows to be updated; the user should 
supply either a list of primary key values or an expression that (1) is a valid 
condition for a select operation and that (2) involves the DBMS in conducting 
a search for those rows that satisfy this condition. 

Existing indexes for the target relation are automatically updated by the 
DBMS to reflect the requested update activity. 
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Referential integrity may be damaged if the column to which the update 
is applied happens to be the primary key of the pertinent relation or a 
foreign key. Normally, Feature RB-33 should be used to update a primary- 
key value. When updating a foreign-key value only, the user should make 
sure that the new value for this key exists as the value of a primary key 
defined on the same domain. Otherwise, the DBMS will reject the update  

RB-33 P r i m a r y - K e y  U p d a t e  w i t h  C a s c a d e d  

U p d a t e  o f  F o r e i g n  K e y s  a n d  O p t i o n a l  U p d a t e  

of Sibling Primary K e y s  

It is seldom necessary to update the value of a primary key, but, 
when this is necessary, it is very important that it be done correctly. 
Otherwise, integrity in the database will be lost, and it will be quite 
difficult to recover from the damage. 

An important check made by the DBMS is that each allegedly new 
value for a primary key is not only of the data type specified for that key, 
but is also new with respect to that simple or composite column" that is, at 
this time the new value does not occur elsewhere in that primary-keycolumn. 

When a primary-key value is changed, it is usually necessary to make 
the same change in value of all of the matching foreign-key values drawn 
from the same domain. Why cannot this be programmed as a transaction 
that includes an update command for the row that contains the primary key 
value followed by an update command for each of the rows in the database 
that contain that same value as a foreign key whose domain is the same as 
that of the primary key? To prepare such a transaction correctly, the user 
must have extremely recent knowledge of which columns in the entire 
database draw their values from the domain D of the given primary key; 
"recent" means down to the millisecond level or some shorter time interval. 

It is important to remember that the relational approach is highly 
dynamic, and that users who are appropriately authorized can at any time 
request new columns be added to one or more relations. Thus, it would be 
very risky to assume that any user (even the DBA) knows at any time 
precisely which columns draw their values from any giVen domain. It is 
precisely for this reason that 

• the kind of transaction cited in the preceding paragraph is unacceptable; 

• the relational model includes the cascading option in some of its manip- 
ulative operators and in the reaction of the DBMS to attempted violation 
of certain integrity constraints. 

If a DBMS is fully relational, it maintains in the catalog the knowledge 
concerning which columns draw their values from any given domain in a 
state that is consistent with the most recently executed relational command. 
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This means that the DBMS is in a better position than any user to handle 
correctly the updating of all the matching foreign-key values drawn from 
the pertinent primary domain. 

The primary-key update command not only updates a primary-key value, 
but also updates in precisely the same way all of the matching foreign-key 
values drawn from the same domain as the primary-key value. For the 
DBMS to support this command, it is essential that the DBMS support 
domains. 

This command is not included in the present version of the language 
SQL. In fact, it is impossible to express a precisely equivalent action in SOL. 
Moreover, it is extremely cumbersome to express any action in SOL that is 
even superficially similar, but is based on the false assumption that some 
user knows precisely which columns draw their values from a given domain. 
Such an expression takes about three pages of commands, some expressed 
in SQL and some in a host language. This is just one of the severe penalties 
stemming from the failure of SOL to support domains as extended data types 
(see Chapters 3 and 23). 

A more detailed account follows. The primary-key update operator is 
intended to simplify the updating of primary-key values. The DBMS finds 
from the catalog which domain (say D) is the domain of the specified primary 
key. It then finds all of the columns in the entire database that draw their 
values from domain D. From this set of columns, it selects two subsets: 

SI:D 

S2:D 

Those columns that are primary-key columns for other relations, but 
defined on D 

Those columns that are declared to be foreign-key columns with 
respect to the given primary key 

The set Si:D is called the set of sibling primary keys. The set S2:D is called 
the set of dependent foreign keys, where "dependent" refers to the fact that 
foreign-key values are existence-dependent on their primary key counterparts. 

Unless the qualifier EXCLUDE SIBLINGS is attached to the command, 
the DBMS takes primary-key action as follows. It hunts in each column 
cited in Si:D for the value of the given primary key. It then updates this 
value in precisely the same way as the original primary key was updated. 
Unconditionally, the DBMS takes foreign-key action as follows. It hunts in 
each column cited in S2:D for the value of the given primary key, now 
occurring in a foreign-key role. Whenever such a value is found, it is updated 
in precisely the same way as the primary key was updated. In this way, 
referential integrity is maintained. 

Thus, the DBMS executes all of these primary- and foreign-key updates 
in addition to the update of the specified primary-key value, except that the 
action on other primary keys is omitted if the qualifier EXCLUDE SIB- 
LINGS is attached to the pertinent command. Whenever an index involves 
any of the keys (primary or foreign) being updated, that index is also 
automatically updated by the DBMS to reflect the updating of the actual 
key. 
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The entire sequence of activities is treated as if it had been requested 
as a transaction. Thus, either the whole series of updates is successful, or 
none of it is successful. This is what one should expect in any case, since 
only a single relational command is involved. 

Existing indexes for all of the columns of all of the relations involved 
are automatically updated by the DBMS to reflect the requested update 
activity. These changes are committed to the database if and only if the 
aforementioned changes are committed. 

R B - 3 4  P r i m a r y - k e y  U p d a t e  w i t h  

C a s c a d e d  M a r k i n g  o f  F o r e i g n  K e y s  

This operator behaves in the same way as that of Feature RB-33, 
except in regard to all of the foreign keys based on the same domain 
as the primary key. Instead of updating the matching foreign-key 
values, the DBMS marks each foreign-key value as missing-but- 
applicable. Of course, if one or more of these foreign keys happens 
to have a DBA-declared constraint that there be no missing values, 
then the whole command is rejected by the DBMS. 

R B - 3 5  T h e  D e l e t e  O p e r a t o r  

The delete operator permits a user to delete multiple rows from a 
relation: "multiple" includes the special cases of zero and one, and 
these cases do not receive special treatment. Why include zero as a 
possibility? One reason is that a condition that the user has incor- 
porated in the delete command might not be satisfied by any row. 
Of course, it is necessary for the user to specify the pertinent relation 
and  identify the rows to be deleted in either of the two ways 
permitted by the simple update operator. 

Existing indexes for the target relation are automatically updated by the 
DBMS to reflect the requested deletion activity. 

Users of the delete command are advised to be very cautious, since 
every row of a base relation that is deleted results in the deletion of some 
primary-key value. Then, if in the database there happen to be matching 
values of foreign keys, referential integrity can be damaged: hence, the next 
two commands. 
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RB-36  T h e  D e l e t e  O p e r a t o r  w i t h  

C a s c a d e d  D e l e t i o n  

This delete operator is similar to that of Feature RB-35, except that 
it takes into account the fact that a simple or composite component 
of each of the rows being deleted happens to be the value of the 
primary key of a base relation. This is true even if the deletion is 
executed through a view (a virtual relation). Thus, execution of 
RB-35 will often violate referential integrity. Since usually refer- 
ential integrity is not fully checked until the end of a transaction, 
this violation may be just a transient state that is permitted to exist 
within the pertinent transaction only. (See Chapter 13 for more 
details.) 

When a primary-key value of a base relation participates in a deletion, 
referential integrity is normally violated if any foreign keys exist elsewhere 
in the database, in that relation or in others, that are drawn from the same 
domain as that primary key and are equal in value to it. There is no violation 
if the primary-key value still exists as a sibling primary-key value. This is the 
primary key of some other relation, provided that key draws its values from 
the same domain. Use of the delete with cascaded deletion operator causes 
the DBMS to propagate deletions to those rows in the database that happen 
to contain dependent foreign-key values as components. 

If the qualifier EXCLUDE SIBLINGS is attached to the command, no 
action is taken with respect to the other occurrences of this value as a sibling 
primary key from this domain. If this qualifier is not attached, the rows that 
contain the same value in the role of a sibling primary key are deleted also. 

Existing indexes for all of the relations involved are automatically up- 
dated by the DBMS to reflect the requested deletion activity. 

This operator should be used with great care. In fact, few people in any 
installation should be authorized to use it; they should probably be on the 
staff of the DBA. The reason is simple. The deletions can occur in wave 
after wave, all automatically. (See Chapter 18, "Authorization," for more 
details.) 

The deletion of each row that contains a pertinent foreign-key value 
must also result in the deletion of a value of some primary key; this primary 
key will often be different from the primary key that initiated the cascading 
action. Quite often, the initial deletion of one row results in the deletion of 
many other rows elsewhere in the database. Then, each of these deletions 
results in the deletion of many other rows in the database, and so it proceeds. 
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R B - 3 7  The D e l e t e  Operator  w i t h  C a s c a d e d  
A - m a r k i n g  and  O p t i o n a l  Sibl ing D e l e t i o n  

This operator is similar to that of Feature RB-36, but is far less 
dangerous, because the initial cycle of cascading does not trigger 
any subsequent cycles of deletion. This reduced danger is a strong 
reason why foreign keys should be allowed to have missing values, 
unless the DBA has an overriding reason why not. 

The DBMS finds all of the columns that draw their values from the 
domain of the primary key involved: primary domain D. From these columns 
it selects the two subsets SI:D (the sibling columns) and S2:D (the dependent 
foreign-key columns) as defined earlier. The DBMS then examines the 
catalog to see whether any column cited in S2:D has the declaration that 
missing values are prohibited. 

Suppose that one or more of the columns cited in S2:D is of the missing- 
values-prohibited type. If the value v (say) found in the primary key of the 
row or rows to be deleted does not occur at all in any of the missing-values- 
prohibited columns, then execution of the command may proceed. If, 
however, there is at least one occurrence of the value v in these missing- 
values-prohibited columns, then the DBMS aborts the deletion and marking 
altogether. It also turns on an indicator asserting that the deletion has been 
aborted. If the command participates in a transaction, then the transaction 
is aborted also. 

Assume that the tests just described are satisfactorily passed, and that 
no abortion occurs. Then, the DBMS searches all of the foreign-key columns 
cited in S2:D to find all occurrences of the pertinent value and marks each 
one as missing-but-applicable. 

If the qualifier EXCLUDE SIBLINGS is attached to the pertinent 
command, no action is taken on the columns cited in Si:D. If this qualifier 
is not attached, however, all of the rows containing the pertinent primary 
key value in each of the columns cited in Si:D are deleted. Then, regardless 
of any attached qualifier, all of the columns cited in S2:D that permit missing 
values are searched for the value v, and each such value is A-marked. 

Existing indexes for each of the relations involved are automatically 
updated by the DBMS to reflect the requested deletion activity. Of course, 
these changes are committed if and only if the aforementioned changes are 
committed. 

In subsequent chapters frequent use is made of the basic operators 
described in this chapter. A good understanding of these operators is essen- 
tial to any real understanding of the relational model. 
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Exercises  

4.1 The connectives LESS THAN, EQUAL TO, GREATER THAN 
participate in almost every programming language. In that context 
they are often called the relational operators. Are the relational 
operators of the relational model simply these connectives revisited? 
If not, explain. 

4.2 In the relational model why is row selection called select, while column 
selection is called project? Hint: do not confuse the select of the 
relational model with the select of SOL. 

4.3 Execution of a join usually involves comparing values drawn from 
pairs of columns (each simple or composite) in the database. These 
are called the comparand columns for this operator. 
• What is wrong with requiring for every join that the comparand 

columns in a join be identically named? 
• What constraints, if any, are placed by the relational model on 

pairs of comparand columns? Why? 

4.4 Is it adequate for the DBMS to check that the comparand columns 
involved in joins contain values of the same basic data type? State 
reasons for your answer. 

4.5 Consider the following query: find the suppliers, each of whom can 
supply every part in some given list of parts. What relational operator 
provides the most direct support for this query? Is this a brand-new 
operator? What is the shortest SQL representation of this request? 

4.6 In what sense are the union, intersection, and difference operators of 
the relational model different from their counterparts in set theory? 

4.7 What is union compatibility? To which of the operators does the 
relational model apply this as a constraint? Why does the model make 
union compatibility a requirement in these cases? Can this constraint 
be overridden? 

4.8 In what sense are the operators of the relational model closed? Does 
this mean that no new operators may be invented? How is this closure 
useful in the real world? 

4.9 What are the sibling primary keys of a given primary key? Does every 
primary key have a sibling primary key? 

4.10 Is updating a primary key any more complicated than updating any 
other piece of data? If so, state why, and then describe how RM/V2 
handles the problem. 

4.11 Do present versions of the SOL language handle the problem stated 
in Exercise 4.10 correctly without requiring the assistance of the host 
language? Do present versions of SOL handle this problem correctly 
with assistance from the HL? Explain. 
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The Advanced Operators 

The operators discussed in this chapter are intended to meet some practical 
needs and, in so doing, increase the flexibility and power of the relational 
model without introducing programming concepts. Any reader who finds 
this chapter difficult to understand can, and should, skip it on first reading; 
most of the following chapters are simpler. 

The advanced operators include framing a relation, the extend operator, 
semi-join, outer join, outer union, outer difference, outer intersection, the 
T-joins, user-defined selects, user-defined joins, and recursive join. The set 
of advanced operators is intentionally open-ended. When conceiving exten- 
sions, however, it is very important to adhere to the operational closure of 
all relational operators. See Feature RM-5 in Chapter 12, as well as Chapter 
28. 

In this chapter, unlike its predecessors, the sample relations that explain 
each operator involve the use of abstract symbols to denote values. For each 
column, however, the values must be assumed to be all of one declared data 
type. For example, all the values may be character strings, integers, floating- 
point numbers, or the truth-values of some logic. On the other hand, the 
collection of columns belonging to a relation can have any mixture of these 
data types. A reader who is unfamiliar with the use of symbols to denote 
values of these types may wish to take the time to substitute actual values 
of his or her choosing in place of the symbols, taking care to abide by any 
domain constraints explicitly mentioned. 

Thus, in the example in Section 5.1.2~namely R1 ( K A C D E ) ~ K  
is intended to be the primary key, so all of its values must be distinct from 

97 



98 • The Advanced Operators 

one another, and C is specified as a numeric column, so all of its values 
must be numeric. Thus, a specific case of the relation R1 would be the 
PARTS relation with K as the part serial number (character-and-digit strings 
of length 8); A as the part name (strings of characters only, of fixed length 
12); C as the quantity-on-hand (modest-sized non-negative integers); D as 
the quantity-on-order (of the same extended data type as quantity-on-hand); 
and E as the minimum quantity that should be maintained in inventory (of 
the same extended data type as quantity-on-hand). 

5.1 • F r a m i n g  a R e l a t i o n  

5.1.1 I n t r o d u c t i o n  t o  F r a m i n g  

Occasionally users must partition relations into a collection of subrelations, 
whose comprehensive union restores the original relation. Each of the 
subrelations is a member of the partition. A well-known property of a 
partition is that every pair of these subrelations has an empty intersection. 

Consider a relation that contains information about employees in a 
company. Suppose that it includes a column containing the employee's 
present annual salary, and another column indicating the department to 
which that employee is assigned. With this database, consider a request that 
involves a partition" find the total salaries earned in each department along 
with the department identification. A user may wish to find for each de- 
partment the sum of all the present salaries earned by employees in that 
department, and may want the corresponding totals to appear in one of the 
columns of the result, along with other columns such as the department 
number. 

Many subrelations may be involved in partitioning a given relation. The 
approach described next avoids generating these subrelations as a collection 
of separate relations, for two reasons" 

° 

2. 

each of the subrelations would have to be assigned a distinct name; 

a new type of operand and result would have to be introduced--namely, 
a collection of relations. This type appears in RM/T, an earlier extended 
version of the relational model [Codd 1979], but for other reasons. 

Instead of the approach just described, a frame is placed on the relation to 
be partitioned. 

R Z - I  Framing  a Re la t i on  

A frame separates the set of rows in any one member of the partition 
from the set of rows in any other member. This separation is 
achieved by appending a new column to the relation and, within 
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this column, assigning a distinct value for each distinct member of 
the partition. The standard name for this column is FID, or frame 
identifier. 

In the relational model, in line with the emphasis on basing all operators 
on explicit values in the database, the act of partitioning is always based on 
values. In generating partitions, RM/V2 offers the options of using the 
individual values that occur in a column, simple or composite, or else 
specified ranges of values that occur therein. Since individual values are 
simpler to understand, let us consider them first. 

5.1.2  P a r t i t i o n i n g  a R e l a t i o n  b y  I n d i v i d u a l  V a l u e s  

The following steps are taken to generate a simple partition of a relation R 
by changes in values within a simple or composite column C: 

1. The DBMS reorders the rows of relation R into ascending order by the 
values encountered in column C, whether these values are numeric, 
alphabetic, alphanumeric, or even the truth-values of some logic. (In 
the last case, the ascending sequence is FALSE, TRUE, MAYBE-AND- 
APPLICABLE, and MAYBE-BUT-INAPPLICABLE pending the es- 
tablishment of a standard.); 

2. The DBMS appends the new frame-identifier column FID to R. The 
initial value in the frame identification column (FID) is 1; this value is 
increased by one each time that a distinct value in C is encountered in 
the ascending order cited in Step 1. 

In the case of alphabetic and alphanumeric columns, the DBMS uses 
some standard collating sequence for ordering purposes. 

The result is a single relation with a frame that represents partitioning 
of R according to the distinct values in C. The frame is identified by the 
integers in column FID. Let R / / / C  denote relation R framed according to 
column C. 

For example, relation R2 is R1 framed according to column C in the 
simple sense just described. The dotted lines portray the frame. In this 
example the pivotal column C happens to contain numeric values. Those 
readers who like "real" examples can assume the following denotations: 

R1 PARTS relation 

K Part serial number 

A Part name 

C Quantity on hand 

D Quantity on order 

E Quantity for triggering reorder 
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R2 = R 1 / / / C  

R1 (K A C D E ) 

kl al 13 dl e3 
k2 al 9 d2 e7 
k3 a2 37 dl e2 
k4 a3 24 d2 e6 
k5 a3 13 d3 el 

R2 (K A C D E FID) 

k2 al 9 d2 e7 1 

k5 a3 13 d3 el 2 
kl al 13 dl e3 2 

k4 a3 24 d2 e6 3 

k3 a2 37 dl e2 4 

Column FiD identifies the interval and makes it unnecessary for the DBMS 
to keep the row ordering illustrated. Note that relation R1 has five tuples, 
but that column C has just four distinct values. Consequently, R1 framed 
according to C by individual values has precisely four members. Of course, 
each of these four members is a subrelation, which is a set. Three of the 
members of the partition are sets consisting of just one tuple, while the 
fourth member is a set containing two tuples. 

5.1.3 Par t i t i on ing  a R e l a t i o n  by Ranges  of  Va lues  

A more complicated partitioning involves a sequence of ranges of values in 
the pivotal column C. Suppose the desired ranges for this new partitioning 
are as follows: 

1-10, 11-20, 21-30, 31-40, and so on. 

This sequence could be expressed more concisely as follows: 

Begin at 1; the range interval is 10. 

When the range interval is not constant, a ternary relation may be used 
as a listing of all the range intervals. For example, 

RANGE (FROM TO FID) 

1 11 1 
12 25 2 
26 32 3 
33 48 4 

Note that in such a table it is required that the intervals do not overlap one 
another. 

Thus, a user may wish to request the DBMS to use the RANGE relation 
(any name that satisfies the naming features will do) for determining the 
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starting value and intervals. Now, a different result R3 is generated. Once 
again, the dotted lines portray the frame. 

R3 = R / / / C  per RANGE 

R3 (K A C D E FID) 

k2 a 1 9 c2 87 1 

k5 a3 13 c3 81 2 
kl al 13 cl 93 2 
k4 a3 24 c2 76 2 

k3 a2 37 cl 52 4 

Column FID identifies the interval and makes it unnecessary for the DBMS 
to keep the row ordering illustrated. Note that the values in FID determine 
membership in various elements of the partition. Thus, there is no need for 
the DBMS to preserve the ascending ordering based on column FID as 
illustrated in the preceding table. 

5.1.4 A p p l y i n g  A g g r e g a t e  F u n c t i o n s  t o  a F r a m e d  R e l a t i o n  

Assume that the relation R1 discussed in Section 5.1.2 is framed on column 
C according to the ternary relation RANGE discussed in Section 5.1.3. Let 
the result be R3. Normally, applying the function SUM to column E in any 
of the relations R1, R2, R3 (whether framed or not) yields the sum of all 
the values in column E. If, however, a relational command requests that 
the function SUM be applied to column E of either relation R2 or R3 
according to the frame implied by column FID, then SUM is applied to each 
member of the partition; that can yield as many resulting values as there 
are distinct values in column FID. 

SUM R1.E SUM-per-FID R2.E SUM-per-FID R3.E 

389 87 87 
174 250 
76 52 
52 

Of course, it is quite likely that in the third case the user would like to have 
the pertinent range from the RANGE relation with each of the three totals. 
This can easily be accomplished by requesting column R3.FID along with 
the SUM according to FID(R3.E), and then requesting either the natural 
join or the equi-join of this relation, with the RANGE relation, using the 
pair of FID columns (one from each of the operand relations) as the 
comparand columns. 
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The result is relation R4: 

R4 (FROM TO FID SF(R3.E)) 

1 11 1 87 
12 25 2 250 
33 48 4 52 

SF denotes the function SUM-per-FID. 
The following example illustrates partitioning and applying an aggregate 

function to the members of the partition. Assume that the following base 
relation provides the identification EMP# and immediate properties of 
employees: 

EMP1 (EMP# ENAME DEPT# SALARY H_CITY ) 

• 

E107 Rook D12 10,000 Wimborne 
E912 Knight D10 12,000 Poole 
E239 Knight D07 12,000 Poole 
E575 Pawn D12 11,000 Poole 
E123 King D01 15,000 Portland 
E224 Bishop D07 11,000 Weymouth 

Consider the following two steps: 

Partition the relation EMP1 according to the DEPT# column: 

EMP2 ~ EMP1/ / /DEPT# 

EMP2 (EMP# ENAME DEPT# SALARY H_CITY FID) 

E123 .King D01 1 5 , 0 0 0  Portland 1 

E224 Bishop D07 1 1 , 0 0 0  Weymouth 2 
E239 Knight D07 1 2 , 0 0 0  Poole 2 

E912 Knight D10 1 2 , 0 0 0  Poole 3 

E107 Rook D12 1 0 , 0 0 0  Wimborne 4 
E575 Pawn D12 1 1 , 0 0 0  Poole 4 

Find for each department the department serial number and the total 
salary earned by all employees assigned to that department: 

0 

DSAL(DEPT#, TOTSAL) ~-- EMP2(DEPT#, SUM-per-FID(SALARY)) 

DSAL (DEPT# TOTSAU 

D01 15,000 
D07 23,000 
D10 12,000 
D12 21,000 
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Although the GROUP BY feature of SOL is quite concisely expressed, 
it is neither as powerful nor as flexible as the framing feature of RM/V2. 

5.2 a A u x i l i a r y  O p e r a t o r s  

One reason to introduce the auxiliary operators here is to keep the definition 
of the three outer set operators in the next section reasonably concise. 
Another reason is that these operators can be useful in other contexts. 

Common to all three outer set operators~outer  union, outer difference, 
and outer intersection~is an initial step that makes the two operands union- 
compatible. This step is explained by introducing the operator discussed in 
Section 5.2.1. (see [GOOD]). 

5.2.1 E x t e n d i n g  a R e l a t i o n  

RZ-2 E x t e n d  t h e  D e s c r i p t i o n  o f  o n e  R e l a t i o n  t o  

I n c l u d e  a l l  t h e  C o l u m n s  o f  A n o t h e r  R e l a t i o n  

The relation cited first in the command is the one whose description 
is altered to include all the columns of the second-cited relation that 
are not in the first. The columns thus introduced into the first relation 
are filled with A-marked values, unless the VALUE qualifier 
RQ-13 (see Chapter 10) is applied to specify a particular value. 

Considerable care must be taken in using the extend operator. A column 
of one of the operands may have the same name and certain other properties 
(such as the domain) as a column of the second operand, but the two 
columns may have different meanings. Such columns are called homographs 
of one another. 

The extend operator may not be able to distinguish between the different 
meanings, and may incorrectly assume that they are identical. The only 
known solution to this problem is for the DBA to be continually concerned 
about the possibility of homographs and try to avoid them altogether. 
Homographs can be deadly in other contexts also. 

It is possible, although unlikely, for the DBMS to discover that no new 
columns need be added to the first-cited relation. To make a pair of relations 
(say S and T) mutually union-compatible, it is normally necessary to extend 
the columns of both relations by requesting 

St ~-- S per T and Ts ~-- T per S, 

where "per" denotes the extend operator. Note that, in general, union 
compatibility is attained only after two applications of the extend operator. 
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Two applications of this kind constitute the first step in each of the outer 
set operators. 

This extend operator is used in defining the outer joins and the outer set 
operators. Of course, it may be used independently of these operators. 

It is quite common for some banks to record accounts in more than one 
way. For example, the following two types might have been es tab l i shed  
(they are simpified for exposition): 

% $ 
ACCOUNT (ACCOUNT# NAME INTEREST_RATE BALANCE) 

$ 
ACCT (ACCOUNT# NAME MATURITYmDATE BALANCE) 

The first type is unique in having INTEREST__RATE as a column, 
while the second is unique in having M A T U R I T Y ~ D A T E  as a column. 
Thus, these two relations are n o t  union-compatible. They can be converted 
into a pair of relations that are union-compatible by applying the extend 
operator to each one. 

A1 ~ ACCOUNT EXTEND per ACCT 

A2 ~- ACCT EXTEND per ACCOUNT 

Both A1 and A2 have as their columns A C C O U N T # ,  NAME, 
MATURITY__DATE,  I N T E R E S T ~ R A T E ,  and BALANCE. The relation 
A1 UNION A2 may be exactly what the headquarters planning staff needs 
for analysis and planning purposes. 

An unlikely special case, which is not given special treatment, does not 
permit the operands (relations S and T) to have any domains in common. 
Hence, there are no comparable columns at all. 

5.2.2 T h e  S e m i - t h e t a - j o i n  O p e r a t o r  

The idea for the semi-join operator has been circulating for many years; it 
is not clear who originated the concept. One discussion is found in a paper 
by Bernstein and Chiu [1981]. In this section, a slight generalization of the 
semi-join operator is discussed: the EQUALITY comparator that is normally 
assumed is replaced by theta, where "theta" can be any one of the 10 
comparators: 

1. EQUALITY 

2. INEQUALITY 

3. LESS THAN 

4. LESS THAN OR E Q U A L  TO 

5. G R E A T E R  THAN 



5.2 Auxiliary Operators • 105 

6. G R E A T E R  THAN OR EQUAL TO 

7. GREATEST LESS THAN 

8. GREATEST LESS THAN OR EQUAL TO 

9. LEAST G R E A T E R  THAN 

10. LEAST G R E A T E R  THAN OR EQUAL TO 

Once again, it is important to recall that the relational model provides 
a very important safety feature, first cited in Chapter 3: 

R T - I  Safety F e a t u r e  w h e n  Comparing 
D a t a b a s e  V a l u e s  

When comparing a database value in one column with a database 
value in another, the DBMS merely checks that the two columns 
draw their values from a common domain, unless the domain check 
is overridden (see Feature RQ-9 in Chapter 10). When comparing 
(1) a computed value with a database value or (2) one computed 
value with another computed value, however, the DBMS checks 
that the basic data types (not the extended data types) are the same. 

Several of the advanced operators involve comparing of database values. 
The following operators are examples of this. 

Let n = 3,4, . . . ,12. Then the RZ feature with n as its number is a 
semi-theta-join that makes use of the comparator numbered n-2 in the list 
of comparators cited at the beginning of this section. 

RZ-J  through RZ-12  Semi-Theta-Join 

Suppose that the operands of a theta-join are S and T, where theta 
is any one of the 10 comparators listed earlier, and the columns to 
be compared are simple or composite column A of S with simple 
or composite column B of T. Suppose that relation T is projected 
onto column B. The result of this projection contains only those 
values from B that are distinct from one another. The semi-join of 
S on A with T on B yields that subrelation of S whose values in 
column A are restricted to just those that qualify in accordance with 
the comparator theta with respect to the projection of T onto B. 

Suppose that, when theta happens to be EQUALITY,  the operator semi- 
theta-join is denoted by sere=.  Then, S sere= T is that subrelation of S 
containing all of the rows of S that match rows of T with respect to the 
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comparand columns. The remaining rows of S are those that fail to match 
any row of T in accordance with the comparand columns. When the com- 
parand columns are not explicitly specified (as in the preceding case), the 
DBMS assumes that the set of these columns is maximal with respect to the 
given operands, disregarding keyhood. (Incidentally, I use the term "match" 
only when values are being compared for equality.) 

The semi-join can be useful when relations S and T happen to be located 
at different sites as part of a distributed database. Suppose that relation T 
has many more rows than relation S. Then, the load on the communication 
lines between the site containing S and the site containing T can often be 
reduced by (1) transmitting the projection of S onto A to the site containing 
T, (2) executing the semi-join of T with S [A] at this site, yielding a subset 
of relation T, and then (3) transmitting this subset of relation T back to the 
site containing S for the full join to be completed there. 

It is the responsibility of the optimizer in the DBMS to select this 
method of handling a join, whenever it happens to be the most efficient. 
Such a selection certainly should not be a burden on end users or on 
application programmers. 

The following example shows the semi-join operator in action. The 
operands are as follows: 

S (EMP# ENAME H_CITY ) T (WHSE# W__CITY) 

E107 Rook Wimborne W17 Wareham 
E912 Knight Poole W34 Poole 
E239 Pawn Poole W92 Poole 

Consider this query: find the employee information and the warehouse 
information for every case in which an employee's residence is in the same 
city as a company warehouse. The formula for the join is 

U ~- S [ H _ C I T Y  = W__CITY ] T, 

and the result obtained assuming the values just cited is as follows: 

U (EMP# NAME H~CITY WHSE# W~CITY) 

E912 Knight Poole W34 Poole 
E912 Knight Poole W92 Poole 
E239 Pawn Poole W34 Poole 
E239 Pawn Poole W92 Poole 

5.3 • T h e  O u t e r  E q u i - j o i n  Operators  

Several operators referred to as the outer join are supported in the relational 
model. The join operatorsJntroduced in Chapter 4 are henceforth called 
inner joins, when a need arises to refer to them as a collection. 
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The outer joins are based on a proposal made in 1971 by Ian Heath, 
then of the IBM Hursley Laboratory in England [Heath 1971]. In this section 
and Section 5.4, examples of the inner and outer equi-join with and without 
the MAYBE qualifier are described, and the close relationship of the inner 
and outer joins is explained. The MAYBE qualifier pertains to the four- 
valued logic supported by a relational DBMS, assuming its fidelity to the 
model with respect to the treatment of missing information. This qualifier 
is discussed in detail in Chapters 8, 9, and 10. 

The following two simple relations are used as sample operands in 
explaining the outer join operators. Notice that values in column B of relation 
S are to be compared with values in column C of relation T. More concisely, 
S.B and T.C are the comparand columns. Further, bl occurs in S.B but not 
in T.C, while b4 occurs in T.C but not in S.B. 

S (A B ) T (C D )  

al bl b2 dl 
a2 b2 b2 d2 
a3 b3 b3 d3 

b4 d4 

Columns S.B and T.C draw their values from the same domain. Thus, 
it is meaningful to compare values from S.B with those from T.C. 

There are three kinds of outer joins: left outer equi-join (Feature RZ- 
13), right outer equi-join (Feature RZ-14), and symmetric outer equi-join 
(Feature RZ-15). 

R Z - 1 3  L e f t  O u t e r  E q u i - j o i n  

The left outer join of S on B with T on C, denoted U = S [ B /= 
C ] T, is defined in terms of the inner equi-join (IEJ) and the left 
outer increment (LOI). LOI is defined as follows: pick out those 
tuples from S whose comparand values in the comparand column 
S.B do not participate in the inner join, and append to each such 
tuple a tuple of nothing but missing values and of size compatible 
with T. 

In more formal terms, 

LOI = (S - IEJ [A, B]) per IEJ. 

Then, U is defined by 

U = IEJ U LOI. 
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Its extension is as follows" 

U (A B C D ) 

al bl - -  ~ } left outer increment 
a2 b2 b2 dl ) 
a2 b2 b2 d2 ~ inner equi-join 
a3 b3 b3 d3 

R Z - 1 4  R i g h t  O u t e r  E q u i - j O i n  

The right outer join of S on B with T on C, denoted V = S [ B = 
\ C ] T, is defined in terms of the inner equi-join (IEJ) and the 
right outer increment (ROI). ROI is defined as follows: pick out 
those tuples from T whose comparand values in the comparand 
column T.Y do not participate in the inner join, and append to each 
such tuple a tuple of nothing but missing values and of size com- 
patible with S. 

In more formal terms, 

ROI = (T - IEJ [B, C]) per IEJ. 

V is then defined by 

V = IEJ U ROI. 

Its extension is as follows" 

V (A B C D ) 

a2 b2 b2 dl ] 
a2 b2 b2 d2 
a3 b3 b3 d3 
- -  - -  b4 d4 } 

inner equi-join 

right outer increment 

R Z - 1 5  S y m m e t r i c  O u t e r  E q u i - j o i n  

The symmetric outer equi-join of S on B with T on C, denoted 
W = S [ B / = \  C ] T, is defined by W = LOI u n i o n  I E J  u n i o n  

ROI. This implies that W = U u n i o n  V. 

Its extension is as follows: 
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left outer  join 

w (A B C D ) 

al  bl  - -  

a2 b2 b2 dl  

t a2 b2 b2 d2 

a3 b3 b3 d3 
---- - -  b4 d4 

right outer join 

Note that this particular result contains an A-marked value in every column, 
which is not necessarily true of other examples of symmetric outer join. Also 
note that the following identity holds for outer join results: 

outer join = left outer join LI right outer join. 

It is important to observe that the result of a symmetric outer join is 
likely to contain one or more missing values in each and every column, 
although no single row contains a missing value in every column. This is 
why such a result cannot have a primary key that satisfies the entity-integrity 
rule~namely,  that a primary key must have no missing values (see Chapter 
13). 

Because duplicate rows are prohibited in every relation of the relational 
model, however, it is still true that every row is distinct from every other 
row in the result of a symmetric outer join. Thus, for every relation R of 
this type, an identifier is defined that consists of every column of R; this is 
called the weak identifier of R. 

Even though outer joins are not well supported in many of today's 
DBMS products, they are frequently needed and heavily used. Consider the 
following example. 

A database contains information about suppliers and shipments received 
from these suppliers. The supplier relation S contains the serial number S# 
of all of the suppliers in the database, their names SNAME, and other 
immediate properties. The shipment relation SP contains the serial number 
S# of the supplier making each shipment, the serial number P# of the part 
shipped, the date SHIE__DATE the shipment was received, and other 
immediate properties of the shipment, such as the quantity received 
SHIP~Q.  

A company executive requests a report listing all the shipments received 
in the first six months of 1989. The report must include, for each shipment, 
the supplier's serial number and name, together with the serial number of 
the part, the quantity shipped, and the date received. The executive also 
requests that the report include those suppliers on record in the database 
from which the company received no shipments at all, accompanied by an 
indication that each one shipped nothing at all during the specified period. 
Such a request can be expressed in terms of a left outer join. 

Suppose that the supplier relation S is as shown below, and relation SP" 
is derived from the shipment relation SP by row selection, retaining exclu- 
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sively those rows that pertain to shipments with SHIPmDATE between the 
dates 89-01-01 and 89-06-30 inclusive. 

S (S# SNAME . . . )  SP" (S# P# SHIP_DATE SHIP_..~) 

s l  Jones  . . . s l  p l  89-05-31 1000 

s2 S m i t h  . . . s l  p2 89-03-20 575 

s3 Clark . . . s2 p7 89-02-19 150 

s4 Rock . . . s4 p2 89-06-15 900 

s5 Roth . . . s4 p4 89-04-07 250 

s4 p8 89-02-28 650 

The left outer join of S on S# with SP on S# is denoted, 

SSP ~--S [S# / =  S#] SP, 

in which the relation S is the left operand. Alternatively, the operands may 
be switched and the right outer join may be used, 

ssP ~ sP [s# = \ s#]  s, 

in which the relation S is the right operand. 
In either case the extension of SSP is as follows: 

SSP ( . . .  SNAME S# 

• . . J o n e s  s l  

. . .  J o n e s  s l  

. . .  S m i t h  s2 

. . .  Clark s3 

. . .  Rock s4 

. . .  Rock s4 

. . .  Rock s4 

• . . Roth s5 

S# P# SHIP_DATE SHIP_Q) 

s l  p l  89-05-31 1000 

s l  p2 89-03-20 575 

s2 p7 89-02-19 150 

s4 p2 89-06-15 900 

s4 p4 89-04-17 250 

s4 p8 89-02-28 650 

Note that, to conform with the request, the suppliers Clark and Roth in this 
report have designations of missing items in the shipments-half of their 
r ows~no  shipment was received from either of these suppliers in the first 
six months of 1989. 

In Section 17.5.4, it is argued that, in certain circumstances, the outer 
equi-join operator is clearly superior as a view to its inner counterpart. I am 
confident that this use of the outer equi-join was not conceived when the 
operator was invented. 

5.4 m Outer Equiojoins w i t h  the  MAYBE Qualifier 

A common characteristic of real databases is that values are missing in 
various rows and columns for a variety of reasons. As a result, a DBMS 
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that has only two truth values (TRUE and FALSE) designed into it may be 
unable to determine in a non-guessing mode the truth value of a truth- 
valued expression in the condition part of a relational request. A relational 
DBMS that supports all of the features of RM/V2 has four truth values 
designed into it" 

TRUE (t), FALSE (f), MAYBE-APPLICABLE (a), 

and 

MAYBE-INAPPLICABLE (i) 

Both of the latter two truth values reflect the fact that missing data can 
make it impossible for the DBMS to determine whether the truth value is 
T R U E  or FALSE. These truth values are distinguished by whether a value 
is missing but applicable (simply unknown at this time) or missing and 
inapplicable (e.g., the sales commission earned by an employee who is not 
a salesman). 

While describing the o u t e r  e q u i - j o i n s ,  it is worthwhile to consider the 
effect of the MAYBE qualifier on the operator. The MAYBE qualifier 
should be distinguished from the MAYBE truth values. For data to be 
retrieved, it is normally required that the specified condition evaluate to 
TRUE.  The MAYBE qualifier alters the truth value that is required for 
data to be retrieved. The alteration is from the truth value T R U E  to one 
of the MAYBE truth values (see Chapters 8 and 10 for more details). In 
other words, the data retrieved is that for which the condition is evaluated 
to be neither TRUE nor FALSE. 

Let al  and b3 in S be missing but applicable (A-marked). Let dl  and 
the second occurrence of b2 in T be missing but applicable (A-marked). 
Thus, the new operands are as follows: 

s" (A B )  T" (C t ) )  

bl b2 
a2 b2 - -  d2 

a3 ~ b3 d3 

b4 d4 

The 12 possible comparisons between the values from S".B and the 
values from T".C have the following truth-values: 

Stt, B 

T".C 
truth 

b2 
b2 

t 

bl b2 . . . .  
n n b2 b3 b4 

m m m m m m 

bl bl bl b2 b2 
b2 b3 b4 b3 b4 

f f f f f 

where t, f, m respectively denote the truth values TRUE,  FALSE, and 
MAYBE.  



112 • The Advanced Operators 

The symmetric outer equi-join of S on B with T on C accompanied by 
the MAYBE qualifier is denoted 

U" = S"[ B / =  \ C  ] T" MAYBE. 

Its extension is as follows: 

U" | A  B C D ) 

- -  b l  - -  d2 

a2 b2 - -  d2 

a 3  - -  b 2  

a 3  - -  - -  d2 

a3 - -  b3 d3 

a3 - -  b4 d4 

Note that < a2 b2 b2 m > is the only tuple that belongs to the inner equi- 
join with no MAYBE qualifier. It does not belong to either the inner or 
outer equiojoin with the MAYBE qualifier. 

In this example, the outer join with MAYBE happens to be equal to 
the inner join with MAYBE. In other words, the left outer increment and 
the right outer increment happen to be empty in the MAYBE case. In the 
next example, all four of the following results are distinct: 

inner equi-join TRUE, 

outer equi-join TRUE, 

inner equi-join MAYBE, 

outer equi-join MAYBE. 

To provide some additional explanation of these operators, consider the 
outer equi-join of S on X with T on Y, where the comparand columns are 
S.X and T.Y. 

The increment over the inner equi-j0in contributed by the left outer 
increment  (LOI) is defined as follows: 

LOI with or without the MAYBE qualifier: pick out those tuples 
from S whose comparand values in the comparand column S.X do 
not participate in the inner join, and append to each such tuple a 
tuple of nothing but missing values and of size compatible with T. 

Non-participation of a comparand value in the MAYBE case means that 
no comparison involving that value yields the truth-value m. Non-partici- 
pation in the true case (reflected by the absence of the MAYBE qualifier) 
means that no comparison involving that value yields the truth value t. 

The increment over the inner equi-join contributed by the right outer 
increment (ROI) is defined as follows: 

ROI with or without the MAYBE qualifier: pick out those tuples 
from T whose comparand values in the comparand column T.Y do 
not participate in the inner join, and append to each such tuple a 
tuple of nothing but missing values and of size compatible with S. 
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Now for the  p romised  example .  A s s u m e  the ope rands  are as follows" 

S2 (A B )  T2 (C D ) 

al - -  b2 dl 
a2 b2 b2 d2 
a3 b3 b3 d3 

b4 d4 

The  12 possible  compar i sons  b e t w e e n  the  occur rences  of values in S2.B and 

T2 .C  have  the following t ruth-values:  

S2.B b2 b2 b3 . . . .  b2 b2 b3 b3 b3 

T2.C b2 b2 b3 b2 b2 b3 b4 b3 b4 b2 b2 b4 

truth t t t m m m m f f f f f 

The  results  ob ta ined  by applying the  four  ope ra to r s  are as follows: 

Inner equi-join TRUE Inner equi-join MAYBE 

a2 b2 b2 dl  al - -  b2 dl 

a2 b2 b2 d2 al - -  b2 d2 

a3 b3 b3 d3 al - -  b3 d3 

al - -  b4 d4 

Outer equi-join TRUE Outer equi-join MAYBE 

al - -  - -  - -  } LOI a2 b2 - -  

a2 b2 b2 dl "1 a3 b3 

a2 b2 b2 d2 I inner al  ~ b2 

a3 b3 b3 d3 al ~ b2 

~ b4 d4 } ROI al ~ b3 
al ~ b4 

} LOI 

dl 

d2 inner 
d3 
d4 

No te  tha t  R O I  is e m p t y  in the outer  equi - jo in  with M A Y B E .  All  four  of 

these  re la t ions  are distinct. 

5.5 • T h e  O u t e r  N a t u r a l  J o i n s  

Cons ider  two re la t ions  S and T that  h a p p e n  to have  extens ions  as follows: 

S ( P  A )  T ( Q  B )  

kl al ml a2 
k2 a2 m2 a2 
k3 a2 m3 a4 
k4 a3 

Suppose  that  co lumns  S .A  and  T .B draw their  values f rom a c o m m o n  

domain ,  and it is t he re fo re  meaningfu l  to c o m p a r e  values f rom one  co lumn 
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with values from the other. Consider two kinds of joins: the symmetric outer 
natural join of S on A with T on B, and the symmetric outer equi-join of S 
on A with T on B. 

U = S [ A / * \ B ] T  
V =  S [ A / = \ B ] T  

left outer join 

Symmetric 
outer natural 

join 
U ( P  AB Q ) 

Symmetric outer 
equi-join 

V ( P  A B Q ) 

kl  a l  ~ kl  a l  ~ 

k4 a3 - -  k4 a3 - -  

k2 a2 rn l  k2 a2 a2 m l  

k3 a2 m l right outer join k3 a2 a2 m l 

k2 a2 m2 k2 a2 a2 m2 

k3 a2 m2 k3 a2 a2 m2 

a4 rn3 ~ ~ a4 m3 

In table U, the left outer and right outer natural joins are shown as subre- 
lations of the symmetric outer natural join. The three outer natural joins are 
defined constructively (Features RZ-16-RZ-18)mtha t  is, in terms of an 
algorithm that will generate the appropriate result. An implementation can 
make use of this algorithm, but is not required to do so. It is only necessary 
that the implementation generate the same result as the defining algorithm. 

R Z - 1 6  L e f t  O u t e r  N a t u r a l  J o i n  

First, form the inner natural equi-join W of S on A with T on B. 
Then, form the relational difference W1 = S - W [P, A]. Then, 
extend W1 per S to yield W2. Finally, form the left outer natural 
join LONJ = W union W2. 

R Z - I  7 R i g h t  O u t e r  N a t u r a l  J o i n  

First, form the inner natural equi-join W of S on A with T on B. 
Then, form the relational difference W3 = T - W [A, Q]. Then, 
extend W3 per S to yield W4. Finally, form the right outer natural 
join RONJ = W union W4. 

R Z - 1 8  S y m m e t r i c  O u t e r  N a t u r a l  J o i n  

First, form W and W2 as in the first three steps of Feature RZ-16. 
Then, form W4 as in the first three steps of Feature RZ-17. Finally, 
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form the symmetric outer natural join by taking the union: SONJ = 
W2 union W union W4. Alternatively, symmetric outer join = LONJ 
union RONJ. Note that union in the relational model always includes 
removal of duplicate rows from the result. 

It may be recalled that the inner natural join is a simple projection of 
the inner equi-join, in which one of two mutually redundant comparand 
columns is removed. The outer joins, however, are not related to one another 
so simply. 

The columns in the outer equi-join that stem from the comparand col- 
umns in the operands are not necessarily mutually redundant columns. In 
fact, in this example columns A and B are clearly not mutually redundant. 
Thus, the outer natural join is not necessarily a projection of the outer equi- 
jo inma fact that may decrease the usefulness of the outer natural join. 

5 .6  • T h e  O u t e r  S e t  O p e r a t o r s  

In this section I define the three outer set operators in the relational m o d e l ~  
union, set difference, and set intersection--and compare them with their 
inner counterparts. A close correspondence is shown to exist between an 
identity that pertains to the inner operators and one that pertains to the 
outer operators. 1 

5.6.1 T h e  I n n e r  O p e r a t o r s  R e v i s i t e d  

In the relational model, each of the inner set operatorsmunion, set differ- 
ence, and set intersection--is applied exclusively to a pair of relations of 
precisely the same type. In other words, between the two operands (relations 
S and T, say) there must exist a one-to-one correspondence between the 
columns of S and the columns of T, such that each of the pair of columns 
in this correspondence draws its values from a common domain. Any pair 
of relations that are of precisely the same type are said to be union- 
compatible. When restricted in this way, these operators are called relational 
union, relational difference, and relational intersection, respectively. 

This correspondence must be specified in the expression that invokes 
the pertinent relational operator. The reason is as follows. The domains 
from which the columns of S and T draw their values are, in general, 
inadequate to establish such a correspondence, because two or more of the 
columns of either S or T may draw their values from the same domain. 

1. I am grateful to Nathan Goodman [1988], who contributed to the definitions in their final 

form. 
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An important relationship called the inner identity holds between these 
three inner relational operators" 

(s u T) = (S - T) U (S n T) U (T - S) 

for any relations S and T that are union-compatible, where the minus sign 
denotes relational difference. 

5.6.2 T h e  O u t e r  Se t  O p e r a t o r s  

With the inner set operators, the operands S and T are required to be union- 
compatible, that is, of exactly the same type. One important reason for the 
outer set operators is to allow the operands S and T to differ somewhat in 
type, and even in degree. Thus, S may include columns not found in T, and 
T may include columns not found in S. 

In the context of the inner set operators, two rows (one from S, the 
other from T) are duplicates of one another if there is pairwise equality 
between corresponding components. In the context of the outer set opera- 
tors, however, equality between a row in S and a row in T is seldom 
encountered, because S and T are not required to be union-compatible. 
Therefore, it is necessary to include the following concept, which is more 
general than row equality. 

A row from relation S is a close counterpart of a row from relation T if 
all the following conditions hold: 

• the operands S and T have primary keys defined on the same domain; 
[] the two rows (one from S, one from T) have equal primary-key values; 
• pairwise equality in non-missing values holds for those properties of S 

that correspond to properties of T, 

This concept is heavily used in the outer set operators: union, difference, 
and intersection. 

The outer set operators are potentially important in distributed database 
management. For example, consider a bank that stores customer accounts 
in a distributed database. Suppose that customer accounts are represented 
using logical relations of different types in different cities or in different 
states. The differences may be slight, or may be quite significant. An extreme 
case, not likely to be found in banks, and not part of this example, is that 
S and T have no domains at all in common. In the discussion following 
Feature RZ-19, the bank example is pursued in more detail with explicit 
data. 

For each of the three outer set operators, a precise definition is presented 
followed by an example and some informal discussion. The definitions of 
the outer operators are crafted so that the identity cited for the three inner 
operators applies also to the outer operators. 

The following sample relations are used as operands to illustrate the 
outer set operations: 
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S (A B } T (E C )  T" (E C } 

al bl a2 c3 al cl 
al b2 a3 c4 al c2 
a2 b3 a2 c3 

a3 c4 

For generality, columns A, B, C, and E may be either simple or composite. 
B is assumed to consist of al l--and nothing b u t ~ t h e  simple columns whose 
domains do not occur in T. C is similarly assumed to consist of al l--and 
nothing b u t ~ t h e  columns whose domains do not occur in S. Thus, A consists 
of al l--and nothing b u t ~ t h e  simple columns whose domains occur in both 
S and T. A similar remark applies to column E. 

In the examples, either the pair S and T or the pair S and T" is used as 
the two operands. All of the columns S.A, T.E, T".E draw their values from 
a common domain, whether simple or composite. Columns B and C draw 
their values from domains that are different from one another and from the 
domain of A. 

R Z - 1 9  Outer  U n i o n  

Suppose the operands of outer union are S and T. As the first step, 
apply the extend operator to both S and T: extend S per T and call 
it St; extend T per S and call it Ts. Now, St and Ts are of the same 
degree, and each contains columns based on all the domains in S 
and all the domains in T. In fact, St and Ts are completely union- 
compatible. As the second and final step, form St union Ts, which 
yields the outer union S \ U / T .  

The outer union S \ U / T  of relation S with relation T is generated by 
means of the following three steps: 

1. form St = S per T; 

2. form Ts = T per S; 

3. form S \ U / T  = St U Ts. 

The close-counterpart concept (see p. 116 for its definition) is used instead 
of row equality to remove duplicate rows. 

By definition, 

S \ U / T  = ( S p e r T )  U ( T p e r S ) .  

And clearly, 

S \ U / T  = T \ U /  S. 
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Take the sample relations as operands, and apply the outer union. The 
results are as follows: 

S \ U / T  (A B C )  S \ U / T "  (A B C )  

al  b l -  al bl - - (1 )  

al b2 - -  al b2 

a2 b 3 -  a2 b3 

a 2 -  c3 a l -  c1(2) 
a3 m c4 al - -  c2 

a2 - -  c3 

a3 - -  c4 

Note that rows of S \ U / T "  marked (1) and (2) in the preceding 
R-table are not coalesced into < al,  bl,  cl >,  primarily because the operands 
S and T" do not have primary keys with a common domain. Judging from 
their present extensions, S and T" merely have weak identifiers. Lacking a 
common primary key means that a typical row of S and a typical row of T" 
represent quite different types of objects in the micro-world. Under these 
circumstances, it would be very risky to assume that the missing B-compo- 
nent of row < al, m ,  cl > of operand T" is equal to b l, and that the 
missing C-component of row < al,  bl,  - -  > of operand S is equal to cl. 

In the following example, the coalescing of rows is acceptable. In this 
example, a bank has accounts of two different types. Suppose that one type 
is recorded in relation ACCOUNT; the other, in relation ACCT. The 
primary key of each relation is ACCOUNT#.  No claim is made, of course, 
that the few columns in each relation are adequate for any bank. The small 
number was selected to keep the example simple. 

(ANNUAL) ($) 
ACCOUNT (ACCOUNT# NAME INTEREST_RATE BALANCE) 

121-537 Brown 7.5 10,765 
129-972 Baker 8.0 25,000 
126-343 Smith 7.5 15,000 
302-888 Jones 8.0 18,000 

ACCT (ACCOUNT# NAME MATURITY~DATE BALANCE) 

645-802 Green 95-12-31 35,680 
645-195 Hawk 94-09-30 50,000 
640-466 Shaw 96-03-31 22,500 
642-733 Piper 97-10-30 30,900 
302-888 Jones 96-07-31 18,000 

Note that the first table is unique in having INTERES~__RATE as a 
column, while the second table is unique in having M A T U R I T Y ~ D A T E  
as a column. Thus, these two relations are not union-compatible. Part of 
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the outer union operation is to convert them into a pair of relations that are 
union-compatible by applying the extend operator to each one. 

For purposes of exposition, not implementation, the outer union A of 
these two relations is developed in two stages. First is the generation of a 
temporary result A':  

(ANNUAL) ($) 
A' (ACCOUNT# NAME MATURITY=DATE INTEREST_RATE BALANCE) 

121-537 Brown - -  7.5 10,765 

129-972 Baker m 8.0 25,000 

126-343 Smi th  m 7.5 15,000 

645-802 Green 95-12-31 ~ 35,680 

645-195 Hawk 94-09-30 ~ 50,000 

640-466 Shaw 96-03-31 ~ 22,500 

642-733 Piper 97-10-30 M 30,900 

302-888 Jones - -  8.0 18,000 

302-888 Jones 96-07-31 m 18,000 

The final result A differs from A'  in only one respect: the DBMS 
attempts to coalesce the two rows describing accounts held by Jones, because 
the two operands have a primary key in common, and these rows have a 
common primary-key value. The attempt succeeds because each of the 
corresponding non-missing properties in the two rows has ~ pairwise equal 
values. Thus, the two Jones rows in A'  are close counterparts. The end 
result A contains the row < 302-888, Jones, 96-07-31, 8.0, 18,000 > instead 
of the two Jones rows in A' .  

R Z - 2 0  Outer  Set  D i f f e r e n c e  

The outer set difference S \ - / T  between relations S and T, with 
S as the information source and T as the reducing relation, is 
generated by means of the following steps: 

1. form St = S per T; 

2. form Ts = T per S; 

3. form the semi-equi-join U = St[sem = ]Ts; 

4. f o r m S \ - / T  = St - U. 

The close-counterpart concept (p. 116) is used instead of row equality. 

By definition, 

S \ - / T  = St - (St sere= Ts). 
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And dearly, 

S \ - / T  4= T \ - / S .  

Take the sample relations as operands, and apply the outer set difference: 

S \ - / T  (A B C )  

al bl 

al b2 

T \ - / S  (A B C )  

a3 --- c4 

S \ - / T "  (A B C )  

empty  

T " \ - / S  (A B C ) 

a3 - -  c4 

Once again, consider the operands ACCOUNT and ACCT in the bank 
example. Suppose that a user requests all of the accounts information from 
the ACCOUNT relation, but excluding those rows that have close counter- 
parts in the ACCT relation. The DBMS responds by extending each operand 
in accordance with the other, and then removing those rows in the extended 
ACCOUNT relation that have close counterparts in the extended ACCT 
relation. The result is defined by 

DIFF ~ ACCOUNT \ - / A C C T .  

Its extension is as follows: 

(ANNUAL) (S) 
DIFF (ACCOUNT# NAME MATURITY_DATE INTEREST_RATE BALANCE) 

121-537 Brown - -  7.5 10,765 

129-972 Baker --- 8.0 25,000 

126-343 Smith - -  7.5 15,000 

R Z - 2 1  Outer  Set  I n t e r s e c t i o n  

The outer set intersection S \ n / T  of relations S and T is generated 
by means of the following steps: 

1. form St ~- S per T; 

2. form Ts ~- T per S; 

3. form U ~- St sem = Ts; 

4. form V ~- Ts sem= St; 

5. f o r m S \ n / T ~ - U n  V. 

The close-counterpart concept (p. 116) is used instead of row equafity. 
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By definition, 

S N n / T = ((S per T) sere = (T per S)) U ((T per S) sere = 
(S per T)) 

and clearly, 

S \ A / T  = T \ N / S .  

Take the sample relations as operands, and apply the outer set intersection: 

s \ n / T  (A B C ) 

a2 b3 

a2 ~ c3 

S \ n / T "  (A 

al 

al 

a2 

al 

al  

a2 

B C )  

bl 

b2 

b3 

cl 

c2 

c3 

T \ n / s  (A B C ) 

a2 b3 

a2 - -  c3 

T " \ A / S  (A B C ) 

al b l  

al  b2 

a2 b3 

al - -  c l  

al  ~ c2 

a2 - -  c3 

The sample operands S and T, displayed at the beginning of this section, 
will now be used again to show that the symmetric outer join yields a quite 
different result from that generated by the outer union, difference, and 
intersection operators. The composite columns labeled A and E are used as 
comparands: 

U = S [ A \ = / E ] T .  

U (A B E C ) 

a l  b l  ~ 

a l  b2 ~ 

a2 b3 a2 c3 

~ a3 c4 

Once again consider the operands ACCOUNT and ACCT in the bank 
example. Suppose that a user requests all the accounts information that is 
common to the ACCOUNT relation and the ACCT relation. The DBMS 
responds by extending each operand per the other, and then preserving 
those rows in the extended ACCOUNT relation that have close counterparts 
in the extended ACCT relation. 
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The result is defined by 

INT ~-- ACCOUNT \ n / ACCT. 

Its extension is as follows" 

ANNUAL $ 
INT (ACCOUNT# NAME MATURITY__DATE INTEREST__RATE BALANCE) 

302-888 Jones 96-07-31 8.0 18,000 

5.6.3 The Relationship be tween  t h e  O u t e r  Set Operators 

It should now be clear that, for any pair of relations S and T, the following 
identity holds" 

S \ U / T  = (S \ - / T )  U (S \ N / T )  U ( T \ - / S ) .  

This outer identity is very similar to the relationship between the inner 
set operators; the latter identity was defined at the end of Section 5.6.1. 

This outer identity can be seen in action by applying it to the two cases 
of outer union. The first case makes use of the sample relations S and T. 

s \ u / T  (A B C ) 

al bl - -  1 
al b2 ~ S \ - / T  

a2 b3 - -  [ 
J a2 ~ c3 S \ n / T  = T \ n / S  

a3 - -  c4 } T \ - / S  

The second case makes use of the relations S and T"" 

S \ u / T "  (A B C ) 

S \ - / T "  empty 

al bl - -  
al  b2 
a2 b3 
al ~ cl 
al ~ c2 
a2 = c3 

S \ n / T "  = T" \ n / S  

a3 - -  c4 t T " \ - / S  
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5.7 m T h e  I n n e r  a n d  O u t e r  T - j o i n  

The well-known inner joins are based on the 10 comparators: 

1. EQUALITY 

2. INEQUALITY 

3. LESS THAN 

4. LESS THAN OR EQUAL TO 

5. GREATER THAN 

6. GREATER THAN OR EQUAL TO 

7. GREATEST LESS THAN 

8. GREATEST LESS THAN OR EQUAL TO 

9. LEAST GREATER THAN 

10. LEAST GREATER THAN OR EQUAL TO 

These inner joins, together with the corresponding outer joins, are readily 
accepted today. The T-join operators about to be described are new kinds 
of joins, principally based on the four ordering comparators (numbered 3- 
6 in the preceding list). The inner T-join produces a subset of that produced 
by the corresponding inner join; the outer T-join produces a subset of that 
generated by the corresponding outer join. The T-joins should be regarded 
as a proposed enrichment of the relational model, not a replacement for 
any of the original inner joins or outer joins. 

The topic of T-joins is a complicated one. The reader may wish to skip 
to Section 5.8, which is much simpler. 

5.7.1 I n t r o d u c t i o n  to  t h e  T- jo in  O p e r a t o r s  

The four ordering comparators are as follows" 

Strict: LESS THAN GREATER THAN 

Non-strict: LESS THAN GREATER THAN 
OR EQUAL TO OR EQUAL TO 

Full joins based on these comparators frequently yield a result that is 
not very informative because it includes too many concatenations of the 
tuples of the operands. For example, consider the following relations S and 
T: 

s (P A ) T (Q B ) 

kl 4 ml 3 
k2 6 m2 5 
k3 12 m3 9 
k4 18 m4 11 
k5 20 m5 13 

m6 15 
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Suppose that A and B draw their values from the same domain, and 
that the comparator LESS THAN (<) is applicable on this domain. One of 
the full joins is 

U = S [ A < B ] T .  

Its extension is as follows: 

U (P A B Q ) 

kl 4 5 m2 
kl 4 9 m3 
kl 4 11 m4 
kl 4 13 m5 
kl 4 15 m6 
k2 6 9 m3 
k2 6 11 m4 
k2 6 13 m5 
k2 6 15 m6 
k3 12 13 m5 
k3 12 15 m6 

Of the items being compared (A and B), if both are calendar dates, 
times of day, or combinations of dates and times, a join is often needed that 
is "leaner" than this full join ("leaner" in the sense that it has fewer rows 
or tuples). T-joins are intended to fill this role. 

Each of the new joins is defined constructively~that is, in terms of an 
algorithm that will generate the appropriate result. An implementation can 
make use of this algorithm, but is not required to do so. All that is necessary 
is that the implementation generate the same result as the defining algorithm. 

An important first step in the defining algorithm is to order the rows in 
each operand on the basis of the values in the comparand column of that 
operand. If the comparand column in each of the operands is guaranteed 
by a declaration in the catalog to contain no duplicate values, then precisely 
the same ordering will be generated again if the command is re-executed 
later, provided the data in the operand relations has not changed. If, 
however, duplicate values are permitted in one or both of these columns, 
the DBMS must be able to make use of values in other columns to resolve 
ties in the comparand columns. 

These other columns are called tie-breaking columns. The need for 
resolving these ties stems from the need to make the operation precisely 
repeatable, if it should be re-executed later with the operands in exactly the 
same state at the relational level, but not necessarily in the same state at 
the storage level. Precise re-executability of relational commands is required 
by Fundamental Law 15 (see Chapter 29). 

To be a good tie-breaker, a tie-breaking column should be of a highly 
discriminating character: that is, the number of distinct values in such a 
column divided by the number of rows in the operand must be as close as 
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possible to one. Clearly, the best tie-breaking columns are the primary-key 
column (or for certain kinds of views, the weak identifier) and any other 
column for which there is a declaration in the catalog that each of its values 
must be unique within that column. 

Every datum in a computer-supported database is represented by a bit 
string of some length. Now, every bit string of length L bits (say) can be 
interpreted as a binary integer, whether that bit string represents a number, 
a string of logical truth-values, or a string of characters. This integer can 
therefore be arithmetically compared with every other bit string of length 
L if this latter string is also interpreted as a binary integer. 

Thus, it might be proposed that, whenever a tie is encountered in which 
two equal values from the comparand columns are competing to qualify as 
representatives of two candidate rows of one of the operands, the tie can 
be broken by (1) descending to the bit level in other items of data and 
(2) comparing the corresponding binary integers arithmetically. To achieve 
precise repeatability of the operation, however, this approach assumes too 
much~namely,  that the representation of data by the DBMS in storage 
remains constant. This approach departs from the principle that all actions 
in the relational model should be explicable either within the model or, at 
the very least, at the same level of abstraction as the model. 

To avoid complexity, the approach taken in RM/V2 is to assume that 
each of the operands includes a primary key, and that the DBMS has 
information concerning which column of that operand, simple or composite, 
constitutes that key. This assumption is consistent with the expected use of 
T-joins for generating schedules. After all, when scheduling activities, it is 
necessary to know precisely for each line in the schedule which activity is 
involved. 

In addition to discussing the repeatable generation of orderings, it is 
necessary to classify the comparators as in the beginning of this section. The 
comparators involving ordering are called the ordering comparators. The 
two strict ordering comparators are LESS THAN and GREATER THAN, 
and the two non-strict ordering comparators are LESS THAN OR EQUAL 
TO and GREATER THAN OR EQUAL TO. The two non-ordering com- 
parators are EQUAL TO and NOT EQUAL TO, but these two do not 
participate in the proposed new joins. 

These new joins are introduced step by step in Sections 5.7.2 and 5.7.3. 
The sample relations S and T cited earlier are used to illustrate various 
points. 

5.7.2 T h e  I n n e r  T- jo in  

RZ-22 through RZ-25 I n n e r  T - j o i n s  

The four new inner joins, called the inner T-joins, are each based 
on one of the four ordering comparators: LESS THAN, LESS 
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THAN OR EQUAL TO, GREATER THAN, or GREATER 
THAN OR EQUAL TO. 

Suppose that the inner T-join is distinguished from the 10 full inner joins 
by doubling the square brackets around the comparing expression. For 
example, 

V = S [ [ A < B I ] T .  

Let n = 22,23,24,25. Then the RZ feature with n as its number is a T-join 
that makes use of the comparator numbered n + 19 in the list of comparators 
cited in the first part of Section 5.7. An interesting property of V is that 
each tuple of S contributes to either no tuple at all in V or else to exactly 
one tuple in V. A similar remark can be made about contributions from 
tuples of T. 

Next, T-joins are examined using the strict-ordering comparators LESS 
THAN and GREATER THAN, followed by an examination of T-joins using 
the non-strict-ordering comparators LESS THAN OR EQUAL TO and 
GREATER THAN OR EQUAL TO. 

Strict Ordering in T-joins The result V is formed by the DBMS in two 
major steps, which are described here to enable DBMS vendors and users 
to understand T-joins. Because T-joins are expected to be built into DBMS 
products, it should never be necessary for the user to program these steps. 

, 

Suppose that column P is the primary key of relation S, and thus its tie- 
breaker, while column Q is the primary key and tie-breaker of relation 
T. Suppose that relation S is ordered by increasing values of A; relation 
T, by increasing values of B. Whenever repetitions of a value are 
encountered in A, break the tie by selecting the corresponding rows 
from S in an order determined by increasing values of P. Whenever 
repetitions of a value are encountered in B, select the corresponding 
rows from T in an order determined by increasing values of Q. 

Take the first tuple from S. This is the tuple with the least value from 
column A of relation S and, in case of ties, the least value of P. Note 
that the DBMS applies the comparator LESS THAN (<) to P even if 
there is a declaration in the catalog that < is not meaningfully applicable 
to the domain of P. Concatenate it with the first available tuple from T 
that satisfies A < B. This is the tuple with the least value from column 
B of T, and in case of ties, the least value of Q. Assuming one such 
tuple is found in T, mark that tuple in T as used and unavailable. To 
complete this first minor part of Step 2, contribute the concatenated 
tuple to V. 

Now take the second tuple from S and concatenate it with the first 
available tuple in T for which A < B. Assuming one such tuple is found 
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in T, mark that tuple as used and unavailable. To complete this second 
minor part of Step 2, contribute the concatenated tuple to V. These 
minor steps are repeated until the whole of S is scanned. The availability 
marks are then erased from the operands. 

This explanation is constructive and is intended to define the inner 
T-join based on the comparator <. Naturally, when the T-join operator is 
implemented within a DBMS, it is not required that this particular algorithm 
be used. All that is required is that, whatever operands are given, exactly 
the same result must be generated by the implemented algorithm and by 
this algorithm. 

The extension of V resulting from this procedure is as follows: 

V (P A B Q ) 

kl 4 5 m2 

k2 6 9 m3 
k3 12 13 m5 

The full join U could be an intermediate product in the formation of V, 
but U is not required to be an intermediate product. Although the T-join 
V represents a feasible schedule (assuming that properties A and B are date- 
or time-oriented), it is important to observe that some values of A and some 
of B may be omitted altogether in the result. 

B = 3 can be thought of as a non-participant because it is a value of B 
less than every value of A. Similarly, A = 18 and A = 20 can be thought 
of as non-participants because they are values of A that are greater than 
every value of B. 

The non-participants encountered so far are terminal. There may exist 
one or more non-terminal non-participants. In the preceding example, B = 
11 is a non-terminal non-participant. 

Now, let us investigate 

W = T [ [ B  > A ] ] S .  

One might expect that W would have the same information content as V 
because the analagous full joins are equal to one another. However, this is 
not the case with T-joins. 

To construct W conceptually, 

• relation S should be ordered by decreasing values of B; 

• relation R should be ordered by decreasing values of A. 

Now, the same general procedure is followed as used in forming V. 
Relation S is ordered by decreasing values of A, and relation T is ordered 
by decreasing values of B. Take the first tuple from T. This is the tuple with 
the greatest value in column B of relation T and, in case of ties, the greatest 
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value of Q. Note that the DBMS applies the comparator > to Q even if 
there is a declaration in the catalog that < is not meaningfully applicable to 
the domain of P. Concatenate it with the first tuple from S that satisfies 
B > A. This is the tuple with the greatest value of A. Assuming that one 
such tuple is found in R, mark that tuple as used and no longer available. 
Contribute the concatenated tuple to W. These steps are repeated until the 
whole of T is scanned. The availability marks are then erased from the 
operands. 

The extension of W resulting from this procedure is as follows: 

w (a B A P } 

m6 15 12 k3 
m5 13 6 k2 
m4 11 4 kl 

Suppose that column ordering is disregarded (this is quite normal in the 
relational model), but that the column headings are noted. Clearly, W is 
not identical to V in information content. In fact, every tuple of W is different 
from every tuple of V (a strong contrast not encountered in some other 
examples). 

Moreover, the values that do not participate in W are 

A = 18, A = 20, B = 3, B = 5, B = 9. 

All of these non-participants are terminal. In contrast to V, in W there is 
no non-terminal non-participant. It is therefore important to take care in 
choosing the ordering of terms in an expression defining a T-join; otherwise, 
the meaning of an intended query may not be conveyed accurately to the 
DBMS. 

Because the interesting case is that in which duplicate values actually 
occur in A, in B, or in both, this part is based on slightly altered extensions 
for S and T. The tuples marked with an asterisk ("*") have been added, 
and the two occurrences of 6 as a value of A are distinguished by the primary 
key values k2 and k6 in column P of relation S'. 

s' (P A) T' (Q B}  

kl 4 ml  3 
k2 6 m2 5 
k6 6*  m7 7* 
k3 12 m3 9 
k4 18 m4 11 
k5 20 rn5 13 

m6 15 

Suppose as before that A and B draw their values from the same domain. 
One of the full joins is 

U' = S ' [ A K B ] T ' .  
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Its extension has 17 tuples (of course, more than U)" 

Expository row number U' (P A B Q ) 

1 kl 4 5 m2 
2 kl 4 9 m3 
3 kl 4 11 m4 
4 kl 4 13 m5 
5 kl 4 15 m6 
6 k2 6 7 m7 
7 k2 6 9 m3 
8 k2 6 11 m4 
9 k2 6 13 m5 
0 k2 6 15 m6 
1 k7 6 7 m7 
2 k7 6 9 m3 
3 k7 6 11 m4 
4 k7 6 13 m5 
5 k7 6 15 m6 
6 k3 12 13 m5 
7 k3 12 15 m6 

Of course, the row number at the extreme left appears for expository 
purposes only. 

Now consider 

v '  = s '  [[ A < a 11 T ' .  

Its extension is as follows: 

V' (P A B O ) 

kl 4 5 m2 
k2 6 7 m7 
k6 6 9 m3 
k5 12 13 m5 

Note that, in this example, A = 18, A = 20, B = 3 remain terminal non- 
participants, while B = 11 remains a non-terminal non-participant. More- 
over, if 

W'  = S' [ [B  > A l l R ' ,  

then W' remains quite different from V'" 

w' (Q B A P )  

m6 15 12 k3 
m5 13 6 k6 
m4 11 6 k2 
m3 9 4 kl 
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Clearly, W' is quite different from V' in information content. In fact, 
in this case every tuple of W' is different from every tuple of V'. 

Non-strict Ordering in T-joins Now, it is appropriate to consider the non- 
strict comparators LESS THAN OR EQUAL TO ( < = )  and G R E A T E R  
THAN OR EQUAL TO (> =).  The introduction of equality as part of the 
comparing brings with it a new problem: the possibility of cross-ties, in which 
two or more comparand values from one comparand column are not only 
equal to one another, but are also equal to two or more comparand values 
from the other comparand column, These occurrences of equality both within 
and between values in the comparand columns contribute at least four rows 
to the result of a full join. The question arises: In what way are certain rows 
selected to participate in a T,join result, while other rows are rejected? 

In Chapter 17,  "View updatability," the term quad is defined as a 
contribution of several rows to a join arising from a specific value that occurs 
at least twice in each comparand column, say m times in the first-cited 
comparand column and n times in the other comparand column. Such a 
contribution to any full join based on a comparator that involves equality 
must consist of a number of rows that is the product of the two integers m 
and n. Since each integer is at least 2, this product cannot be less than 4: 
hence, the name "quad." Clearly, a quad contribution cannot consist of 3, 
5, 7, 11, or any prime number of rows. When quads can occur in T-join 
operands, the selection of cross-ties that survive in the result becomes an 
issue that must be handled by the DBMS (not the user). 

The following example illustrates a quad. Suppose that relations S and 
T contain rows as indicated: 

S ( P  A )  T ( B  Q ) 

k7 13 13 m5 
k5 13 13 m8 

Then, the full LESS THAN OR E Q U A L  TO join of S on A, with T 
on B, includes the following four rows because of the cross-ties arising from 
the multiple occurrences of the value 13 in both A and B: 

R o w  label 

r o w  t 

r o w  u 

r o w  v 

r o w  w 

Other  rows  

U (P A B a ) 

k5 13 13 m5 
k5 13 13 m8 
k7 13 13 m5 
k7 13 13 m8 

Note that the row labels are purely expository. 
In a T-join, each row of each operand may be used once only. This 
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means that each of the rows < k5, 13 > and < k7, 13 > from S can be 
used once only, not twice as indicated in the preceding full join. Thus, in 
the T-join result for this example the DBMS must choose between row t 
and row u. The DBMS must also choose between row v and row w. 

The defining algorithm for T-joins resolves cross-ties by selecting those 
two rows from any quad that contains in the primary key columns the 
combination of values that are greatest within the quad that remain unused 
in the result. 

Remember that, in general, a quad contains m × n rows, where m and n 
are at least two. 

In the example, columns P and Q are the primary-key columns. Row t 
contains the combination of least keys in the quad < k5, m5 >,  while row 
w contains the combination of the greatest keys in the quad < k7, m8 >. 
Thus, row t and row w are selected to be the only participants in the LESS 
THAN OR E Q U A L  TO T-join of S on A with T on B. 

This algorithm is designed to make execution of all T-joins repeatable 
in the sense that, if the operands remain unchanged, so does the r e su l t~  
even if access methods and representations of the operands have been 
changed in storage. 

If the examples of S and T were those illustrated in Section 5.7.1 and 
the comparators were changed from strict to non-strict, the resulting relations 
U, V, W would be unchanged, because there were no occurrences of equality 
when comparing values from A with values from B. A similar remark applies 
to S' and T' in the preceding discussion. Therefore, relations S" and T" are 
introduced. Each of these relations has ties in the comparand columns; the 
pair of relations also has cross-ties: 

S" (P A ) T" (Q B ) 

kl 4 ml 3 
k2 6 m2 5 
k6 6 m7 6 
k3 8 m8 6 
k4 9 m3 9 
k5 10 m4 11 

m5 13 
m6 15 

Consider the T-join V" of S" on A with T" on B using the comparator 
LESS THAN OR E Q U A L  TO (< = ). The defining expression for this join 
is 

V " =  S"[[ A < =  B l] T". 

The extension of V" is as follows" 
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V" (P A B Q )  

k1 4 5 m2 
k2 6 6 m7 
k6 6 6 m8 
k3 8 9 m3 
k4 9 13 m5 

Note that, in resolving cross-ties, the DBMS did not select the rows < k2, 
6, 6, m8 > and < k6, 6, 6, m7 > to be members of V". 

The new problem that arises with the non-strict ordering comparators 
is the need to resolve cross-ties between comparand values by use of columns 
other than the comparand columns. The technique built into T-joins provides 
a systematic resolution. 

The following practical example exhibits some of the limitations in the 
present version of the T-join operator. Suppose that students have registered 
for certain classes that are scheduled to run concurrently in various rooms 
and buildings. The relation ROOM identifies and describes each room that 
is available for classes. The relation CLASS identifies and describes each 

ROOM 

CLASS 

class. 

R #  

BLDG 

SIZE 

Room serial number 

Building name 

Number of seats for students 

C#  

STUDENTS 

Class identifier 

Number of students registered for a class 

Assume the following extensions for these two relations" 

ROOM (R# BLDG SIZE) 

rl lab 70 
r2 lab 40 
r3 lab 50 
r4 tower 85 
r5 tower 30 
r6 tower 65 
r7 tower 55 

CLASS (C# STUDENTS) 

cl 80 75 
c2 70 65 
c3 65 60 
c4 55 50 
c5 50 45 
c6 40 35 

alternative column of data 

To assign any class to a room, it is required that the room have a number 
of seats in excess of the number of students in the class. The T-join operator 
can be used to assign classes to rooms in two ways: 

U1 ~ CLASS [[ STUDENTS < SIZE 1] ROOM 
U2 ~ ROOM [[ SIZE > STUDENTS 11 CLASS. 
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Let us illustrate these two approaches. First, the rows of the operand 
CLASS are ordered by enrollment in each class, and the rows of ROOM 
are ordered by room s ize~bo th  in ascending order, in preparation for the 
derivation of U1. 

CLASS" (C# STUDENTS) ROOM" (R# BLDG SIZE) 

c6 40 r5 tower 30 

c5 50 r2 lab 40 
c4 55 r3 lab 50 
c3 65 r7 tower 55 

c2 70 r6 tower 65 
cl 80 rl lab 70 

r4 tower 85 

Ui ~--CLASS [[ STUDENTS < SIZE ]] ROOM 

U1 (C# STUDENTS SIZE R# BLDG ) 

c6 40 50 r3 lab 
c5 50 55 r7 tower 

c4 55 65 r6 tower 
c3 65 70 rl lab 
c2 70 85 r4 tower 

In the second attack on this problem, the rows of the operand ROOM 
are ordered by room size, and the rows of the operand CLASS are ordered 
by enrollment in each class, both in descending order, in preparation for the 
derivation of U2. 

ROOM" (R# BLDG SIZE) CLASS" (C# STUDENTS) 

r4 tower 85 cl 80 
rl lab 70 c2 70 
r6 tower 65 c3 65 
r7 tower 55 c4 55 
r3 lab 50 c5 50 
r2 lab 40 c6 40 

r5 tower 30 

U2 ~ ROOM [[ SIZE > STUDENTS ]] CLASS 

U2 (R# BLDG SIZE STUDENTS C#) 

r4 tower 85 80 cl 
rl lab 70 65 c3 
r6 tower 65 55 c4 
r7 tower 55 50 c5 
r3 lab 50 40 c6 
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In this example, the two results U1 and U2 are different from one 
another. Neither of the T-joins using LESS THAN and GREATER THAN, 
respectively, assigns all of the classes to rooms. Class cl is omitted from 
assignment in the first T-join, and class c2 in the second. However, if the 
comparators are changed to LESS THAN OR EQUAL TO and GREATER 
THAN OR EQUAL TO each one of these T-joins assigns all of the classes 
to rooms. In general, given any collection of classes and any collection of 
rooms, and the requirement that distinct classes be assigned to distinct 
rooms, there is no guarantee that each and every class can be assigned. 

5.7.3 T h e  O u t e r  T - j o i n  

The outer T-joins, like the inner T-joins defined in Section 5.7.2, are each 
based on one of the four ordering comparators. 

For each inner T-join, three kinds of outer T-joins are potentially useful: 
the left outer T-join, the right outer T-join, and the symmetric T-join. These 
outer T-joins are now defined in a constructive manner, but with no restric- 
tion intended on how they are implemented. 

R Z - 2 6  through RZ-37 O u t e r  T - j o i n s  

The outer T-join of relations S on A with T on B consists of the 
inner T-join U of S on A with T on B, together with additional sets 
of tuples, called the outer increments. The inner T-join of S on A 
with T on B is denoted 

v = s [ [ n  @ B ]] T, 

where "@" stands for one of the four ordering comparators. S is 
called the left operand; T, the right operand. 

There are two distinctly defined outer increments. To construct 
the left outer increment, collect those tuples of the left operand S 
that do not happen to participate in the inner T-join; to each of 
these, append a sufficient number of marked values to indicate that 
the value of each component of a tuple from T is missing but 
applicable. To construct the right outer increment, collect those tu- 
ples of the right operand T that do not happen to participate in the 
inner T-join; to each of these, append a sufficient number of marked 
values to indicate that the value of each component of a tuple from 
S is missing but applicable. 

Each outer T-join is the union of the corresponding inner T-join, 
together with the following: 

the left outer increment for the 4 left outer T-joins RZ-26 through 
RZ-29; 
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l the right outer increment for the 4 right outer T-joins RZ-30 
through RZ-33; 

• both increments for the 4 symmetric outer T-joins RZ-34 through 
RZ-37. 

Suppose that the outer joins of S on A with T on B, using the comparator 
@, are denoted as follows: 

Left outer T-join 

Right outer T-join 

Symmetric outer T-join 

VL = S [ o [ A @ B ] ] T  

VR = S [ [ A @ B ] o ] T  

VS = S [ o [ A @ B ] o ] T  

Note that the lowercase letter "o" is inserted between the left square brackets 
(for the left outer join), between the right square brackets (for the right 
outer join), or between both pairs of square brackets (for the symmetric 
outer join). 

Taking the sample operands S, T presented in Section 5.2, the following 
results are obtained for the outer T-joins based on the LESS THAN com- 
parator (<). Missing information is represented by a hyphen (,,m,,) in these 
examples, and tuples from the inner T-join based on < are marked with an 
asterisk. 

Lef tVL (P A B Q ) 

* kl  4 5 m2 

* k2 6 9 m 3  

* k3 12 13 m5 

k4 18 m 

k5 20 ~ 

Symmetr ic  MS 

Right VR (P A B Q ) 

~ 3 m l  

* kl 4 5 m2 

* k2 6 9 m3 

~ 11 m4 

* k3 12 13 m5 

- -  15 m 6  

(P A B Q ) 

m m 3 m l  

kl 4 5 m2 

k2 6 9 m3 
m m 11 m4 

k3 12 13 m5 

- -  15 m 6  

k4 18 m 

k5 20 ~ 

5.7.4 S u m m a r y  of  T - jo ins  

There are four simple inner T-joins corresponding to the following four 
ordering comparators: 
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RZ-22 

RZ-23 

RZ-24 

RZ-25 

LESS THAN 

LESS THAN OR EQUAL TO 

GREATER THAN 

GREATER THAN OR EQUAL TO. 

There are 12 simple outer T-joins, three for each of the four ordering 
comparators. The three types are the left outer T-joins (Features RZ-26- 
RZ-29), the right outer T-joins (Features RZ-30-RZ-33), and the symmetric 
outer T-joins (Features RZ-34-RZ-37). 

In Table 5.1, which summarizes the 16 simple T-joins, the following 
notation is used" 

I Inner 

O Outer 

L Left 

R Right 

S Symmetric 

C Comparator 

3 LESS THAN 

4 LESS THAN OR EQUAL TO 

5 GREATER THAN 

6 GREATER THAN OR EQUAL TO 

The inner and outer T-joins can be applied effectively when the values 
being compared happen to be (1) date intervals, time intervals, or combi- 
nations of both, or (2) loads and capacities. The 16 simple T-joins may also 
be useful in some other situations. They are not useful, however, if the 
comparator < is declared in the catalog to be meaningfully inapplicable to 
the values being compared in the principal comparand columns. 

The T-joins represent a step toward a relational operator that will 
probably appear in the next version of the relational model (RM/V3). This 
operator transforms two union-compatible relations involving a sequence of 
non-contiguous time intervals needed on some machines into a result that 
can be interpreted as a merged schedule for the two activities on those 
machines. 

Before leaving the subject of T-joins, it is interesting to consider a 
counterpart to the semi-theta-join, namely the semi-T-join. It will be recalled 
from Chapter 4 that, under certain conditions, semi-theta-join can be useful 
in the efficient execution of inter-site theta-joins in a distributed database 

Table  5.1 S u m m a r y  of S imple  T-joins 

Feature RZ- 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

I o r O  I I I I O O O O O O O O O O O O 
L,R,  orS . . . .  L L L L R R R R S S S S 
Comparator 3 4 5 6 3 4 5 6 3 4 5 6 3 4 5 6 
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management system. In the same way, semi-T-joins can be useful in the 
efficient execution of inter-site T-joins. 

5 .8  m T h e  U s e r - d e f i n e d  S e l e c t  O p e r a t o r  

The main reason for this operator is to introduce a more powerful version 
of the select operator than the built-in version described in Chapter 4. This 
operator permits the selection of rows from a specified relation based on 
any user-defined function that transforms one or more row-components into 
a truth value. 

The built-in operator select with operand relation S involves comparing 
the values in a specified column of S (say A) with either 

1. some specified constant or host variable (say x), or 

2. values in a second specified column of S (say B). 

In Case 2, each pair of values that are compared (an A-value and a 
B-value) must be drawn from the same row of S. The distinction between 
Cases 1 and 2 does not apply to the user-defined select operator. 

R Z - 3 8  U s e r - d e f i n e d  S e l e c t  

This operator is denoted S [i; p(A); t], where i is an initializing 
function (optional), p is a truth-valued function (required), and t is 
a terminating function (optional). The argument A of the function 
p denotes one or more simple columns of the relation S. However, 
the truth value of p(A) must be computable for each row using only 
the A-components of that row. If A is a collection of columns, more 
than one component of each row is involved. 

Note that the comparators in any user-defined select are hidden in the 
function p. Therefore, there is only one Feature RZ-38. 

Specifying i, t, or both can be omitted in any user-defined select com- 
mand. If included in the command, the initializing function i is executed to 
completion at the very beginning of the select, and delivers what is called 
the temporary version of S. If included in the command, the terminating 
function t is executed at the very end of the select, at which point all rows 
that qualify to be selected from S or from its temporary version have been 
selected. The operand of i is the relation S. The operand of t is the relation 
resulting from all the rows of S (or its temporary version) that happen to 
be selected. 

The languages in which the functions may be expressed should include 
one of the host languages supported by the DBMS, together with retrieval 
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operators and the qualifier ORDER BY of the principal relational language, 
constrained to apply to the specified operand relation only. 

The following example is intended to illustrate the practical use of the 
user-defined select operator. Suppose that a company has sales teams in 
various parts of the world. A database keeps track of sales by team in a 
relation called TEAM. Each team has an identifier TID that is unique with 
respect to teams. TID is the primary key of TEAM. The immediate prop- 
erties of a team include year-to-date sales (all expressed in a single currency), 
total sales for each of the preceding five years, and number of members on 
that team. 

Once each month, the company makes a statistical analysis of the year- 
to-date sales in relation to the sales of previous years. The function F is 
applied to measure long-term and short-term growth. F combines these two 
growths in some simple way to arrive at a performance rating. The function 
yields as its result the truth-value TRUE for about 10% of the sales teams, 
those that have achieved the best performance rating. 

Let the relation describing each sales team be called TEAM. Suppose 
that TID denotes the team identifier (the primary key of TEAM). It is 
possible to use the function F to select the sales teams that have performed 
the best on a year-to-date basis: 

WINNERS ~-- TEAM [;F(TID);]. 

Note that no initiating or terminating function is involved. Note also that F 
probably has several arguments (this fact is not shown). 

5 .9  1 T h e  U s e r - d e f i n e d  J o i n  O p e r a t o r  

This join operator is to a large extent user-defined, but not completely so. 
There are two main reasons for this: 

1. the objective of continued support for optimization by the DBMS using 
techniques similar to those applicable to the built-in joins; 

2. the objective of reducing, if not eliminating, the need for users to 
construct iterative programming loops. 

R Z - 3 9  U s e r - d e f i n e d  J o i n  

The user-defined join is more powerful than the built-in joins. It 
concatenates a row from one relation with a row from another 
whenever a user-defined function p transforms specified components 
of these rows into the truth value TRUE. If included in the com- 
mand, the initializing function i is executed to completion at the 
very beginning of the join, before any rows of the first operand are 
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concatenated with any rows of the second operand. Temporary 
versions of the operands are delivered as the result of executing i. 
If included in the command, the terminating function t is executed 
at the very end of the join, at which point all rows that are to be 
concatenated have been concatenated. 

A user-defined join of relations S on A with T on B using functions i, 
p, t may be specified by means of the following expression: 

S [i ;  p( A,B ) ; t l  T. 

The operands for the initializing function i are S and T. One practical 
use of i is to generate temporary relations from S and T ordered by the 
values in their respective comparand columns A and B. The operand for 
the terminating function t is the result of the join up to that point. Inciden- 
tally, function p will rarely have an inverse, and an inverse is not required. 

The languages in which the functions may be expressed should include 
one of the host languages supported by the DBMS, together with retrieval 
operators and the qualifier O R D E R  BY of the principal relational language, 
constrained to apply to the specified pair of operand relations only. 

The following example extends the sales-analysis example cited in Sec- 
tion 5.8 for user-defined select. This extended example illustrates the practical 
use of the user-defined join operator. 

Suppose that the previously described database also contains a relation 
CUST describing its large customers. One of the columns of CUST is the 
customer identifier CID--natural ly,  the primary key of CUST. Another 
property of each customer is the identifier TID of the sales team assigned 
to the customer. In this case TID is a foreign key. Other columns of CUST 
contain sales information similar to that in the TEAM relation, except that 
in each row the information applies to one customer only. 

Suppose that another, different monthly analysis is required by the 
company for its large customers. The intent is to find contra-flow situationsn 
that is, situations in which regional sales are increasing, while sales to one 
or more large customers in the region are decreasing. Let G be a function 
that is applied to customer sales data and team-oriented regional sales data. 
G yields the truth-value TRUE when growth of sales is positive for the 
region, but negative for a large customer. Team information such as team 
identifier TID and team manager TMGR, along with the customer name 
CNAME and customer location CLOC, is requested. This request can be 
expressed in terms of a user-defined join between the relations TEAM and 
CUST, followed by a projection: 

CONTRA ~- ( TEAM [; G ;l CUST ) [TID, TMGR, CNAME, CLOC]. 
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The function G probably has several arguments (these are not shown in the 
request). 

5.10  • R e c u r s i v e  J o i n  

It has been asserted in a public forum that "the relational algebra is incapable 
of recursive join." In fact, such an assertion is astonishingly erroneous. The 
recursive join was introduced 10 years ago in one  of my technical papers 
[Codd 1979]. 

R Z - 4 0  R e c u r s i v e  J o i n  

The recursive join is an operator with one operand. This operand is 
a relation that represents a directed graph. One of the columns of 
this relation plays a subordinate (SUB) role, while another plays a 
superior (SUP) role. Each tuple represents an edge of a directed 
graph, and by convention this edge is directed from the node iden- 
tified by the SUP component down to the node identified by the 
SUB component. Because joins are normally applied to pairs of 
relations, it is convenient to think of the single operand as two 
identical relations. The recursive join acts on this pair of identical 
relations by matching each SUB value in one operand to a SUP 
value in the second operand. It yields all of the pairs of identifiers 
for nodes that are connected by paths in the acyclic graph, no matter 
what the path lengths are. 

It is useful to compare the regular equi-join with this recursive join. 
Note that a regular equi-join of such a relation matching each SUB value 
in one operand to the SUP in the second operand yields all of the paths 
that are precisely two edges in length. The distinction between regular equi- 
join and recursive join should therefore be clear: regular join is terminated 
by completion of a simple scan of one of the two relations, whether real or 
virtual; on the other hand, recursive join with respect to a path of the 
underlying acyclic graph is terminated only when a node is encountered 
which has no node that is subordinate to it. An equivalent way of expressing 
this termination with respect to a path is that it occurs when the path ends. 

There are several versions of this recursive join and they differ principally 
in the information content of the result that is delivered. The simple version 
described above was presented in RM/T [Codd 1979, page 427] as the 
CLOSE operator. A more powerful version suitable for the bill-of-materials 
type of application and not yet published is likely to be included in the next 
version (RM/V3) of the relational model. 

Some relations represent directed graphs. Relation S is a directed graph 
relation if it is of degree at least two and has the following properties: 
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• two of its columns are defined on a common domain; 

• one of these columns has a superior role, termed SUP; 

• the other column has a subordinate role, termed SUB; 

• no other columns have the SUP or SUB role. 

An interpretation of such a relation is that there is an edge of the graph 
that connects from the SUP component of any row down to the SUB 
component of that same row. Two edges are connected if the SUB value of 
one (the higher of the two edges) is the SUP value of the other (the lower 
of the two edges). 

Suppose that a directed graph includes a sequence of edges, each con- 
nected to its successor and with the property that, if the successive edges 
are traversed according to the directedness of the graph, the traversal returns 
to the same node at which it started. Then, such a graph is cyclic, and the 
sample sequence of edges just described is called a cyclic path. An acyclic 
graph has no cyclic paths whatsoever. 

An example of an acyclic graph is discussed briefly here and in Section 
28.4. Figure 5.1 is a diagram of an acyclic directed graph. 

An acyclic path in a directed graph consists of a sequence of edges, each 
of which is connected to one edge lower (except the lowest edge in the path) 

Figure 5.1 
Structure  

A n  Acyc l i c  D i r e c t e d  Graph G I R e p r e s e n t i n g  P r o d u c t  
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and each of which is connected to one edge higher (except the highest edge 
in the path). All of the paths that exist in an acyclic directed graph are 
acyclic. Any traversal of a path in compliance with its direction is called 
downward. Any traversal in the opposite direction is called upward. 

Note that nothing in the definition of the acyclic directed graph concept 
prevents a single SUB value from being associated with more than one SUP 
value. In other words, nothing prevents two or more nodes from acting as 
superiors to a single subordinate node. A hierarchy is a special case of an 
acyclic graph in which each node may have at most one immediate superior 
node. 

In the connectivity part of the bill-of-materials type of problem, an 
example of this type is the product structure graph G1, shown in Figure 5.1. 
In this relation, single letters are used as part serial numbers to identify 
parts. To save space, the acyclic graph relation AG is listed "on its side" 
and the immediate properties of each edge are represented by a lowercase 
letter: 

AG SUP 

SUB 

P 

A B C C D E F G G B F H H H K L N 

D C D E F F G J N H H K L M N N X 

a b c d e f g h i j k 1 m n o p q 

The graph corresponding to the relation AG appears in Figure 5.1. 
Whenever product structure for two or more products is represented by 

a directed graph, each node represents a component and each edge repre- 
sents the fact that one component is an immediate component of another. 
The graph in Figure 5.1 is clearly acyclic and nonhierarchic. Even if the 
graph of product structure begins its existence as a pure hierarchy, it is 
unlikely to remain that way. Thus, a general solution to the bill-of-materials 
problem should not assume the hierarchic structure. 

There is a comprehensive solution to the general bill-of-materials prob- 
lem based on the relational model. The solution is very concise, protects 
the user from iterative and recursive programming, and provides pertinent 
integrity constraints as well as manipulative capability. The recursive join 
now being described, however, is not a complete solution to this problem. 
(The more complete solution will be published later.) 

The recursive join of RM/V2 has four arguments' 

1. a single relation that represents an acyclic directed graph; 

2. one column of node identifiers with the SUP role; 

3. one column of node identifiers with the SUB role; 

4. an identifier for a node from which all downward paths are to be 
traversed. 

The result of recursive join, a relation that identifies every one of these 
downward paths, is therefore of degree three, with the columns SUB, SUP, 
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and PI (path identifier). In each row the SUB and SUP components together 
uniquely identify an edge on one of the downward paths, while PI uniquely 
identifies that path by means of an integer generated by the DBMS. If the 
acyclic graph includes a total of N distinct paths downward from the specified 
node, the integers assigned to each of these paths is from the set 1, 2 , . . . ,  N. 

Some paths are likely to be composed of several edges. However, a 
particular edge may be part of two distinct paths, and may therefore occur 
with two distinct path identifiers. Remember that the graph is not necessarily 
hierarchical. The particular integer assigned to identify a path is meaningful 
only in the sense that it is distinct from all the other path identifiers. 

A reasonable notation for recursive join is exhibited in the following 
example: 

T ~- S [  SUB ! SUP ;P I  1. 

Note that, if this operator is to be applied to graphs that may include cycles, 
it must have a minor extension in its definition to avoid the peril of unending 
looping around the cycles. As execution proceeds, whenever the operator 
traverses an edge of the graph, it should temporarily mark that edge as 
traversed, and avoid traversing it again. RM/V2 includes only one version 
of recursive join. It works on relations that represent directed acyclic graphs. 
RM/V2 does not include an extended version that works on relations rep- 
resenting directed graphs that can have cycles in them. This extended version 
is a clear candidate for inclusion in RM/V3. 

One interesting application of this cyclic version is that of recording 
contacts between criminals and suspects in a database for use by the police. 
In this case, contact between Person X and Person Y implies contact between 
Person Y and Person X, whereas the fact that Part p is an immediate 
component of Part q implies that Part q is n o t  an immediate component of 
Part p. 

5.11 • C o n c l u d i n g  R e m a r k s  

There is no claim that the operators discussed in Chapters 4 and 5 represent 
all the operators that users will ever need. In fact, four more operators are 
introduced in Chapter 17, "View Updatability." When introducing any new 
operator, the reader is advised to remain within the discipline of the rela- 
tional model (see Chapter 28). 

Exercises  

5.1 What is the framing operator? What are its operands and results? 
What is it used for? Supply an example. 
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5.2 

5.3 

5.4 

5.5 

5.6 

5.7 

5.8 

5.9 

5.10 

What is the extend operator and what is it used for? If the description 
of S extended per T is the same as the description of S, what is true 
of the relations S and T? 

Describe an example that illustrates outer union, and state how this 
operator is likely to be used in practice. 

What are the three kinds of outer join? Supply an example for each 
kind. 

Define outer T-join and supply an example. How is outer T-join likely 
to be used in practice? 

How does inner T-join differ from outer T-join? How is inner T-join 
likely to be used in practice? 

The definitions of theta-join, semi-theta-join, and T-join can be found 
in Chapters 4 and 5. Supply a definition of semi-T-join. 

A need arises for an equi-join involving two currency columns as 
comparand columns. However, the values in one of the comparand 
columns happen to be expressed in dollars, whereas the values in the 
other comparand column happen to be expressed in British sterling. 
Explain how you would apply a user-defined join to solve this problem. 

Describe an example that illustrates recursive join, and state how it 
is likely to be used in practice. (See also Chapter 28.) 

Develop two operand relations S and T with the following properties: 

• they are joinable by both theta join and T-join; 

• when S and T are combined by theta join using the comparator 
GREATEST LESS THAN, the result is U, say; 

• when S and T are combined by T-join using the comparator LESS 
THAN, the result is V, say; 

• the relations U and V are not identical. 
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Naming 

In this chapter, the topic of naming is discussed with respect to the man- 
agement of non-distributed databases. Naming is taken up again in Chapters 
24 and 25 with respect to the management of distributed databases. 

When initially establishing a database, much of the naming is concerned 
with the database description, and hence belongs in the catalog. This naming 
is determined by the DBA staff who are designing the database. Later, 
during the interrogation and manipulation stage, much of the naming is 
concerned with the columns of intermediate and final results. This naming 
is initiated by the DBMS according to rules described in this chapter. Users 
must know these rules when combining several operators into one or more 
commands, whether these commands are executed interactively or from an 
application program. 

In establishing or expanding a relational database, names must be as- 
signed to domains, R-tables, columns, and functions. The features listed in 
the naming class (class N) make this activity reasonably systematic and in 
accordance with other features of the relational model--for example, pro- 
tection of users from having to be aware of positioning within the database 
and "nextness" applied to rows and columns. 

When a user attempts to insert names into the catalog, the DBMS must 
check whether the names are compatible with the features of class N. 
Because the user may be Unaware of these features, the DBMS must be 
prepared to catch simple errors. All of the naming features discussed in this 
chapter apply to any single relational database, and are intended to make 
the database easy to understand and the interactions unambiguous. 
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One of the principles underlying these naming features is that, when 
deciding which names should be selected by the DBMS for the columns of 
every relation that is an intermediate or final result, interchangeability of 
the operands must not be reduced or in any way damaged. For example, 
union is an operator for which 

S U T = T U S .  

This commutativity could easily be damaged if the automatic naming of 
columns in the result were dependent upon which operand is cited first. 

6.1 • Basic N a m i n g  Features  

R N - 1  N a m i n g  of  D o m a i n s  and  Data  Types  

All domains (extended data types)~whether  simple or composite, 
whether built-in or user-definedmmust be assigned names that are 
distinct from one another, and distinct from the names of relations 
and functions. 

The description of each domain must be stored in the catalog before any 
use is made of that domain. 

R N - 2  N a m i n g  of  R e l a t i o n s  a n d  F u n c t i o n s  

All relations, whether base or derived, and all functions, whether 
built-in or user-defined, must be assigned names that are distinct 
from one another, as well as distinct from all of the names of 
domains, data types, and columns. 

The description of each relation and each function must be stored in the 
catalog before any use is made of either object. 

R N - 3  N a m i n g  of  C o l u m n s  

All columns, whether simple or composite, within any single relation 
must be assigned names that are distinct from one another, and 
distinct from the names of relations and functions. 
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Note that this feature does not require that all column names in the entire 
database be distinct from one another. Such a rule is not only unnecessary, 
but may also be counter-productive. 

A guideline for naming that tends to make programs easier to read and 
understand is that the DBA and users abide by two simple rules: 

, 

1. If one considers the names of all domains, all relations, and all functions 
as a single collection of names, then in that collection every name is 
distinct from every other name. 

2. Every column name is a combination of a role name and a domain 
name, where the role name designates in brief the purpose of the 
column's use of the specified domain. 

For example, if the domain is QUANTITY OF PARTS (abbreviated 
Q) and a particular column designates the quantity-on-hand of parts, it 
would be appropriate to select Q as the domain name, OH as the role name, 
and OH__Q as the column name. Similarly, the quantity on order would 
be named O O _ Q ,  and the quantity shipped would be named SHIP__Q. A 
DBMS that supports these guidelines should be regarded as supporting the 
somewhat less stringent features RN-1-RN-3. 

The DBA may wish to impose the additional constraint that names of 
different kinds of objects should begin with a letter that designates the kind 
of object. For example, 

Relations R 

Domains D 

Columns C 

Role prefix P 

Functions F 

While this additional constraint is not a requirement, compliance with this 
convention would make programs--and perhaps the database--easier to 
understand. 

An important consequence of Features RN-2-RN-3 is that any combi- 
nation of relation name and column name denotes precisely one column in 
the entire database, provided the column name is the name of a column 
within that relation. This fact is ignored in the design of the language SQL, 
which includes the clause S E L E C T . . .  F R O M . . .  WHERE.  One result 
is that joins are awkward to express in that language. 

A simple syntax for such a composite name is a relation name, followed 
by a period, followed by the name of a column within that relation. 
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R N - 4  S e l e c t i n g  C o l u m n s  w i t h i n  

R e l a t i o n a l  C o m m a n d s  

The combination of relation name and column name is an unam- 
biguous way to select a particular column in a relational database. 
The syntax of RL must avoid separating column names from relation 
names, which causes (1) difficulty in extending the language and (2) 
either ambiguity or needless difficulty for users in understanding 
relational commands. 

The end user or programmer must have the option of specifying the order 
in which columns are to be presented in a report. 

R N - 5  N a m i n g  F r e e d o m  

Success of the DBMS in executing any R L  command (e.g., a join) 
that involves comparing database values from distinct columns must 
not depend on those columns having identical column names. 

At the time of this writing, the NOMAD product includes the undesir- 
able and unnecessary constraint on joins cited at the end of Feature RN-5. 
It must be remembered that in some joins, both comparand columns may 
belong to a single relation. No pair of columns in a single relation are 
permitted to have the same name (Feature RN-3). Thus, a DBMS that 
supports this undesirable naming constraint may be unable to execute joins 
of a relation with itself using two distinct columns as comparands. 

In contrast, the constraint on joins (see Chapter 4) that is part of the 
relational model~namely,  that the comparand columns must draw their 
values from a common domain~guards against user errors in conceiving 
join commands without the adverse consequences just outlined. 

6.2 • N a m i n g  C o l u m n s  i n  I n t e r m e d i a t e  a n d  
F i n a l  R e s u l t s  

R N - 6  N a m e s  o f  C o l u m n s  I n v o l v e d  i n  t h e  U n i o n  

C l a s s  o f  O p e r a t o r s  

In RL, when the user requests the operation R UNION S, he or she 
need not specify which columns of R are aligned with which columns 
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of S, except for those columns of R and S where two or more 
columns of R (or two or more columns of S) draw their values from 
a common domain. The same applies to intersection, difference, and 
the three outer counterparts: outer union, outer intersection, and 
outer difference. 

Of course, the language RL does permit the user to specify which columns 
of R are to be associated with which columns of S whenever two or more 
columns of R or of S draw their values from a common domain (see Chapter 
3). 

One reason for using domains to determine associativity of columns in 
the union-type of operator is that this reduces the burden on the user and 
also reduces the occurrence of errors. If the degree of either operand is N, 
the user would be burdened with specifying N associations. Each association 
is a pair of columns, one column from one operand, one column from the 
other operand. A second reason for using domains in this way is that they 
ensure that the command is meaningful. 

In supporting union, most existing relational DBMS products check no 
more than basic data types. This check is inadequate to ensure meaningful- 
ness of the union operation, and can easily result in incorrect data in the 
database. 

Consider the example of two relations A1 and A2 that identify and 
describe customer accounts pertaining to two different services provided by 
a company. Suppose that A1 and A2 have identical descriptions (see Table 
6.1). 

Note that there are five domains (extended data types) and six columns. 
The two currency columns and the days-of-service column all have the same 
basic data type, namely, non-negative integers. 

Table 6.1 D e s c r i p t i o n  of  Re la t ions  AI  and  A2 

Columns Domains 

A# Account number Account numbers A# 
CNAME Customer name Company names NAME 
PDATE Date of last payment Calendar dates DATE 
PD1 Year-to-date paid type 1 U.S. currency U 
PD2 Year-to-date paid type 2 U.S. currency U 
SERV Days of service Days D 
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As shown in the following R-table, the five domains are 

A# NAME DATE U 
A (A# CNAME PD PD1 PD2 

DAYS 
SERV ) 

cl Smith 88-12 500 300 60 
c2 J o n es 89-01 800 0 105 
c3 Blake 88-07 400 200 55 
c4 Adams 88-10 1200 0 200 
c5 Brook 88-08 150 150 35 
c6 Field 87-12 120 200 30 
c7 Wild 88-06 200 50 45 

For successful action by the union operator, present versions of relational 
DBMS products merely require those columns that are paired off to have 
the same basic data type. This means that these DBMS would accept the 
following pairing of columns: 

A1 ( A #  CNAME PDATE PD1 PD2 SERV)  
A 2 ( A #  CNAME PDATE SERV PD2 PD1 ). 

The relational model, however, requires those columns that are paired off 
to have the same extended data type. Thus, it would not allow the SERV 
column of A1 to be paired with either PD1 or PD2 of A2. The model would 
allow PD1 of A1 to be paired with either PD1 or PD2 of A2. This safety 
feature is one of several in the model that carry some of the meaning of the 
data; such features are said to be semantic. I avoid applying the term 
"semantic" to the whole model, however, because this would be making a 
very extravagant claim. 

R N - 7  Non-impairment of Commutativity 

Given any one of the relational operators that happens to have two 
operands and to be commutative, the rule built into the DBMS for 
naming the columns of the result must not impair this commutativity. 
Similarly, this naming rule must not impair any other simple iden- 
tities that apply to the operators. 

An example of  a commutative operator is union, since (as just pointed 
out), for any pair of relations R, S, 

R U S = S U R .  

Thus, in this case, a rule that names the columns of the result in a way that 
depends on whether R or S is cited first in a relational command is 
unacceptable. 
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Outer join is an example of an operator to which a simple, but different, 
identity applies. For any pair of relations R, S, the left outer join of R on 
A with S on B yields the same result as the right outer join of S on B with 
R on A. One simple way to ensure that the DBMS supports Feature RN-7 
is to design it to choose, from any two alternative names for a column, the 
name that comes first alphabetically using a standard collating sequence. 
This choice, however, would be troublesome for users who are unaccustomed 
to the Roman alphabet. 

R N - 8  N a m e s  o f  C o l u m n s  o f  R e s u l t  o f  t h e  J o i n  
a n d  D i v i s i o n  O p e r a t o r s  

When the user requests in R L  a join (inner or outer) or a relational 
division, if (1) any one name of any pair of column names in the 
result is inherited from one operand of the command, (2) the other 
name is inherited from the second operand of the command, and 
(3) the two column names happen to be identical, then that name 
is in each case prefixed by the name of the relation that is the source 
of the column. 

A feature of this kind is necessitated by the fact that no two columns of the 
result can have the same name. 

R N - 9  N a m e s  o f  C o l u m n s  o f  R e s u l t  o f  a 

P r o j e c t  O p e r a t o r  

The column names and sequencing of such names in the result of a 
project operator are precisely those specified in the pertinent 
command. 

R N - I O  N a m i n g  t h e  C o l u m n s  w h o s e  V a l u e s  are  
F u n c t i o n - g e n e r a t e d  

A column whose values are computed using a function acquires a 
name composed of the name of the function followed by a period 
followed by the name of its first argument. 

If the function has only one argument,  that one is treated as its first 
argument. If two or more columns have values that are generated by the 
same function, and could be assigned the same name as a result, the DBMS 
resolves the potential ambiguity in names by assigning in each case a suffi- 
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ciently large substring of the function-invoking expression that ambiguity is 
resolved. Columns whose values are computed using an arithmetic expression 
(not an explicitly named function) are treated similarly. 

Such a substring must exist; otherwise, the pertinent columns would be 
identical in content. 

R N - 1 1  I n h e r i t a n c e  o f  C o l u m n  N a m e s  

Every intermediate result and every final result of an RL command 
for interrogation or manipulation inherits column names from its 
operands (the join class of operators and the union class of opera- 
tors), except for those columns covered by Feature RN-10. Such 
results also inherit column sequencing, except in the case of the 
project operator. 

Rules for the naming by the DBMS of all columns in intermediate and 
final results are needed partly because of the rejection of positioning and 
nextness concepts in the relational model (see Chapter 1). It is worth 
remembering the following example" a single relational command may form 
the union of several joins. The user needs to know how the DBMS assigns 
names to columns of the joins (which are intermediate results) in order to 
be able to determine the desired alignment of columns when the union is 
executed. 

6 .3  • N a m i n g  O t h e r  K i n d s  o f  O b j e c t s  

Data from a database can be archived, but only as one or more relations. 
Each of these relations can be base or derived. Most often, relations that 
are archived are derived relations. In either case, the archived relation has 
an associated source relation~that is, the relation whose name is alphabet- 
ically first of the one or more relations from which the archived relation is 
copied or derived. 

R N - 1 2  N a m i n g  A r c h i v e d  R e l a t i o n s  

When archiving a relation, the user, normally the DBA, may choose 
to assign a name to it himself or herself; if not, the DBMS assigns 
a name. The name assigned by the DBMS is the name of the 
associated source relation concatenated with the eight-digit date of 
archiving (four-digit year first, then two-digit month, then two-digit 
day), followed by an integer n identifying the archived data as the 
nth version that day. 
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R N - 1 3  Naming of Integrity Constraints 

Each and every integrity constraint, regardless of its type, must be 
declared in the catalog and must be assigned a unique name. 

This feature is necessary for the support of DBA-initiated integrity 
checks (see Feature RI-21 in Chapter 13). It is recommended that the naming 
of integrity checks be clearly distinguishable from the naming of domains, 
relations, functions, and columns. Note that, for a given primary key, there 
are likely to be many integrity constraints of the referential type. Each of 
these constraints must be given a distinct name. 

The DBMS can make good use of these distinct names for integrity 
constraints when reporting on the failure of one of them. It should be 
remembered that a single row may contain two or more foreign keys. Thus, 
in the case of failure of referential integrity, it is insufficient to identify the 
row containing the foreign key that is giving trouble. 

Frequently, a user begins his or her interaction with a database not 
knowing precisely what information he or she must retrieve from it. The 
user begins by posing some simple queries, and basing subsequent queries 
on information obtained from preceding ones. From time to time, it is 
necessary to treat results from preceding queries as operands in subsequent 
queries. This kind of querying is called the detective mode because detectives 
seeking information about criminal acts normally question witnesses and 
suspects in this way. 

R N - 1 4  Naming for the Detect ive Mode 

A user's request for a query must include an option for the user to 
supply a name to be attached to the result of this query. If such a 
name is supplied, the DBMS checks that it does not conflict with 
any other names in its catalog, and, if so, stores the result of the 
query under the name supplied. 

Exercises 

6.1 Must the name of each column in the entire database be distinct from 
the name of every other column in the entire database? If yes, discuss 
why. If no, discuss why not. 

6.2 Must any two columns that are to act as ¢omparands in a relational 
operation be identically named? Explain your answer. 

6.3 Consider an equi-join of S with T. Assume that one of the columns of 
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6.4 

6.5 

6.6 

6.7 

6.8 

S has the same name as one of the columns of T. What are the implied 
names of columns of the result? Use a simple example to explain your 
answer. 

Why is it useful to include the domain name as a distinctive part of a 
column name? 

How is the domain concept used in the union operator (1) to make the 
request more meaningful and (2) to reduce the column-pairing burden 
on the user? 

What does naming have to do with possible impairment of 
commutativity? 

When a relation S is archived and no name is supplied for this version 
by the user, how is that version named by the relational model? How 
does this feature relate to version support (where "version" means 
version of the data)? 

Why should each integrity constraint be distinctly named? 
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C o m m a n d s  for t h e  D B A  

The main purpose of the commands discussed in this chapter is to support 
certain tasks that are often the responsibility of the database administrator. 
Examples of such tasks are finding all occurrences of values in a specified 
domain (see Chapter 3); introducing new kinds of information into the 
database; loading and unloading R-tables from various sources (e.g., virtual 
storage access method files); archiving and re-activating R-tables; and cre- 
ating, renaming, and dropping various parts of the database description. 
The features presented here do not specify the syntax that might be adopted; 
they are intended to convey the semantics. 

Use of the commands described here requires special authorization, and 
is normally restricted to the DBA and his or her staff. These commands are 
not intended to support all of the tasks that are normally within the DBA's 
responsibility. Among such tasks not supported by these commands, and 
not supported in RM/V2, are changes in storage representation and in access 
paths to gain improved performance on the current traffic. Such changes 
are likely to depend heavily upon the design of the particular DBMS product 
involved. It is appropriate that these differences between DBMS products 
exist: different vendors may use quite different storage and access techniques 
in attaining good performance in the execution of high-level relational 
commands. The relational model remains unaffected due to its high level of 
abstraction. 

Another typical task for a DBA or a security officer is assigning appro- 
priate authorization to users so that they may access parts of the database 
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and possibly engage in data insertion, updating, and deletion. Support for 
this kind of task is included in RM/V2 (see Chapter 18, "Authorization"). 

Two of the commands for the DBA were introduced in Section 3.4 at 
the end of Chapter 3. These were the FIND commands (Features RE-1 and 
RE-2) for locating all occurrences of all active values drawn from any 
specified domain (FAOmAV)  and locating all occurrences of just those 
values that occur both in a specified list and in a specified domain ( F A O _  
LIST). 

Of course, the term "locating" is used here in a sense that is meaningful 
to users of relational systems (see Chapter 3), and therefore has nothing to 
do with disk addresses as far as the user is concerned. 

7.1 m C o m m a n d s  f o r  D o m a i n s ,  R e l a t i o n s ,  a n d  C o l u m n s  

When dealing with domains and columns, it is useful to keep in mind the 
kinds of information declared for each one. Consider domain D; let col(D) 
denote the collection of all of the columns that draw their values from this 
domain. One aim is to include in the declaration of D every property that 
is shared by all of the columns in col(D). Then, the declaration of each 
column in col(D) need not repeat any of these common properties. It must, 
however, include the properties that are peculiar to that column, and these 
properties only. 

Thus, a domain declaration normally includes the following: 

• the basic data type; 

• the range of values that spans the ranges permitted in all of the columns 
drawing their values from this domain; 

• whether the comparator LESS THAN (<) is meaningfully applicable to 
such values. 

A column declaration normally includes the following: 

• an additional range constraint (if relevant) that provides a narrower 
range than that declared in the underlying domain; 

• whether values are permitted to be missing from the column; 

• whether the values in the column are all required to be distinct from 
one another. 

For details, see Chapter 15, "The Catalog." 

R E - 3  T h e  C R E A T E  D O M A I N  C o m m a n d  

This command establishes a new domain as an extended data type. 
(For more information on this topic, see Chapters 3 and 15.) The 
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information supplied as part of the command includes the name 
(selected by the DBA), the basic data type (as in programming 
languages such as COBOL, FORTRAN, and PL/1), a range of values, 
and whether it is meaningful to apply the comparator < to these 
values. 

For example, it is often the case that applying the comparator < to part 
serial numbers is meaningless. Note that, if < is applicable, then so are all 
of the other comparators. That is the reason why only the comparator < is 
cited in Feature RE-1. Note also that the basic data type indicates whether 
arithmetic operators are applicable. 

R E - 4  T h e  R E N A M E  D O M A I N  C o m m a n d  

This command re-names an already existing domain without chang- 
ing any of its characteristics. The old name and the new name are 
supplied as part of the command. In addition, the DBMS finds every 
occurrence in the catalog of a column that draws its values from the 
specified domain (identified by its old name), and updates the name 
of that domain in the column description. 

Since large parts of the catalog may have to be locked during the latter 
process, the DBA would be well advised to make this kind of request only 
during periods of low activity. 

References by application programs to the cited domain by its old name 
are not automatically updated in RM/V2, but may be in RM/V3. There 
should be little impairment of application programs because normally these 
programs do not make direct reference to any domain. 

R E - 5  T h e  A L T E R  D O M A I N  C o m m a n d  

A suitably authorized user can employ this command to alter an 
already declared domain (extended data type) in various ways. An 
alteration of this kind is likely to impair application programs logi- 
cally. Thus, such action must be undertaken with great care, and 
only when absolutely necessary. The items that might be changed 
are the basic data type, the range of values, and the applicability 
of <. 
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RE-6 T h e  D R O P  D O M A I N  C o m m a n d  

This command drops an existing domain, provided no columns still 
exist that draw their values from this domain. If such a column still 
exists, an indicator is turned on to indicate that this is the case, and 
that the command has been aborted (see Feature RJ-7 in Chapter 
11). If there is an index based on the specified domain (see Feature 
RE-15) and if that domain is dropped, then the index is dropped. 

R E - 7  T h e  C R E A T E  R - T A B L E  C o m m a n d  

This command stores the declaration for a base R-table or a view 
in the catalog. All domains cited in such a command must be already 
declared. Otherwise, the command is aborted and the domain-not- 
declared indicator is turned on (see Feature RJ-5 in Chapter 11). 

The following information is supplied as part of this command. 

• The name of the R-table. 

If it is a view, its definition in terms of base R-tables and other 
views. 

• For each column, its name. 

• For each column, the name of the domain from which it draws 
its values. 

• Which combination of columns constitutes the primary key or 
weak identifier. (The weak identifier pertains to certain kinds 
of views only; see the discussion of outer equi-join in Chapter 
5.) 

• For each foreign key, which combination of columns constitute 
that key and which primary keys (usually only one) are the 
target. This item is vital for base R-tables, but less critical for 
views. 

It would be helpful for a DBMS that uses indexes to establish a domain- 
based index on the domain of the primary key of the R-table being created, 
if such an index does not already exist. Remember that another R-table 
may already have a primary key on the same domain, and an index based 
on this domain. If the DBMS does not yet support domain-based indexes, 
but does support the more common type of indexes, then it would be helpful 
if the system created an index on the primary key. Automatic creation of 
indexes on the foreign keys, or corresponding expansion of existing domain- 
based indexes, should also be considered. 
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RE-8 T h e  R E N A M E  R - T A B L E  C o m m a n d  

This command renames an existing base R-table or a view. The 
DBMS then examines all view definitions and authorizations re- 
corded in the catalog without deleting any of them. The purpose is 
to make changes from the old name to the new name wherever that 
relation is cited. The old name and the new name are supplied as 
part of the command. 

References by application programs to the cited R-table by its old name 
are not automatically updated in RM/V2, although they may be in RM/V3. 
Of course, the catalog would have to be expanded to become more like 
what is usually called a dictionary. 

The DBA would be well advised to use this command only during 
periods of low activity. 

RE-9 T h e  D R O P  R - T A B L E  C o m m a n d  

When a base R-table or a view, say S, is dropped, several parts of 
the database description may be affected: integrity constraints, views, 
and authorization constraints. It should be remembered that an 
integrity constraint may straddle two or more R-tables. Thus, such 
a constraint may involve not only the R-table S, but also one or 
more other R-tables. The definition of a view may also cite several 
R-tables, of which S is only one. It may also be necessary to drop 
a bundle of authorization constraints based on the R-table. 

The total effect of a normal drop of a specified R-table, say S, is abandon- 
ment of three types of specifications. 

1. All of the integrity constraints citing S. 

2. All of the views whose definitions cite S. 

3. All of the authorization constraints citing S. 

Collectively, the dropping of these specifications is called the cascading 
action that is expected from the DROP request, if such action is not explicitly 
postponed or avoided altogether. Type 1 applies principally to base R-tables, 
while Types 2 and 3 apply to both base R-tables and views. 
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Taking all of these factors into account, dropping such a table can cause 
a significant impact on users of that database. This action therefore requires 
special authorization (see Features RA-5 and RA-6 in Chapter 18). Nor- 
mally, only the DBA and his or her staff are so authorized. 

Sometimes the aim of the user is to replace the dropped R-table by 
other tables, preserving the integrity constraints, views, and authorization 
constraints. The sheer bulk of these items makes them worth preserving, 
even if they need minor editing. For this purpose, RM/V2 provides the 
catalog block (Feature RM-7 in Chapter 12) to postpone the cascading 
actions. The catalog block is a sequence of commands, each of which 
operates on the catalog only. Certain ones of these commands may normally 
have a cascading effect. This cascading action is postponed. It is the catalog 
that is allowed to leave a state of integrity during execution of the catalog 
block. The postponed cascading is re-examined by the DBMS at commit 
time to see whether any of it must be re-executed immediately prior to the 
execution of the commit that terminates this catalog block. 

For safety reasons, the DROP R-TABLE command is executed in three 
steps. However, only Step 1 is applied if the R-table is not a base relation. 

In the first step, the DBMS checks that the table name is recorded in 
the catalog as either a base relation or a view. If the specified R-table 
happens to be only a temporary R-table, it is immediately and uncondition- 
ally dropped. 

If the relation being dropped is a base R-table or a view, the DBMS 
checks to see whether the catalog block indicator (Feature RJ-11 in Chapter 
11) is on. If it is, the DBMS drops the relation and omits any cascading 
action. 

If RJ-11 is off, the DBMS checks to see whether there is any potential 
cascading action. If not, the DBMS again drops the relation. If there is 
potential cascading action, the user is warned of the type of such action, 
and notified that the cascading action can be postponed by requesting a 
catalog block. If the user responds "go ahead anyway," the DBMS not only 
drops the relation, but also takes all of the necessary cascading action. On 
the other hand, if the user requests that the command be aborted, the 
DBMS cancels its attempt to drop the specified R-table. This ends Step 1. 

In the second step, applicable to base R-tables only, if the DBMS has 
decided to initiate the drop procedure, it archives the specified R-table for 
either a specified or a default period. This period is at least seven days (the 
default value). See Features RA-5 and RA-6 in Chapter 18 for the author- 
ization aspects. 

Upon expiration of the archiving period, the DBMS takes the third and 
final step, applicable only to base R-tables by deleting all rows of the data 
in the specified R-table. It then drops the description of that R-table from 
the catalog. At any time during the archiving period, the DBA can restore 
the R-table to its state immediately before the execution of the DROP 
request. 
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R E - I O  T h e  A P P E N D  C O L U M N  C o m m a n d  

This command specifies the name of an existing base R-table. The 
DBMS appends to the description of that table in the catalog the 
name supplied for a new column that draws its values from an 
already declared domain; the name of this domain is also supplied 
as part of the command. Each row of that table is extended to 
include a value for the named column. For the time being, however, 
each such value is A-marked as missing, unless the VALUE qualifier 
RQ-13 (see Chapter 10) is specified in the command. 

The VALUE qualifier is one way of handling the case in which missing 
values are prohibited. Another way is by utilizing Feature RI-19 (see Chapter 
13). 

The domain cited in the command imposes certain constraints upon the 
values permitted in the new column. Additional constraints for the new 
column may be imposed by means of column-integrity assertions. Both 
domain integrity and column integrity are defined and discussed in Chapter 
13. 

R E - I I  T h e  R E N A M E  C O L U M N  C o m m a n d  

This command renames an existing column of some existing R-table. 
The name of the pertinent R-table, the old name of the column, 
and the new name of this column must be supplied. If an index has 
been created on this column, any reference within the DBMS to 
this column by its old name is updated. 

References by application programs to the cited column by its old name are 
not automatically updated in RM/V2, but may be in RM/V3. 

R E - 1 2  T h e  A L T E R  C O L U M N  C o m m a n d  

Occasionally, it may be necessary to make changes in the properties 
assigned to a column. For example, for a specific column, the DBA 
may decide to change from one domain to another or to alter the 
range of values permitted in the column. 

R E - 1 3  T h e  D R O P  C O L U M N  C o m m a n d  

This command makes those component values in each row that fall 
in the specified column inaccessible to all users. These component 



162 • Commands for the DBA 

values are actually removed, but at a reorganization time that is 
convenient for the DBMS. 

Except for the special cases discussed next, this command then drops from 
the description of the pertinent R-table both (1) the column name and 
(2) the column description, including any reference therein to its domain. 

If it happens that the column being dropped is part of the primary key 
of that R-table, the DBMS requests that a new primary key be declared. 
Since that and other R-tables may include numerous foreign keys drawn 
from the same domain as the primary key being dropped, the possibility of 
cascading action exists. Use of the catalog block may be appropriate in 
order to postpone any cascading action and to update these foreign keys. 

If the column being dropped is part of a foreign key, the foreign-key 
declaration is dropped. If the column is simply indexed, the corresponding 
index is dropped. In the case of a domain-based index, only the contribution 
from this column is dropped. 

References by application programs to the dropped column are not 
automatically found and reported by RM/V2, but may be by RM/V3. 

7.2 • C o m m a n d s  f o r  I n d e x e s  

Features RE-14-RE-16 apply only to relational DBMS that exploit indexes 
to attain good performance. The DBMS designer should remember that 
indexes in the relational context are tools for obtaining improved perfor- 
mance, and they should be used for that purpose only. In early releases of 
some relational DBMS products, uniqueness of values within a column could 
be accomplished, only if that column was indexed. Consequently, if the 
DBA dropped that index, the control over uniqueness of values was lost. 
Therefore, for these releases performance could not be the sole criterion 
for choosing whether a column is indexed. In the context of the relational 
model this coupling with the DBMS of semantic properties of the data with 
performance in making index decisions is an abuse of the index concept and 
a DBMS design error. 

Uniqueness of values within any column should be specified as one of 
the properties of that column, not as a property of an index. Similarly, the 
kinds of marks permitted or prohibited in any column should be specified 
as a property of the column, not as a property of an index. 

DBMS products with other kinds of performance-oriented access paths 
should have DBA commands similar to Features RE-14-RE-16. 

R E - 1 4  T h e  C R E A T E  I N D E X  C o m m a n d  

This command is intended to be designed into a relational DBMS 
that exploits indexes. It creates the description of an index and 
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stores this description in the catalog. It also creates the index, 
although not necessarily immediately. If the DBMS receives several 
successive requests for indexes to be created on a single relation, it 
attempts to process them all in a single pass over the data. The 
purpose is improved performance. 

R E - 1 5  T h e  C R E A T E  D O M A I N - B A S E D  I N D E X  

C o m m a n d  

This command is also intended to be designed into a relational 
DBMS that exploits indexes. It creates an index based on the 
specified domain. It provides the DBMS with the storage location 
of each active value drawn from this domain, Such an index refers 
to all of the columns in the database that draw their values from 
the specified domain or a subset of these columns, provided such a 
subset can be specified conveniently by the DBA. An index of this 
kind may therefore straddle two or more base R-tables. 

When such an index is applied to a primary domain, it yields improved 
performance not only on retrieval of data, including the evaluation of joins, 
but also on referential integrity. When the database is distributed and a 
domain-based index is created on a primary domain, that index should exist 
at the site or sites where the primary keys are located. 

R E - 1 6  T h e  D R O P  I N D E X  C o m m a n d  

This command is also intended to be designed into a relational 
DBMS that exploits indexes, It drops an existing index, whose name 
is supplied, or reports the non-existence of an index with that name. 

7.3 • C o m m a n d s  f o r  O t h e r  Purposes 

R E - 1  7 T h e  C R E A T E  S N A P S H O T  C o m m a n d  

A query is embedded in this command. The query part yields a 
derived R-table, whose name is supplied as part of the command. 
The DBMS stores this derived R-table in the database, and stores 
its description (including the date and time of creation) in the 
catalog. 
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Suppose that a snapshot is created from a base relation S.  Unlike a 
view, a snapshot of S does not reflect the insertions, updates, and deletions 
applied to S after the snapshot was created. 

This command is likely to be used heavily in the management of dis- 
tributed databases. For example, if a bank has branches in several cities and 
a computer-managed database in each city, the planning staff at headquarters 
might require a weekly snapshot of the accounts data in each city. These 
snapshots contain data that could be as much as a week out-of-date, whereas 
a view would reflect all of the transactions at the branches as they occur, 
and therefore be much more up-to-date. Snapshots, however, are much 
cheaper than views, and place a much smaller load on the communications 
network. 

R E - 1 8  T h e  L O A D  A N  R - T A B L E  C o m m a n d  

This command invokes a user-defined loading program in accordance 
with a name specified in the command. The function may, and very 
likely will, convert the data from a non-relational form into a relation. 

R E - 1 9  T h e  E X T R A C T  A N  R - T A B L E  C o m m a n d  

This command can unload a copy of a relation (base or derived) in 
whatever form the DBMS delivers the relation. Alternatively, it can 
invoke a user-defined unloading program by including its name. This 
program may (and very likely will) convert the unloaded data from 
a relation into some non-relational form. 

If no ordering of columns is explicitly specified, it may be useful to 
order the columns alphabetically by column name. This procedure will 
improve communications between two or more DBMS, possibly at different 
sites, and between a relational DBMS and non-relational recipients. 

The following two features would be good options on the load utility. 
If supported in such a utility, they need not be supported in the DBMS 
itself. 

R E - 2 0  T h e  C O N T R O L  D U P L I C A T E  R O W S  

C o m m a n d  

This command has as its single operand a table that may have 
duplicate rows in it. In other words, the operand need not be a true 
relation. It generates a true relation (an R-table) that contains only 
those rows of the operand that are distinct with respect to each 
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other, and appended to each such row is the number of occurrences 
of that row in the operand. The column that contains these counts 
is named by the DBMS as column ZZZ or given some equally 
unlikely name. 

Its principal use is on tables loaded from non-relational sources. 
Such tables are likely to contain duplicate rows. 

An example of the usefulness of the CONTROL DUPLICATE ROWS 
command can be found in supermarkets. The customer selects a wide variety 
of items from the supermarket shelves and places them in a shopping cart. 
Then he or she pushes the cart-to a check-out line to enable a cashier to 
accumulate the bill and complete the transaction. 

The cashier takes each item one by one and draws it across a device 
that electronically reads the bar code on the item. For speed of execution 
of check-out, it is important that it be unnecessary for either the cashier or 
customer to have to arrange items in any specific sequence. Thus, if the 
customer happens to have five cans of tuna fish randomly scattered in his 
or her shopping cart, it is highly unlikely that these cans are drawn across 
the bar code reader consecutively. Thus, it requires more than a bar code 
reader to add up the cans of tuna fish. 

Suppose the bar code readings are automatically entered into and re- 
corded in a computer system, partly for the purpose of adding up the bill 
for the complete transaction, and partly to insert this new information into 
a database that keeps track of inventory and, from time to time, places 
orders with one or more wholesale suppliers of food and housewares. 
Suppose also that, as the bar code for each item is entered into the computer, 
the computer converts it into a digital code, searches a table for descriptive 
properties of the item (including its price), and records the digitized bar 
code and properties as one more row in a table. 

Such a table is bound to contain duplicate rows from time to time. For 
example, there are likely to be five separate rows for the five cans of tuna, 
but these rows are duplicates of one another and therefore not distinguish- 
able rows. The question arises: how can duplicate rows be avoided if the 
database is relational? 

Resolution of this question depends on what distinctions and identifi- 
cations the supermarket manager deems to be useful for his or her business. 
One possibility is that the manager wants to keep track of what purchases 
are frequently coupled together in customers' habits. This requirement sug- 
gests that the collection of items purchased by one customer in one trans- 
action be kept separate from those purchased by another customer in another 
transaction. 

Does this mean that each customer should be required to provide his 
or her social security number to the cashier? Certainly not: such a require- 
ment would be unacceptable to most customers. In addition, the manager 
is not likely to be interested in identifying each customer uniquely. Thus, 
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the social security approach represents a serious confusion between distinc- 
tiveness and identification. 

The following is one solution to this problem, and I am not claiming 
that it is the best. However, it does avoid corrupting a relation by storing 
duplicate rows within it. 

What has to be maintained as a distinct collection of records or rows is 
the collection of items purchased in a single customer transaction. To main- 
tain this distinctiveness does not require unique identification of each cus- 
tomer. Instead of placing any burden on the customer to identify himself or 
herself uniquely, it is the system that should bear an equivalent burden, 
namely that of attaching the cash register identification and time of day to 
each transaction. 

If the system initially records each and every item of a customer's 
transaction in a table, then duplicate rows should be removed from this 
table before it is planted in the database. Of course, this removal of duplicate 
rows must avoid loss of information. 

The transformation needed is one that counts the number of occurrences 
of each distinct row and develops a revised table in which each row is distinct 
from every other row, and each row contains the number of occurrences of 
its counterpart in the initially generated table. This means that the trans- 
formation needed is precisely that provided by the CONTROL DUPLI- 
CATE ROWS command. 

7 .4  m A r c h i v i n g  a n d  R e l a t e d  A c t i v i t i e s  

From time to time data must be removed from disk storage, because it has 
become inactive in the database (either completely or almost completely 
inactive). The main reason for this is to avoid the expense of having the 
entire database consume too much disk storage. However, either for gov- 
ernment reasons (e.g., tax audit) or for business reasons (e.g., internal 
audit), the data thus removed must normally be saved in inactive status for 
a certain period in an archive. Such an archive is usually supported in a 
storage medium with very large capacity and relatively slow accessmfor 
example, by recording the data on magnetic tape. Sometimes it is required 
that archived data be reactivated in a separate database for use by analysts, 
planners, or accident investigators. 

The DBA needs to plan this archiving and reactivating of data so that 
it becomes a routine activity handled by the DBMS: an activity that is 
repeated at various intervals specified by the DBA. Some data in the 
database may have a very short period of activity, while other data may 
have a very long period of activity. For simplicity and adequate generality, 
RM/V2 permits any derived relation to be archived. Note the emphasis on 
any derived relation. In a relational database a derived relation may consist 
of any combination of rows, providing they are all of the same extended 
data type. 
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An archived relation may later be reactivated in the same database from 
which it came or in some other database. Alternatively, an archived relation 
may be dropped altogether. Reactivation in a different database is quite 
likely whenever a company-related accident occurs in which employees or 
members of the public are injured. Reactivation in a different database is 
also quite likely if the data reflects operations that the company requires to 
be regularly analyzed "off-line" for planning purposes. 

In RM/V2 actions such as archiving, reactivating, and dropping may be 
triggered by a calendar event, by a non-calendar event, or by the expiration 
of a specified period of calendar days after the occurrence of some specified 
event. The actions and their triggering conditions are specified by the DBA 
as relational commands. Since these requests concern the community of 
users, it is inappropriate to incorporate them in an application program. 
Instead, the DBMS stores these commands in the catalog. Further exami- 
nation of these requests and their triggering conditions must be postponed 
until user-defined integrity constraints are considered (see Chapter 14). 

As a general rule, relational requests such as retrievals, insertions, 
updates, and deletions, do not touch the archived data, and are therefore 
unaffected by it. The following two requests, however, do involve the 
archived data in a very explicit way. 

RE-21  T h e  A R C H I V E  C o m m a n d  

This command stores a specified R-table in the archive storage, and 
attaches to it either the specified name or, if such a name is not 
supplied, the name of source R-table with the present date appended 
(see feature RN-12 in Chapter 6). It also attaches the name or 
identification of the source database from which it was archived. 

This command is normally applied to a derived R-table. If an R-table with 
the same name already exists in archive storage, it is over-written by the 
new version. 

R E - 2 2  T h e  R E A C T I V A T E  C o m m a n d  

This command, invoked for an R-table that was previously archived, 
copies the specified R-table from archive storage into storage that 
is more readily accessible. The reactivated copy becomes part of 
the database specified in the REACTIVATE command. Alterna- 
tively, if the database name is omitted, it once again becomes part 
of the source database. If in the process an R-table with the same 
name (including archiving date where applicable) is encountered in 
the receiving database, it is over-written. 
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Additional commands for enabling the DBA to maintain better control 
over the integrity of the database are discussed in Chapter 13 (Feature 
RI-21) and Chapter 14 (Features RI-31, RI-32, RI-33). 

Exercises 
7.1 What relational objects can you create, rename, and drop using the 

DBA commands? 

7.2 Why are the following two properties considered to be columnar, rather 
than domain-oriented? 
1. Whether values are permitted to be missing from the pertinent 

column. 
2. Whether all the values in the column are required to be distinct 

from one another. 

Give examples of a type of domain, and two types of columns based 
on it, to support your argument. 

Consider the task of appending new columns to two of the base 
relations. Is it necessary first to bring all the traffic to a halt? If not, 
explain how RM/V2 handles this problem. 

Are there any commands in RM/V2 for keeping indexes consistent 
with whatever columns of data are indexed? Can semantic properties, 
such as uniqueness of values or keyhood, be associated with indexes? 
Explain your answer. 

What is a domain-based index? How can it help improve the speed of 
execution of joins and of referential-integrity checks? (See also Chapter 
13.) 

If the occurrence of duplicate rows within a relation is banned by the 
relational model, why is the CONTROL DUPLICATE ROWS com- 
mand needed (1) to check the existence of duplicate rows and (2) to 
remove the redundant duplicate rows? 

What is an important reason for requiring that a user-defined function 
comes into effect during loading or unloading data? Does RM/V2 
require such a function to be invoked when using the LOAD or 
EXTRACT command (Features RE-18 and RE-19), or is this optional? 

7.3 

7.4 

7.5 

7.6 

7.7 
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Missing Information 

The purpose of this chapter is to clarify and summarize the way missing 
information is treated in Version 2 of the relational model. The clarification 
places heavy emphasis on the semantic aspects of missing information. The 
systematic approach of RM/V1 has been extended in RM/V2 to deal with 
the inapplicability of certain properties to some objects. Once again, this 
treatment is independent of the data type of the missing information. This 
extension does not invalidate any part of RM/V1. 

In RM/V2 the approach to manipulating information from which values 
may be missing represents my current thinking about this problem. I do not 
feel this part of the relational model rests on such a solid theoretical 
foundation as the other parts. However, I do think that this approach 
represents a considerable improvement over the prerelational methods that 
amounted to leaving it up to application programmers to solve it in many 
different and specialized ways (even within a single installation). 

8.1 • I n t r o d u c t i o n  to  Mis s ing  I n f o r m a t i o n  

In Section 2 of my paper on the extended model RM/T [Codd 1979], I 
included an account of how the basic relational model RM/V1 represents 
and handles missing information, but gave very little emphasis to why that 

169 
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approach was adopted. Included in that discussion of the manipulation of 
missing information was an account of the three-valued logic proposed for 
determining the possibilities if some of the missing information were con- 
ceptually and temporarily replaced by known values. 

Criticisms have been fired at the three-valued logic approach of RM/ 
V1. In its place, the critics propose, in effect, a return to the "good old 
days" when, for each column permitted to have missing information, the 
database administrator or some suitably authorized user is forced to select 
a specific value from the particular domain on which the column is defined 
to denote the fact that information in that column is missing. 

The case for a logic having more than two truth-values is discussed in 
Sections 8.9 and 8.10. Criticisms are answered in Chapter 9. 

In this chapter, the representation and handling of missing information 
are described according to the way such information is treated in RM/V2. 
This approach provides a stronger semantic underpinning than any non- 
relational approach. One of the relatively new extensions in RM/V2 is the 
treatment of a property that is generally applicable to a class of objects, but 
inapplicable to certain members of that class. One example of such a property 
is the name of the spouse of each employee, when there may be a significant 
number of employees who are not married, and therefore have no spouse. 
Another example is the sales commission earned to-date in an EMPLOYEE 
relation, which deals with both salespeople and non-salespeople. 

It is the meaning of the data that determines whether a database value 
is missing-but-applicable or missing-and-inapplicable. Thus, it is the database 
designer who should establish for each column of each relation whether 
missing values of each type are permitted or prohibited in that column. 
Sometimes a missing and inapplicable status can be derived from data found 
elsewhere in the database. For example, in the salesperson example, it is 
quite likely that the EMPLOYEE relation contains as another column the 
job type within the company or institution. From this datum, the DBMS 
can determine whether an elementary database value (db-value for brevity) 
is permitted or prohibited in the sales-commission column. This topic is 
discussed further in Chapters 13 and 14, which deal with integrity constraints. 

The two types of missing information that are defined in Section 8.2 
and stressed in this chapter are missing but applicable (denoted A ) a n d  
missing and inapplicable (denoted I). Section 8.19 deals with operators that 
generate marks, and briefly discusses the relationship between (1) A and I 
applied to whole rows and (2) A and I applied to components of a row. 

Figure 8.1 illustrates the kinds of information that can be missing. Later 
in this chapter, a description of how RM/V2 handles these two types of 
missing information, types A and I, is given. 

The various technical criticisms of the RM/V1 approach to missing 
information that have recently come to my attention are discussed in detail 
in Chapter 9. That discussion includes some strong technical arguments 
against one proposed alternative, the scheme of "default values." 
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Figure 8.1 Classif ication of  Missing Informat ion  
in a Relat ional  DBMS 
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8 .2  • D e f i n i t i o n s  

In logic and in algebra, when the value or possible values of an item are 
unknown, a named variable is assigned to the item and it is usually called 
an u n k n o w n .  Distinct items with unknown values are assigned variables with 
distinct names. Thus, a formula in logic or in algebra may involve several 
variables, and a common task in solving a problem is to find the values of 
these variables using a collection of equations. 

In database management, the same approach cou ld  be followed. Thus, 
if a database contained information about employees and projects, each 

occurrence  of an unknown birthdate of an employee and of an unknown 
start-date for a project could be recorded as a distinctly named variable. 

Under certain circumstances, the DBMS might be able to deduce equal- 
ity or inequality between two distinctly named variables, or to deduce certain 
other constraints on the variables. It would rarely be possible, however, for 
the DBMS to deduce the actual values of these variables. Instead, most of 
the unknown or missing-and-applicable items are eventually supplied by 
users in the form of late-arriving input or not-yet-completed calculation. On 
the other hand, those items marked missing-and-inapplicable behave more 
like unknowable items than like unknowns. 

Note that in the few cases where it is conceivably possible for the DBMS 
to deduce actual values for missing information, the cost of such deduction 
is likely to be too expensive relative to the actual benefit. In the present 
version of the relational model, the potential complexities of using the 
variables of algebra or logic for missing information are avoided. Moreover, 
compared with pre-relational approaches, the RM/V2 approach continues 
to place more burden on the system and less on the application programmers 
and terminal users. 

I have made no claim, now or in the past, that the relational approach 
to missing information places no burden at all on users. Any attempt, 
however, to put missing information on a systematic basis (i.e., an attempt 
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that is uniformly applied to data whatever its type) will necessarily entail a 
learning burden. It is important that this learning burden should pay off in 
terms of a safer and more reliable treatment of databases, one that will 
strengthen the retention of database integrity. 

As noted earlier, the term "elementary database value" is written as 
db-value for brevity. This term means any value that a single column may 
have in any relation. Except for certain special functions, a db-value is 
atomic in the context of the relational model. The term "datum" would 
have been preferred, but its plural, "data" has very broad use. 

With regard to missing information, two questions seem dominant: 

1. What kind of information is missing? 

2. What is the main reason for its being missing? 

In the relational approach, Question 1, regarding the kind of informa- 
tion, can be interpreted as a question concerning structural context: is the 
missing information a whole row, a component atomic value (a db-value) 
of a row, or a combination of these atomic values? There appears to be no 
need to consider the consequences of an entire relation being missing because 
a database necessarily models just a micro-world. 

Moreover, the "main reason" in Question 2 can be interpreted to mean, 
"Is the information missing simply because its present value is unknown to 
the users, but that value is applicable and can be entered whenever it happens 
to be forthcoming? Or is it missing because it represents a property that is 
inapplicable to the particular object represented by the row involved?" 
Figure 8.1 summarizes the classification by kind (the structural context) and 
by reason. 

In a certain row of a relation that describes the capabilities of suppliers, 
it may be recorded that supplier s3 is capable of supplying part p5, but the 
current price for this part is missing. This is an example of a missing-but- 
applicable value. In those rows of the EMPLOYEE relation that describe 
employees who are not legally married, the name of the employee's spouse 
is missing. This is an example of a missing-and-inapplicable value. 

Note that, although there are many other ways to classify missing 
information, only the missing-but-applicable and missing-and-inapplicable 
types appear to justify general support by the DBMS at this time. In this 
context, "general" means independent of the particular column and of its 
domain or extended data type. Since DBMS users and even designers are 
not yet accustomed to using techniques of this generality for handling missing 
information, gradual introduction appears appropriate. 

A basic principle of the relational approach to missing information is 
that of recording the fact that a db-value is missing by means of a mark 
(originally called a null or null value). There is nothing imprecise about a 
mark: a db-value is either present or absent in a column of a relation in the 
database. 
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The semantics of the fact that a db-value is missing are not the same as 
the semantics of the db-value itself. The former fact applies to any db-value, 
no matter what its type. The latter fact has semantics depending heavily on 
the domain (or extended data type) from which the column draws its values. 

Like a variable, a mark is a placeholder. It does not, however, conform 
to the other accepted property of a variable--namely, that semantically 
distinct missing values are represented by distinctly named variables. 

We begin with a definition of the missing-but-applicable value mark (for 
brevity, an A-mark). This mark is treated neither as a value nor as a variable 
by the DBMS, although it may be treated as a special kind of value by the 
host language. Consider an immediate property P of objects of type Z in a 
database. Normally P has a specific value in each and every row of that 
relation that provides the immediate properties of type Z objects. Suppose 
that, represented in the database, there is an object z of type Z and that, 
at this time, the value of P for this object is unknown. Then, P would be 
assigned an A-mark in the database, provided P is considered to be appli- 
cable to the object z. In the example introduced previously, Z is the 
capability of a supplier, z is the combination of supplier s3 and part p5, and 
P is the price that s3 charges for p5. 

On the other hand, suppose that property P is inapplicable to the 
particular object z. Then P would be assigned an inapplicable-value mark 
(for brevity, an I-mark) in the row representing z. Thus, in the P column, 
each row contains a value for P or an A-mark or an I-mark. In the example 
cited previously, Z describes employees, z is any unmarried employee, and 
P is the name of the employee's spouse. Two more examples follow: 

1. If an employee has a missing-but-applicable present salary, his or her 
record would have an A-mark in the salary column. 

2. If an employee has an inapplicable sales commission (such an employee 
does not sell any products at this time), his or her record would have 
an 1-mark in the commission column. 

Sometimes the occurrence of an I-mark in one component of a row is based 
on data that occurs in other components of that row. In Example 2, both 
the job category and sales commission may be a component of each row of 
the EMPLOYEE relation. In that case, it is quite likely that inapplicability 
of the sales commission can be derived from the job category. 

Why are these items now called "marks" rather than "values, . . . .  null 
values," or "nulls"? Four reasons follow: 

1. The DBMS does not treat marks as if they were values. 

2. There are now two kinds of marks, where there was previously just one 
kind of null. 

3. Some host languages deal with objects called "nulls" that are quite 
different in meaning from database marks. 
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. "Marked" and "unmarked" are better adjectives in English than are 
"nulled," "un-nulled," and "nullified." 

To pursue the first reason, a mark in a numeric column (a column that 
normally has numeric values) cannot be arithmetically incremented or dec- 
remented by the DBMS, whereas the numeric values that are present can 
be subjected to such operators. To be more specific, if x denotes a db-value, 
A denotes an A-mark, and I denotes an I-mark, this is the effect of the 
arithmetic operator addition: 

x + x  = 2 x  
A + A = A  
I + I  = I  

x + A = A  
A + I  = I  
x + I  = I  

A + x  = A  
I + A = I  
I + x  = I  

A similar table holds for the three arithmetic operators minus, times, 
and divide (except that when both arguments are db-values the result is what 
one would expect from ordinary arithmetic). Similarly, a mark that appears 
in a character-string column (one that normally has character-string values) 
cannot have a second character-string concatenated with that mark by the 
DBMS, in contrast to the character-string values that are present in the 
database. A table similar to the one just given for addition also holds for 
concatenation. These remarks can be summarized as follows" 

If I-marks are placed in the top class, A-marks in the second class, 
and all db-values in the third class, the combination (arithmetic or 
otherwise) of any two items is an item of whichever class is the 
higher of the two operands. 

How, then, can these marks appear in a column that normally contains 
values? Present hardware is of little help" it fails to support any special 
treatment of marks as distinct from values. For the same reason, present 
host languages, such as COBOL and PL/1, are also of little help. 

In the relational approach, one way to support marks by software is to 
assign a single extra byte to any column that is allowed to have applicable 
or inapplicable marks. This approach, adopted for A-marks in the IBM 
mainframe and mid-range relational DBMS products (DB2 and SQL/DS), 
appears to be fundamentally sound, although in these products some of the 
manipulative actions on marks should be cleaned up. Incidentally, criticisms 
of the way missing information is handled by SQL should not be interpreted 
or presented as criticisms of the relational model. Moreover, criticisms of 
SQL'S treatment of missing information do not justify abandoning database 
nulls or marks. 

The principal feature of RM/V2 pertaining to the way missing infor- 
mation is perceived by users is Feature RS-13 (see Chapter 2). 
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8.3  • P r i m a r y  K e y s  a n d  F o r e i g n  K e y s  
o f  B a s e  R e l a t i o n s  

An important rule for relational databases is that, to maintain integrity, 
information about an unidentified (or inadequately identified) object is never 
recorded in these da tabases~a  sharp contrast to non-relational databases. 
Thus, the declaration of exactly one primary key for each base relation is 
mandatory; it is not an optional feature. Moreover, the primary-key attribute 
is not permitted to include marks of either type (see Section 8.6). The 
pertinent RM/V2 feature is called entity integrity (Feature RI-3 in Chapter 
13). 

As an aside, the mere fact that such marks are prohibited from appearing 
in a column does not of itself make that column the primary-key attribute 
of a base relation. It is required that the catalog include an explicit decla- 
ration of the primary key of each base relation (see Feature RC-3 in Chapter 
15). 

A foreign key consists of one or more columns drawing its values from 
the domain (simple or composite), upon which at least one primary key is 
defined. In the case of composite foreign keys, it is possible that some, 
perhaps all, of the component values of a foreign key value are allowed to 
be A-marked (missing-but-applicable). This case needs special attention. 
Those components of such a foreign key value that are unmarked should 
adhere to the referential-integrity constraint. This detail is not supported in 
many of today's DBMS products, even when the vendors claim that their 
products support referential integrity. 

I strongly recommend that database administrators or users consider 
very carefully the question of whether to permit or prohibit A-marks in 
foreign-key columns, and also that they document how and why that decision 
was made. Sometimes there will be a strong business case for prohibiting 
missing information altogether in foreign-key columns. However, reasons 
are presented in some detail in Section 4.3 for choosing to permit A-marks 
in these columns (see Features RB-33 and RB-34, the primary-key update 
operators). On the other hand, I-marks must be prohibited in all foreign- 
key columns in the entire database, because such a mark contradicts the 
foreign-key concept. 

8 .4  • R o w s  C o n t a i n i n g  A - m a r k s  a n d / o r  I - m a r k s  

According to Feature RI-12 in Chapter 13, any row containing nothing but 
A-marks and/or I-marks can and should be discarded by the DBMS from 
the relation in which it appears, no matter what the type of the relation. 
Such a row would be illegal in a base relation, because of the entity-integrity 
rule (see Section 8.6). Such a row does not bear information in any derived 
relation, whether it be a view, a query, a snapshot, or even an updated 
relation. 
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An external symbol is needed for the marks in several cases. Whenever 
such a symbol is needed, the following are suggested: 

Type of Mark A-mark I-mark 

External symbol m or ?? !! 

8 .5  • M a n i p u l a t i o n  o f  M i s s i n g  I n f o r m a t i o n  

Feature RM-10 in Chapter 12 is the RM/V2 feature of most importance with 
regard to manipulation of missing information. It calls for an approach that 
is uniform and systematic across the entire database. In particular, the 
approach is applicable to missing database values only, and must be inde- 
pendent of the data type of the missing information. 

Features RM-11 and RM-12 in Chapter 12 specify the actions of arith- 
metic operators and concatenation on A-marked and I-marked values, re- 
spectively. Feature RJ-3 in Chapter 11 is an indicator that is turned on 
whenever a relational command encounters a missing db-value. 

8.6  • I n t e g r i t y  R u l e s  

There are two integrity rules that apply to every relational database" 

1. Type E, entity integrity. No component of a primary key is allowed to 
have a missing value of any type. No component of a foreign key is 
allowed to have an I-marked value (missing-and-inapplicable). 

2. Type R, referential integrity. For each distinct, unmarked foreign-key 
value in a relational database, there must exist in the database an equal 
value of a primary key from the same domain. If the foreign key is 
composite, those components that are themselves foreign keys and un- 
marked must exist in the database as components of at least one primary- 
key value drawn from the same domain. 

A single instance of referential integrity is an example of an inclusion 
dependency. In the case of referential integrity, the set of distinct values in 
a foreign key must be a subset of the set of primary-key values drawn from 
the same domain. Casanova, Fagin, and Papadimitriou (1984) report in- 
teresting relationships between inclusion dependencies and functional 
dependencies. 

It is important to observe that the entity-integrity and referential-integ- 
rity rules specify a state of integrity, not what action is to be taken by the 
system if an attempt is made to violate either rule. In the case of referential 
integrity, the DBMS should support at least three options: 
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1. refuse the command; 

2. cascade the updates or deletes on the primary key values to all foreign 
keys defined on the same domain; or 

3. replace each corresponding foreign-key value with an A-mark. 

The DBMS rejects any attempts by users to replace each corresponding 
foreign-key value by an I-mark, since that would violate the second part of 
entity integrity. 

This required choice of violation responses is the reason that the refer- 
ential-integrity constraint should be supported in a general manner similar 
to that for user-defined integrity constraints (see Chapter 14), where a 
general choice of actions is also needed. 

Finally, it should be possible for the DBA or any suitably authorized 
user to define additional special-purpose integrity constraints and the action 
to be taken if there is an attempted violation. These constraints are specific 
to the particular database involved. 

If, as is usual, several columns take their values from a common domain, 
marks may occur in some of these columns and not in others. For example, 
a primary-key column is not permitted to contain any occurrences of either 
kind of mark, whereas (at the DBA's discretion) corresponding foreign-key 
columns (on the same domain) may be permitted to contain occurrences of 
the A-mark. Thus, declarations concerning whether a mark is permitted in 
or prohibited from a column should normally be associated with that column, 
not with the corresponding domain from which it draws its values. 

8 .7  n U p d a t i n g  A - m a r k s  a n d  I - m a r k s  

A-marks and I-marks are treated differently from one another with regard 
to updating. This difference stems from the fact that an A-mark indicates 
that a value is at present unknown, whereas an I-mark indicates that a value 
is in some sense unknowable, given the present state of the micro-world 
being modeled. 

An A-mark in column C may be replaced by any db-value that complies 
with the domain constraints and column constraints declared for column C; 
this replacement may be carried out by any user authorized to make updates 
in column C. Similarly, any db-value in a column for which marks are 
permitted can be replaced by an A-mark. 

An I-mark in column C may be replaced by an A-mark or by any actual 
value, provided that: 

• the DBMS finds that the user has the necessary extra authorization; and 

• pertinent integrity constraints are satisfied. 

See Section 14.3 for more details. 
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In Figure 8.2, "*" means that extra authorization is needed as required 
by Feature RA-9 (see Chapter 18). The authorization mechanism requires 
that the user who replaces any database value or A-mark by the I-mark 
must have special authorization for this action. Such authorization is also 
required for any change from an I-mark in the reverse direction. 

The 1-mark is strictly stronger than the A-mark. Any user who is 
authorized to Update values in a column is thereby permitted to change any 
active value into an A-marked value, or vice versa. However, changing any 
non-missing value directly into an 1-marked value or vice versa, requires 
special authorization (enforced by the DBMS), because that would be a 
direct attempt to violate the meaning of an I-mark. 

In the examples already cited, changing a price from missing-and-appli- 
cable to a specified value is no threat to the integrity of the database. On 
the other hand, changing an employee's sales commission from missing-but- 
inapplicable to a specified value could damage database integrity. Thus, an 
I-mark is treated as if it were an integrity constraint of a special k ind- -  
namely, one applied to selected objects rather than selected object types. 

8.8 • A p p l i c a t i o n  Of Equal i ty  

What does it mean to assert that one missing-but-applicable value equals 
another? Is it appropriate to speak of the equality of two inapplicable values? 
In other words, under what circumstances does equality make sense? The 
RM/V2 position is that there a re  two kinds of equality of marks to be 
considered: (1) semantic equality, in which the meaning participates heavily, 
and (2) symbolic (or formal) equality, in which the meaning is ignored. 

With regard to semantic equality, a factor that must be taken into 
account is how applicable and inapplicable values are expected to be used. 
Their uses are quite different in nature. In fact, the truth-value of 

A-mark = I-mark 

is FALSE with respect to both types of equality. 
How about equality between any two occurrences of the same type of 

mark? Since the symbol is the same in both cases, the two occurrences are 
symbolically equal. The question of semantic equality, however, needs more 
detailed investigation, and is discussed in the next section. 

Figure 8.2 State Diagram Specifying Permitted Updates 

A-mark db-value I-mark 
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8.8.1 M i s s i n g - b u t - A p p l i c a b l e  I n f o r m a t i o n  

Missing-but-applicable information presents the opportunity to ask what 
might be true if one or more missing values were to be temporarily replaced 
by actual values. Frequently, "what-if" databases must be developed and 
manipulated separately from the so-ca!led operational databases. This occurs 
because the former represent what might be the case if certain events were 
to take place in the future (in the business or in its environment), while the 
latter represent reality. Accordingly, updates in the "what-if" databases 
must be regarded as representing conceptual actions (analytical, planning, 
or projecting into the future). An important advantage of the A-marks is 
that some of the analysis can be carried out directly on the operational data 
without making any conceptual updates. 

Suppose a database includes information about employees, including 
each employee's birthdate. Suppose also that birthdate is one of the im- 
mediate, single-valued properties of an employee that is allowed to be 
temporarily missing for one or more employees. It is quite possible that 
when an employee's birthdate is unknown, the actual value of this date may 
(eventually) prove to be any date that lies within the range of employee 
ages permitted by law and by company policy. Such a range of dates would 
be specified as a formula based on a variable representing the date of the 
current day. This formula would be included in the catalog declarations for 
the specific column (quite likely) or in the catalog declarations for the domain 
from which this column draws its values (less likely). 

In this case, the set of possible values is quite large. In general, however, 
whether the set of possible values for a property is large or small, there must 
be at least two possibilities~otherwise, the property's value would be 
known. It would therefore be a mistake to expect the value TRUE when 
evaluating a logical condition that involves semantically comparing either 
one missing-but-applicable value with another or one such missing value 
with a known or specified value. For example, what is the truth value of 
the inequality 

BIRTHDATE > 66-1-1 

for a missing birthdate? It is clearly neither TRUE nor FALSE. Instead, it 
can be said to be MAYBE (meaning maybe true and maybe false; the 
DBMS does not know which holds). When focusing on the domain of truth- 
values, the logical truth-value MAYBE can be thought of as a value-oriented 
counterpart for the A-mark. 

When represented by A-marks, two missing values possess marks that 
match one another symbolically, but not necessarily semantically. As time 
advances, the database is subjected to commands that modify the data. 
Thus, users and/or programs may eventually replace these two marks by 
different values. 
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8.8.2 Inappl icable  In format ion  

A natural subsequent question is, "Must the systematic treatment of in- 
applicable values cause an additional extension of the underlying three- 
valued logic to a four-valued logic?" Such an extension is logically necessary, 
and it now seems appropriate to introduce it as part of the relational model. 

At first glance, it appears to make sense to handle equality between 
two inapplicable-value marks just like equality between two actual values. 
Note, however, that I-marks are neither values nor placeholders for values. 
They mean unknowable rather than unknown. Thus, within the condition 
part of a relational-language statement, whenever an I-mark is equated to 
an actual value, an A-mark, or an I-mark, the truth-value of such a condition 
is always taken to be MAYBE of type INAPPLICABLE. 

8 .9  • T h e  T h r e e - V a l u e d  L o g i c  o f  R M / V 1  

A database retrieval may, of course, include several conditions like BIRTH- 
DATE > 66-1-1, and the conditions may be combined in many different 
logical combinations, including the logical connectives AND, OR, NOT and 
the quantifiers UNIVERSAL and EXISTENTIAL. (See the explanation at 
the end of Section 4.2, dealing with relational division, and the works listed 
in the predicate logic part of the Reference section.) 

Suppose, as an example, that a second immediate property recorded for 
each employee is the present salary of that employee. Suppose also that this 
column is allowed to have missing db-values. How does the DBMS deal  
with a query involving the combination of conditions 

(BIRTHDATE > 66-1-1) V (SALARY < 20,000), 

where either the birthdate condition or the salary condition or both may 
evaluate to MAYBE? Clearly, the DBMS must know the truth-value of 
MAYBE or TRUE, TRUE or MAYBE, and MAYBE or MAYBE. 

From this it can be seen that there is a clear need in any systematic 
treatment of missing values to extend the underlying two-valued predicate logic 
to at least three-valued predicate logic. 

In the following truth-tables for the three-valued logic of RM/V1, P and 
Q denote propositions, each of which may have any one of the following 
truth-values: 

t for true or m for maybe or f for false. 

The truth values t, m, f are actual values, and should not be confused with 
marked values or the MAYBE qualifiers (see Table 8.1). 

In the relational model, the universal and existential quantifiers are 
applied over finite sets only. Thus, the universal quantifier behaves like the 
logic operator AND,  and the existential quantifier behaves like OR. Both 
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Table 8.1 

P not P 

T h e  T r u t h  T a b l e s  o f  T h r e e - V a l u e d  Logic 

Q 

P V Q  t m f P A Q  

t f t 

m m m 

f t f 

Q 

t m f 

t t t t 

t m m P m 

t m f f 

t rn f 
m rn f 

f f f 

operators are extended to apply the specified condition to each and every 
member of the pertinent set. 

When an entire condition based on three-valued, first-order predicate 
logic is evaluated, the result can be any one of the three possibilities TRUE,  
M~kYBE, or FALSE. If such a condition is part of a query that does not 
include the MAYBE option, the result consists of all the cases in which this 
condition evaluates to TRUE,  and no others. 

If in this query the keyword MAYBE is applied to the whole condition, 
then the result consists of all the cases in which this condition evaluates to 
MAYBE,  and no others. This qualifier is used only for exploring possibilities; 
special authorization would be necessary for a user to incorporate it in one 
of his or her programs or in a terminal interaction. 

One problem of which DBMS designers and users should be aware is 
that in rare instances the condition part of a query may be a tautology. In 
other words, it may have the value T R U E  no matter what data is in the 
pertinent columns and no matter what data is missing. An example is the 
following condition pertaining to employees (where B denotes 
BIRTHDATE) :  

(B < 66-1-1) V (B = 66-1-1) V (B > 66-1-1). 

However, if the DBMS were to apply three-valued logic to each term 
and it encountered a marked value in the birthdate column, each of the 
terms in this query condition would receive the truth-value MAYBE. MAYBE 
OR MAYBE yields the truth-value MAYBE.  Thus, the condition as a whole 
evaluates to MAYBE,  which is incorrect, but not traumatically incorrect. 

There are two options: 

1. warn users not to use tautologies as conditions in their relational-lan- 
guage statements (tautologies waste the computer 's resources); 

2. develop a DBMS that examines all conditions not in excess of some 
clearly specified complexity, and determines whether each condition is 
a tautology or not. 
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Naturally, in this latter case, it would be necessary to place some limitation 
on the complexity of each and every query, because with predicate logic the 
general problem is unsolvable. In my opinion, option 1 is good enough for 
now because this is not a burning issue. 

8 . 1 0  • T h e  F o u r - V a l u e d  L o g i c  o f  R M / V 2  

Consider an example of a combination (either by AND, or by OR) of two 
logical conditions used in selecting employees" 

(birthdate > 50-1-1) AND/OR (commission > 1000). 

Suppose that, for a particular employee, the first condition evaluates to 
the truth-value missing-and-applicable and the second to missing-and-in- 
applicable. What is the truth-value of the whole condition? 

Clearly, the truth tables of four-valued logic must be examined. In the 
following tables (Table 8.2), t stands for true, f for false, i for missing-and- 
inapplicable, and a for missing-and-applicable. Note that t, a, i, f are actual 
values, and should not be confused with marked values. 

Note that we obtain the truth tables of the three-valued logic by replacing 
i by m and a by m (where m simply stands for missing, and the reason for 
anything being missing is ignored). It should be clear that four-valued logic 
is more precise but more complicated than three-valued logic. Four-valued 
logic is selected as an integral part of RM/V2 (see Feature RM-10 in Chapter 
12). 

If a DBMS vendor feels that the extra complexity of four-valued logic 
is not justifiable at this time, the external specifications of its DBMS product 
should permit expansion at a later time from three-valued to four-valued 
logic support without affecting users' investment in application programming, 
or with only a minimal impact. If four-valued logic is built into a DBMS 
product initially or as an extension, either it should agree with the four- 
valued logic just described, or its departures should be defended in writing 
from a technical and practical standpoint. 

Table 8.2 

P not  P 

t f 

a a 

i i 

f t 

The  T r u t h  Tables  of  F o u r - V a l u e d  L o g i c  

P V Q  t a i f P A Q  

t t t t t 
t a a a P a 

t a i f i 
t a f f f 

t a i f 

t a i f 

a a i f 

i i i f 

f f f f 
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A repetition of the warning about multi-valued logics that I included in 
[Codd 1986a, 1987a] may be appropriate here. Such logics can yield the 
truth-value MAYBE for an expression that happens to be TRUE because 
it happens to be a tautology. For example, find the employees whose birth 
year is 1940 or prior to 1940 or after 1940. Every employee should be 
assigned the value TRUE for this condition, even if his or her birth year 
happens to be missing! This warning applies to other multi-valued logics. It 
may be necessary in the future for DBMS products to be equipped with 
detection algorithms for simple tautologies of this kind. 

8.11 a S e l e c t s ,  E q u i - j o i n s ,  I n e q u a l i t y  J o i n s ,  
a n d  R e l a t i o n a l  D i v i s i o n  

The manner in which algebraic selects, equi-joins, inequality joins, and re- 
lational division treat A-marks and I-marks is determined by the semantic 
treatment of equality described in Section 8.8. An inequality join is a special 
kind of join using the inequality comparator NOT EQUAL TO. 

Thus, whenever an equi-join involves comparing two items for equality, 
and either just one of them is a mark or both of them are marks of the 
same type (both A or both I), the pertinent rows are glued together if and 
only if the MAYBE qualifier has been specified. 

Suppose that a query Q does not include the MAYBE qualifier. Then, 
executing Q delivers only those cases in which the condition part of Q 
evaluates to TRUE. To obtain a result from this query that includes all the 
TRUE cases and all the MAYBE cases, it is necessary to apply the union 
operator: Q union (Q MAYBE). 

8.12 • O r d e r i n g  o f  V a l u e s  a n d  M a r k s  

Ordering should be handled in a manner similar to that described for 
equality. There are two kinds of ordering to be considered: semantic ordering 
and symbolic ordering. The semantic version applies when using a less-than 
condition or a greater-than condition in a statement of a relational data 
sublanguage. The symbolic version applies when using the ORDER BY 
clause (e.g., to determine how a report is to be ordered). Let us consider 
symbolic ordering first. 

The present ordering as implemented in DB2 in the ORDER BY clause 
of SOL involves nulls (i.e., A-marks) representing missing-and-applicable 
values. (The case of inapplicable values is not yet handled at all by the 
language SOL or by the DB2 system.) DB2 places nulls at the high end of 
the value-ordering scale. In order to be compatible with this ordering, 
A-marks are placed at the high end, immediately after values. On top of 
A-marks are the new I-marks. This is the symbolic (or formal) ordering. 
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Note that inapplicable information in a particular column could be 
supported in extended SQL by requiring the DBA or a suitably authorized 
user to declare a value from the pertinent domain as the one to represent 
such inapplicability for a given column. I definitely advocate, however, that 
this approach not be taken. For one thing, this approach would implicitly 
and potentially define as many different orderings for the missing db-values 
relative to the existing db-values as there are columns that are allowed to 
have missing db-values. Instead, I believe it is more systematic and more 
uniform across different data types to use a special mark (the I-mark) because 
these marks are not database values. 

Now let us consider the semantic ordering. The truth-value of each of 
the following expressions is MAYBE (not TRUE) 

( db-value < mark ) , ( mark < db-value ) , ( mark < mark ) 

for any type of mark and any db-value. The same applies to these expressions 
if the symbol " < "  is replaced by the symbol ">" .  If such an expression 
involves either one or two occurrences of marks, the truth-value of the 
expression is MAYBE. 

There has been some criticism that the symbolic ordering of marks 
relative to values runs counter to the semantic ordering and the application 
of three- or four-valued logic. I fail to see any problem, however, because 
the use of truth-valued conditions involving ordering when applying a rela- 
tional data sublanguage is at a higher level of abstraction than the use of 
the ordering of marks relative to values in the ORDER BY clause of a 
relational command (see Feature RQ-7 in Chapter 10). 

8 . 13  • J o i n s  I n v o l v i n g  V a l u e - o r d e r i n g  

Joins involving the comparators 

LESS THAN OR E Q U A L  TO 

LESS THAN 

G R E A T E R  THAN OR E Q U A L  TO 

G R E A T E R  THAN 

treat applicable and inapplicable marks as determined by the usual orderings 
of db-values and the semantic ordering of marks defined in the immediately 
preceding section. If the MAYBE qualifier does not accompany the request 
for a join, then (as usual) only those items are generated for each of which 
the entire pertinent condition has the truth-value TRUE. On the other hand, 
if the MAYBE qualifier is applied to the entire condition part in the 
command, only those items are generated for each of which the entire 
pertinent condition has the truth-value MAYBE. 
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Consider a database that includes two relations T1 and T2 that describe 
events of type 1 and type 2, respectively; the description includes the date 
of occurrence of each event. Suppose that a request is made that involves 
pairing off events of type 1 with events of type 2, provided the type 1 event 
occurs before the type 2 event. Such a pairing activity can be expressed in 
terms of a join of T1 on the date of the type 1 event with T2 on the date 
of the type 2 event using the comparator <.  

For the sake of simplicity, suppose that the extensions of T1 and T2 are 
as follows: 

T1 (E# EDATE . . . ) T2 (V#  VDATE . . . )  

el 88-02-14 vl  86-03-13 
e2 86-03-22 v2 89-01-27 
e3 m (A-marked) v3 87-08-19 

e4 88-12-27 

Also suppose that two requests are as follows" 

T ~ T1 [EDATE < VDATE] T2 
T" ~- T1 [EDATE < VDATE] T2 MAYBE.  

Then, the derived relations T and T" are as follows: 

T (E# EDATE V #  VDATE ) T" (E# 

el 88-02-14 v2 89-01-27 e3 
e2 86-03-22 v2 89-01-27 e3 
e2 86-03-22 v3 87-08-19 e3 

e4 88-12-27 v2 89-01-27 

EDATE V #  VDATE ) 

v l  86 -03 -13  

v2 89-01-27 
v3 87-08-19 

8 . 1 4  • S c a l a r  F u n c t i o n s  A p p l i e d  t o  M a r k e d  A r g u m e n t s  

In this context, a scalar function is a function that transforms scalar argu- 
ments into a scalar result. Consider the effect of such a function when one 
or more of its arguments is marked. 

In general, if the strongest mark on one of its arguments is I, then the 
scalar result is I-marked. If, on the other hand, the strongest mark is A, 
then the scalar result is A-marked. 

For example, let @ denote any one of the arithmetic operators + , - ,  × ,  
/, and let z denote an unmarked scalar argument. Then: 

z @ a  = a z @ i  = i a @ z  = a i @ z  = i 
a @ a  = a a @ i  = i i @ a  = i i @ i  = i 

The functions N E G A T I O N ,  OR, and AND are not exceptions to this general 
rule because of the distinction (noted in Section 8.9) between the truth 
values a and i, on the one hand, and marked truth values (A-marked and 
1-marked), on the other. 
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8 .15  t C r i t i c i s m s  o f  A r i t h m e t i c  o n  M a r k e d  V a l u e s  

Occasionally one must be careful when asking a computer to carry out 
ordinary arithmetic: One should not request it to divide any number by 
zero. For example, if each customer can make several partial payments 
instead of one lump sum, one might ask a question such as "What is the 
average payment made by each customer?" This seemingly innocent question 
can cause the machine to complain every time a customer is encountered 
who has made no payments at all, because it is then being asked to divide 
zero by zero. 

The same kind of remark holds for arithmetic operations upon values 
from columns in which the value-inapplicable mark may occur. Suppose the 
employee relation contains two columns: 

1. the total salary earned to date; 

2. the commission earned to date. 

Suppose also that for some employees the commission is marked in- 
applicable. Consider the request "What is the total income earned to date 
for each employee?", where total income is equal to salary (always appli- 
cable) plus commission (if applicable). If this is carelessly expressed as salary 
plus commission, the answer for any employee who has an inapplicable 
commission is inapplicable, using the table for addition shown on page 174. 
What is needed in this case is that the amount added for commission should 
be zero when the commission is applicable. 

The first reaction often heard is that, instead of the commission being 
marked inapplicable, it should be set to zero. One problem this action would 
cause is that the DBMS might not (and very probably would not) be able 
to distinguish between a case in which commission was inapplicable and a 
case in which it was applicable but the employee had actually earned zero 
commission to date. Moreover, in this case virtually every integrity constraint 
that involved the inapplicable state for a value in the commission column 
could not be expressed. 

A second claim often heard is that the addition table is incorrect, and 
the entry x + I = I should be replaced by x + I = x. While this might be 
appropriate for this example, consider a second example. Suppose one 
requested Q1, the average commission earned by employees, when one 
really intended to request Q2, the average commission earned by those 
employees entitled to earn commissions. If there do exist some employees 
who are entitled to earn commission, and if the cases of commission being 
inapplicable are each represented by the value zero, execution of Q1 delivers 
an incorrect result without any alarm from the computer. If, however, the 
cases of inapplicability are represented by I-marks, then execution of Q1 
delivers an 1-mark and that will alert the user to his or her folly. 
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8 . 1 6  • A p p l i c a t i o n  o f  S t a t i s t i c a l  F u n c t i o n s  

In applying a statistical function to the db-values in one or more columns 
of a relation, it is desirable to be able to specify how A-marks and I-marks 
are to be treated by this function, if it should encounter either type of mark. 
A practical approach is to support two temporary replacements: one for the 
A-mark occurrences and another for the I-mark occurrences. 

A convenient way of expressing the replacement action is by means of 
two separate, single-argument functions" AR (which stands for A-mark 
replacement) and IR (I-mark replacement). In each case, the single argument 
is a scalar constant or a scalar function that operates upon other component 
values in the row being examined and delivers a scalar value. The pertinent 
features of RM/V2 are RQ-4 and RQ-5 (see Chapter 10). 

The function or qualifier specifying the replacement is called the sub- 
stitution qualifier. This qualifier is applicable to every kind of statistical 
function. However, if the statistical function has two or more arguments 
and these are applied to two or more columns, the specified replacement 
action must apply to all of these attributes. 

An example of practical use of this qualifier is the calculation of a salary 
budget for each department based on the present salary of each member of 
a department. If a few salaries are missing (and therefore A-marked), one 
may wish to compute the total for each department by requesting that each 
A-mark occurrence be replaced temporarily by the maximum salary of those 
persons known by the DBMS to be members of that department. 

In certain special cases, the two replacements may be values equal to 
one another. In certain other special cases, one or both of the replacements 
may be a mark identical to the mark being replaced. The need for this case 
is determined by the default action for omitted substitution qualifiers being 
specified as "ignore marks of the corresponding type." 

Note that the state of the database is not changed by the execution of 
any one of these statistical functions alone. In other words, the substitutions 
replacing marks by values or by marks are in effect during, and only during, 
the execution of the pertinent statistical function. One advantage of making 
these substitutions temporary is that certain kinds of possibilities can be 
investigated without setting up a separate "what-if" database. 

If the substitution qualifier is omitted altogether from a statistical func- 
tion request, the DBMS would assume that only the unmarked values should 
contribute to the result. On the other hand, if the existence of any occurrence 
of a mark of type q in the operand is to yield an A-mark as the result, there 
must be a qualifier in the command requesting that marks of type q be 
detected, but not modified in the temporary substitution sense (i.e., a mark 
of type q should be replaced by itself). 

Notice that any replacement action specified in this way is a replacement 
of a marked argument of the function, not of any result the function might 
deliver. Moreover,  the specified scalar replacement(s) must be values be- 
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longing to the domain from which that column draws its values, and must 
comply with any additional constraints that have been declared for that 
specific column. 

Finally, any specific replacement action applies to just one of the columns 
cited in the retrieval or update command. Of course, several of the columns 
cited may be subject to replacement actions. In general, if N columns 
are cited in a relational command, there may be as many as 2N replacement 
actions specified in that command, two for each distinct citation. 

Thus, a single pair of occurrences of replacement qualifiers (one for 
I-marked values, one for A-marked values) for each command is generally 
inadequate. It should be replaced by a pair of replacement qualifiers for 
each column cited in any pertinent command. The syntax must allow one 
pair to be specified for each statistical function cited, and unambiguously 
associate that pair with the pertinent function. 

Little has been said about the results generated by the scalar and 
aggregate functions discussed in this section and Section 8.17. Feature 
RF-8 in Chapter 19 specifies that marked values are not generated by scalar 
and aggregate functions when acting upon unmarked arguments. 

8.17 • A p p l i c a t i o n  o f  S t a t i s t i c a l  F u n c t i o n s  
to  E m p t y  Se t s  

This issue, raised by critics, is not directly related to the subject of missing 
values. Nevertheless, I touched upon it in Section 2.5 of [Codd 1986a] 
because SOL happens to generate null as the result of applying certain 
statistical functions (such as AVERAGE)  to an empty set. Since the null of 
SOL was introduced to denote the fact that a db-value is unknown, it is an 
unwise choice now to mean something entirely different~namely, that an 
arithmetic result is undefined. This topic is clarified in more detail here, but 
only with respect to the relational model, not SOL. 

Section 9.5 deals with the case of applying a statistical function to a 
collection of sets, some of which are empty and some non-empty. We must 
treat the extreme case where all the sets are empty (even if there is only 
one set in the collection of sets), and in such a way that all these cases 
behave in a consistent way. As a first step, an initial value of zero must be 
established immediately before the evaluation of the pertinent function 
against the specified sets. 

If the empty-set qualifier is omitted from a command, each occurrence 
of an empty set is ignored. In addition to the value returned, however, there 
must be a trigger (known as the empty trigger) that is turned on whenever 
at least one set encountered in the execution of this command is empty. 

Suppose that the value returned, whenever a statistical function is applied 
to a single empty set, is the initial value just cited, that is, zero. A special 
case needs careful attention to avoid misinterpretation of the value returned. 
Whenever (1) a statistical function is cited in a command, (2) this function 
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(for example, AVERAGE)  happens to require dividing by the number of 
elements in the pertinent set, and (3) the value returned by the function is 
zero for one or more of the sets, then it is normally necessary to examine 
each of these sets for its possible emptiness. Such an examination would 
distinguish the empty-set case from the case in which the statistical function 
happened to generate zero from elements actually encountered in the set. 
The reader should remember that the burden of this extra examination arises 
from ordinary integer arithmetic, in which dividing by zero is unacceptable. 
The burden of this extra examination is therefore not a consequence of the 
relational model. 

Moreover, the relational model is consistent with elementary arithmetic. 
Every DBMS based on that model should also be consistent with elementary 
arithmetic. 

Marks in the relational model are intended to represent the fact that 
information (more precisely, a db-value) is missing, and should be sharply 
distinguished from the case in which the value of a function (such as 
arithmetic division) is undefined. 

8 . 1 8  m R e m o v a l  o f  D u p l i c a t e  R o w s  

Unfortunately, in many present releases of relational DBMS products, de- 
rived relations (often loosely called tables) are corrupted by leaving duplicate 
rows in them unless the user appends an explicit qualifier requesting that 
these duplicate rows be removed. A common example of this problem occurs 
in a corrupted projection that does not happen to include the primary key 
of the operand relation. 

Although it is possible in SQL for the user to specify explicitly that all 
but one occurrence of any duplicate rows be removed, the user can choose 
to retain duplicate rows because he or she is unaware of the consequences. 
Users should not be burdened with this choice, and the DBMS optimizer 
should not be impaired by permitting duplicate rows under any circumstances. 

If two or more rows happen to contain the same actual values and no 
marks (applicable or inapplicable), the removal of duplicate rows is obvious. 
The interesting case for this chapter is that in which some of the values are 
missing. 

In this case, suppose that a typical pair of row components for which 
equality is to be tested is < x,y >. Then, it seems reasonable to assert that 
two rows are duplicates of one another, if one of the following conditions 
is satisfied by every pair tested: 

1. x and y are actual values and x = y, or 

2. one of the pair is marked and the other is not, or 

3. both x and y are marked, and the marks are symbolically equal (i.e., 
both values are A-marked or both are I-marked), 
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and if condition 1 is satisfied by at least one tested pair of components. 
When duplicate rows are discovered by the DBMS, it should remove all but 
one occurrence of the duplicate rows. 

As an example, consider a relation EMP that identifies and describes 
employees: 

EMP (EMP# ENAME DEPT# SALARY H~CITY ) 

E107 Rook D12 10,000 W i m b o r n e  

E912 Knight  - -  A 12,000 Poole 

E239 Knight  - -  A 12,000 Poole 

E575 Pawn D12 - -  A Poole 

E123 King D01 15,000 Port land 

E224 Bishop - -  A ~ A W e y m o u t h  

, ,m A" denotes a missing-and-applicable value. Suppose the relation E is 
derived from EMP by true projection (not the corrupted variety) onto 
D E P T #  and SALARY: 

E ~-- EMP [DEPT#,  SALARY]. 

Before and after the removal of duplicate rows and empty rows, the 
following information is derived (the user sees only the AFTER version): 

BEFORE ~ A F T E R  

E' (DEPT# SALARY) E (DEPT# SALARY) 

D 12 10,000 D 12 10,000 

* - -  A 12,000 - -  A 12,000 # 

* *  - -  A 12,000 D12 - -  A # #  

D 12 - -  A DO 1 15,000 

D01 15,000 

* * *  m A  m A  

The rows labeled "*" and "**" are treated as duplicates of one another 
because the corresponding components in these rows constitute the following: 

• pairs of equal db-values, and there exists at least one pair of this type; 

• pairs in which a db-value is accompanied by a missing value. 

The row labeled "***" is removed because it consists of nothing but missing 
values. Note that the rows marked " # "  and " # # "  are not treated as 
duplicates because of the lack of at least one pair of corresponding com- 
ponents that have equal values. 

There has been some criticism of the fact that this scheme for removal 
of duplicate rows does not conform to the semantic notions of  equality 
described in Section 8.8. I fail to see any problem, however, because the 
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semantic notions of equality are applicable at a higher level of abstraction 
than the symbolic equality involved in removal of duplicate rows. 

8 . 1 9  m O p e r a t o r - g e n e r a t e d  Marks  

The introduction of a new column C for a selected base relation R is achieved 
by appending to the catalog a description of this column. This causes the 
DBMS to record in R itself an A-mark in column C for each row in R. It 
does not make sense to record the I-mark because it is senseless to assert 
that every value in a column is unknowablemin  that case, why have the 
column at all? 

The operators outer join and outer union are capable of generating 
derived relations in which some of the columns have one or more missing 
db-values. Which type of mark should the DBMS generate? It seems rea- 
sonable to generate A-marks only. If a suitably authorized user believes 
that I-marks are needed instead, he or she will have to replace some A- 
marks by 1-marks. 

Note that A-marks are weaker than 1-marks in that a user requires no 
special authorization beyond the usual update authorization if he or she 
wishes to update an A-mark into a db-value (see Section 8.7). 

Moreover,  it is easier for the user to delve into "what-if" kinds of 
interactions on the relation wherever A-marks occur, since in these cases 
he or she need not get special authorization beyond that for querying. 

The question has been raised of why those operators that are capable 
of generating new marks in the result create only A-marks,  never I-marks. 
(In this context, "new marks" mean marks not simply copied into the result 
from one or other of the operands.) The answer is that A-marks are preferred 
because they are the weaker and more flexible of the two types. Hence, 
they are more readily changed by users, without needing any special mark- 
type-change authorization. 

8.20 • S o m e  N e c e s s a r y  L a n g u a g e  C h a n g e s  

Here several minor language aspects are covered together, even though 
most are discussed elsewhere in this book. An example is the use of the 
M A Y B E  qualifier on a condition, whenever only those items are needed 
for which this condition evaluates to MAYBE.  Note that, in order to support 
this qualifier, the DBMS must be able to handle either three-valued or four- 
valued logic (including the truth tables). 

Moreover,  if the items X are needed for which the condition K evaluates 
to either T R U E  or MAYBE,  then a command such as 

( X where K ) U ( X where K M A Y B E  ) 
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should be used. Further, if the DBMS supports four-valued logic, then two 
additional qualifiers, MAYBE__A and M A Y B E u I ,  are needed to specify 
for a given truth-valued expression which of the truth-values a and i are to 
replace the truth-value t as the truth-value that qualifies values to be re- 
trieved. MAYBE__A means maybe true, maybe false, but certainly appli- 
cable, while MAYBE__I means neither true nor false, but inapplicable. 

Also note that, because the MAYBE qualifiers apply to conditions that 
may involve negation, OR, AND, the existential quantifier, and the universal 
quantifier, they require that the DBMS handle four-valued logic internally, 
and not put that burden on users, as does the present version of SOL. The 
MAYBE qualifiers are described in Features RQ-1-RQ-3 in Chapter 10. 

In the following discussion, changes in language are expressed as changes 
to SOL. It should be a simple matter to adapt them to any other reasonably 
complete, relational data sublanguage. 

It is necessary to be able to refer to marks that are similar to the way 
SOL presently refers to nulls, except that the user should be allowed to 
distinguish between the two types of marks when he or she wishes to do so. 

One user-friendly solution that is not being advocated is to introduce 
the clauses shown in Table 8.3 to refer to the presence and absence of an 
A-mark, an I-mark, or either type of mark (in case the user does not care 
which type of mark is involved). These clauses are not part of RM/V2 
because the MAYBE___A, M A Y B E _ I ,  and MAYBE qualifiers of Features 
RQ-1-RQ-3 are more powerful. The SOL clauses IS NULL and IS NOT 
NULL should be abandoned swiftly. 

Here is an example using the clauses listed in Table 8.3" 

1. find the employees who are eligible to receive sales commissions; and 
2. find the employees who are ineligible to receive sales commissions. 

In many companies, query 1 is much more likely than query 2, because 
usually only a minority of employees are eligible for such commissions. In 
pseudo-sQL, appropriate statements for these queries would be as follows: 

° SELECT serial__number FROM employees 
WHERE commission IS NOT I-MARKED 

. SELECT serial__number FROM employees 
WHERE commission IS I-MARKED 

T a b l e  8.3 

Type 

A-mark 
I-mark 
Either 

Poss ib l e  Clauses  for S i m p l e  C o n d i t i o n s  

Presence of Mark Absence of Mark 

Is A-marked Is not A-marked 
Is-I-marked Is not I-marked 
Is missing Is not missing 
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Additional needs are the substitution qualifiers AR and IR, when ap- 
plying a statistical function to any column in which marks may occur (see 
Section 8.16), and the empty set qualifier ESR, when applying a statistical 
function to a collection of sets, some of which may be empty (see Section 
9.5). 

8 .2  1 [] N o r m a l i z a t i o n  

The concepts and rules of functional dependence, multi-valued dependence, 
and join dependence were developed without considering missing db-values. 
Early papers on functional dependence were [Codd 1971b and 1971c]. A 
comparatively recent paper on these dependencies is [Beeri, Fagin, and 
Howard 1977]. 

All the normal forms based on these dependencies were also developed 
without considering missing db-values. Does the possible presence of marks 
in some columns (each mark indicating the fact that a db-value is missing) 
undermine all these concepts, and theorems based on them? Fortunately, 
the answer is no" a mark is not itself a db-value. More specifically, a mark 
in column C is semantically different from the db-values in C. Thus, the 
normalization concepts do not  apply and should  not  be applied globally to 
those combinations of columns and rows containing marks. Instead, they 
should be applied as follows: 

• the normalization concepts should be applied to a conceptual version of 
the database in which rows containing missing-but-applicable informa- 
tion in the pertinent columns have been removed; 

• these concepts should also be applied when any attempt is made to 
replace a mark by a db-value. 

When an attempt is made to insert a new row into a relation and a 
certain component db-value is missing, it is pointless for the system to base 
acceptance or rejection of this row on whether the missing db-value does 
meet  or might  meet  or fails to meet  certain integrity constraints based on a 
dependence in which the pertinent column is involved. The proper time for 
the system to make this determination is when an attempt is made to replace 
the pertinent mark by an actual db-value. 

One might be tempted to treat I-marks differently from A-marks. One 
or more users, however, may be authorized to replace an I-mark by a db- 
value. Thus, all marks should be treated alike, regardless of type, in the 
matter of testing any dependence constraint, whether it be functional, multi- 
valued, join, or inclusion. For every row that contains a mark in the column 
or columns being tested, the DBMS should wait until an attempt is made 
to replace the marked item(s) by an actual db-value. 

A fully relational DBMS should have the capability of storing (in its 
catalog) statements defining the various kinds of dependencies~including 
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the functional, multi-valued, join, and inclusion types of dependencies--as 
they apply to the particular database being managed. 

A program should also be available to deduce all the dependencies that 
are a consequence of those supplied by the DBA or other suitably authorized 
users, so that, when attempting to change a mark into a db-value, no 
dependence that is logically implied by others is overlooked by the DBMS. 
Further, such a DBMS should be able to check the database against one or 
more of these integrity constraints whenever necessary, and without explicit 
invocation by an application program. In general, such checking is likely to 
be necessary whenever a mark is replaced by a db-value. 

Exercises 

8.1 Does the relational model use a specially reserved numeric value to 
represent the fact that a numeric database value is missing? Does it 
use a specially reserved character-string to represent the fact that a 
character-string database value is missing? Give reasons for your 
answers. 

In RM/V2, what are the two main reasons for values being missing 
from a database? Is the NULL term in SOL capable of distinguishing 
between these reasons? If your answer is yes, explain how this would 
be accomplished by means of two examples. 

The comment is frequently made that "nulls are a headache; who 
needs them?" Take a position on nulls (marked values) and three- or 
four-valued logic versus special values reserved by users to mean that 
a value is missing. Now defend that position from the viewpoints of 
technical soundness and usability by the community of users. 

Do the three-valued logic in RM/V1 and the four-valued logic in RM/ 
V2 preserve the commutativity of AND and OR? 

Supply the truth table for four-valued logic. 

The MAYBE qualifiers apply to (1) the whole condition part of a 
query, (2) a truth-valued expression, and (3) part of a query that 
refers to jus ta  single column. Which of these represents the generality 
of scope most accurately? Give one example of the use of the MAY- 
BE__A qualifier, and one example of the use of the MAYBE__I 
qualifier. 

Which of the three alternatives in Exercise 8.6 represents the gener- 
ality of scope of the IS NULL phrase in present versions of the 
language SOL? 

You are applying a statistical function to a column that is allowed to 
contain missing values. You want each missing value to be ignored. 
How is that accomplished? 

8.2 

8.3 

8.4 

8.5 

8.6 

8.7 

8.8 
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8.9 

8.10 

You are applying a statistical function to a numeric column that is 
allowed to contain missing values. You want each A-marked value to 
be temporarily replaced by 399, and each I-marked value by 0. How 
is that accomplished? 

The function AVERAGE is being applied to a numeric column in 
relation S. S happens to be empty. What kind of result is delivered 
by the relational model? By SOL? 





• C H A P T E R  9 •  

Response to Technical 

Criticisms Regarding 

Missing Information 

There has been some justified technical criticism of the treatment of missing 
information in the data sublanguage SOL. Some of this criticism has been 
directed by mistake at the relational model [Codd 1986a, 1987c]. 

As explained in Chapter 1, it is important to distinguish between tech- 
nical criticisms of the model, on the one hand, and of the implementations 
and products based on that model, on the other. With respect to the 
treatment of missing information, technical criticisms have strayed across 
the boundary without proper justification. I shall discuss criticisms that have 
appeared in recent technical articles, along with a counter-proposal called 
the default value scheme (for brevity, DV). I devote an entire chapter to 
dealing with these criticisms for two main reasons. First, the way the rela- 
tional model deals with missing data appears to be one of its least understood 
parts. Second, discussion of these criticisms may help readers understand 
the approach and why it was adopted. 

9.1 • T h e  V a l u e - o r i e n t e d  M i s i n t e r p r e t a t i o n  

The representation in IBM relational DBMS products of missing database 
values in any column by means of an extra byte seems correct. In the IBM 
manuals, the corresponding marks are sometimes called nulls and sometimes 
called null values. Few of the ways in which these products process missing 
information, however, conform to Version 1 of the relational model. There 
are numerous cases in which the processing of nulls (more specifically, 
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A-marks) in the IBM product DB2 is non-systematic. These cases, however, 
should not be construed as criticisms of the relational model itself. 

Any approach to the treatment of missing information should consider 
what it means for a db-value to be missing, including how such occurrences 
should be processed. A basic principle in the relational model is that the 
treatment of all aspects of shared data in databases is not just a represen- 
tation issue. There are always other considerations which the DBMS must 
handle, especially the approach to manipulating the data and the preserva- 
tion of database integrity. 

It is quite inappropriate to leave these considerations to be handled by 
users in a variety of ways, and buried in a variety of application programs. 
This principle applies just as forcefully to missing information. Thus, missing 
information is not just a representation issue. 

9.2 • T h e  A l l e g e d  C o u n t e r - i n t u i t i v e  N a t u r e  

Consider the following examples: (1) suppliers in London and (2) suppliers 
not in London, where the CITY column for suppliers is allowed to have 
missing-but-applicable indicators (A-marks). One criticism of the relational 
model is that it requires the user to make the distinction between (1) "suppliers 
known to the system not to be in London" and (2) "suppliers not in London." 

It has been asserted that this distinction is subtle and likely to mystify 
the user. Subtlety, however (like beauty), is in the eyes of the beholder. 
What is more important is that a user, in failing to make this very distinction, 
may cause serious errors, errors that could have serious consequences for 
the user's business. 

In order to comment on the default value scheme (DV) [Date, 1986] for 
representing missing information, it is necessary to describe that approach 
first. In this scheme, if items of data are allowed to be missing in a column 
C, it is left to one or more users to declare that a particular value in C 
denotes the fact that a datum is missing in C. There is no constraint that all 
columns, in which missing values are permitted, must use the same repre- 
sentation of the fact that a value is missing. Moreover, the user who declares 
the "default value" for column C is expected to embody in his or her 
application program the method by which any missing values in column C 
are to be handled. 

To return to the discussion of "suppliers known to the system not to be 
in London" and "suppliers not in London," this distinction may well be 
judged subtle by some users. However, even if the default value scheme 
were adopted, this would not prevent or help prevent the occurrence of the 
type of error in which the user fails to make this distinction. 

Let us look at the example in more detail, demonstrating how the DV 
scheme constitutes a non-solution to the problem. Consider a relation S 
identifying suppliers and describing their immediate, single-valued proper- 
ties. Let one of these properties be the city in which the supplier is based. 
A sample snapshot follows: 
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( S #  S N A M E  C I T Y  . . . ) 

s l  J O N E S  L O N D O N  . . . 

s 2  S M I T H  B R I S T O L  . . . 

s 3  D U P O N T  v . . . 

s 4  E I F F E L  P A R I S  . . . 

s 5  G R I D  v . . . 

"v" denotes a character string, declared in the catalog to be the "default 
value" for the column CITY in the relation S, which in the D V scheme 
means "unknown" or "missing" for this column only. Note that v may be 
any character string that does not represent the actual name of any existing 
city (e.g., "???" or "XXX"). 

Now consider these two queries: 

Q1. 

Q2. 

Find the suppliers in London 

Find the suppliers NOT in London 

If these queries are represented in a relational language (such as ALPHA 
[Codd 1971a], SOL [IBM 1988], or QUEL [Relational Technology 1988]), 
ignoring the occurrences of v, and therefore ignoring the occurrences of 
missing db-values, the answer to Q1 would be sl. This answer is correct 
only if interpreted as those suppliers known by the system to be in London, 
since at any later time an occurrence of v may be updated to "LONDON."  
Q2 would similarly yield the set (s2, s3, s4, s5), which is definitely incorrect 
when interpreted as the suppliers known by the system not to be in London, 
and potentially incorrect when interpreted as the suppliers actually not in 
London. 

Thus, the user of a DBMS equipped with the DV scheme must take 
into account whether a column is allowed to contain missing values, shaping 
the query accordingly, and differentiating in his or her thinking among (1) 
what is known to the system, (2) what is actually a fact, and (3) what could 
be the case. This requirement of the DV approach to missing information 
forces the user to make the very same distinctions for which the relational 
approach to missing information has been criticized. 

The burden on the user of having to make these distinctions is not 
removed by having him or her formulate the query as "find the suppliers 
not based in London and not based in '???'. " In fact, the burden arises 
because the problem of dealing with missing information correctly is just 
not a simple problem. 

The claim that the DV approach "avoids all the difficulties associated 
with the null value scheme" [Date, 1986] is clearly incorrect. I would 
characterize the DV scheme as an approach that is likely to entice the naive 
user and whose claimed simplicity is quite likely to trap the unwary and give 
rise to serious mistakes. 
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Finally, consider the idea that a notion should be rejected because it is 
"counter-intuitive." This is a type of criticism that I cannot accept as tech- 
nical in nature, precisely because it is too subjective with respect to a person 
and the culture and era in which he or she lives. One example should suffice, 
although there are many. 

At least 10 centuries ago, very few people were concerned with making 
long voyages, whether over land or sea. Most people therefore had no cause 
to consider that the earth might not be fiat, and that the shortest distance 
from A to B on the surface of the earth is not a straight line, but instead 
an arc of a great circle. Thus, when the scientific proposal was made that 
the earth is spherical, most people considered the proposal extremely counter- 
intuitive. Today, however, it would be quite difficult to find anybody who 
considers this idea to be counter-intuitive. Thus, if an idea appears to be 
counter-intuitive, it is not necessarily wrong. Similarly, if an idea is appeal- 
ingly intuitive, it is not necessarily right. 

9.3 m The A l l e g e d  B r e a k d o w n  of  N o r m a l i z a t i o n  in the  
Re la t iona l  M o d e l  

In attempting to show that the relational model runs into difficulties with 
normalization, the critics cite an example of a base relation R ( A , B , C )  
satisfying the functional dependence A---~B, for which it is not assumed that 
A is the primary key, so that A can be permitted to have missing db-values. 
The critics assert that serious problems are bound to arise if R contains a 
row ( ?,bl ,cl  ) and an attempt is made to insert another row ( ?,b2,c2 ), 
where b l and b2 are not equal, and ? denotes an A-mark. They assert that 
either the two nulls must be considered distinct from one another or the 
second row must be rejected because "it might violate the dependency" 
[Date, 1986] when the null is replaced by an actual value. 

The critics seem to have rejected without supplying a reason a third 
option, which is the one adopted in the relational model. That is, whenever 
the A component of a row is missing (or becomes missing), the functional 
dependence A ~ B is not enforced by the DBMS for this row until an 
attempt is made to replace the mark (null) in column A by an actual db- 
value. In fact, if the proposed DV scheme were adopted, this third option 
would not be available, because a null or missing value is treated in the DV 
scheme as just another database value. Hence, in the DV scheme the 
functional-dependence constraint must be enforced upon first entry of the 
row, and this gives rise to the possibility that a row might be erroneously 
rejected by the DBMS. 

The critics also assert that, if the second row is not rejected upon 
attempted entry, "we are forced to admit that we do not have a functional 
dependency" [Date, 1986] of B on A. This is clearly one more instance of 
a value-oriented misinterpretation. 

The claim that the normalization procedure breaks down is false. It 
should be clear that, because nullsmor, as they are now called, marksm 
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are n o t  database values, the rules of functional and multi-valued dependence 
do not apply to them. Instead, they apply to all unmarked db-values. 

With the DV scheme, the normalization procedure does break down, 
precisely because missing information is treated as database values. This is 
one more reason why I contend that the DV scheme is not an acceptable 
solution to the problem of handling missing information in databases. 

The following example, more practical and less symbolic, is intended to 
illustrate the absence of any effect of missing values on normalization. The 
example is a slightly modified version of one presented in [Codd 1971b]. 

The relation EMP identifies and describes employees. Three of its 
columns are shown: 

E #  
D #  
CT 

Employee serial number (the primary key) 
Department serial number 
Contract type 

In this company, a department is assigned to exactly one type of contract. 
It will be convenient to refer to this as Rule 1. One consequence of Rule 1 
is that the EMP relation is not in third-normal form. The following functional 
dependencies are applicable: 

E#  ~ D #  ~ CT. 

Note that the department D#  to which an employee E #  is assigned is 
an immediate property of an employee, while the contract type CT is an 
immediate property of the department. In the column CT. the values g and 
n appear. They denote two types of contracts, government and non-govern- 
ment, respectively. 

E M P  ( E #  . . . D #  C T )  

e l  . . . d 5  g 

e 2  . . . ? ?  g 

e 3  . . . d 2  n 

e 4  . . . d 3  n 

e 5  . . . d 2  n 

e 6  . . . ? ?  n 

e 7  . . . d 8  g 

In this example, the two department numbers that are missing must be 
distinct, because of Rule 1 and the fact that the contract types in column 
CT of these two rows are distinct. The problems associated with checking 
functional dependency where there are missing values can be avoided com- 
pletely by postponing the checking of compliance of each row with the 
functional dependence D #  ~ CT until the attempted update of the missing 
department serial number (if any) to a non-missing value. 
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9.4 • i m p l e m e n t a t i o n  Anomal ies  

In general, the present state of relational DBMS products in regard to the 
representation and handling of missing information is far from satisfactory. 
For IBM products based on the language SQL, the main problem is the way 
missing information is handled, rather than its representation. In non-IBM 
products, even the representation aspects have gone astray. In several of 
these products, the DBMS designer has misinterpreted nulls as db-values 
(see Section 9.1). 

In at least one well-known (and otherwise sound) DBMS product [Re- 
lational Technology 1988], zero was chosen as the value to indicate missing 
information in all numeric columns. I consider the number zero to be far 
too valuable in its normal role in all kinds of business activities~for example, 
as a real number representing the actual quantity of a part in stock or the 
actual quantity of currency owed by one or more customers. Therefore, I 
do not consider zero to be an acceptable value to be reserved by a DBMS 
for denoting a missing numeric db-value. In fact, in the context of computer- 
supported database management, it is unacceptable to reserve any specific 
numeric value or character-string value to denote the fact that a db-value is 
missing. 

9 .5  • Appl icat ion of Statistical Functions 

An example involving the sum of an empty set of numbers is sometimes 
used to show that SQL encounters difficulties by unconditionally yielding the 
SQL null as the result. While I agree with this example when interpreted 
solely as an SQL blunder, I do not agree with the use of it as an example 
that justifies outright rejection of the relational approach to missing 
information. 

If the sum were to yield zero unconditionally as the result, there would 
be the problem that the average of an empty set of numbers would not be 
the sum divided by the count (the number of elements in the set). This 
problem arises, however, because 0/0 is normally taken to be undefined in 
elementary mathematics; this difficulty does not  stem from the relational 
approach to missing information. When taking averages, it is necessary for 
programmers and users to provide special treatment for the case in which 
the divisor (i.e., the number of elements in the set) is zero, because zero 
exhibits a unique behavior when it is used as a divisor. Incidentally, I fail 
to see how the DV scheme provides any solution or simplification for this 
problem. 

I consider this problem to be quite separable from the question of how 
to deal with missing information. Nevertheless, the approach taken to this 
problem in the relational model can be illustrated by taking the example of 
generating the total salaries earned by each department, where each total 
is computed as the sum of the salaries earned by each employee assigned 
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to the pertinent department. Let us assume that a few departments exist 
that have zero employees assigned to them at this time. 

In applying statistical functions, there are two important alternative 
methods of handling occurrences of empty sets. 

1. Each occurrence of an empty set is ignored (i.e., passed over). 

2. A value, specified by the user, is taken as the result for each occurrence 
of an empty set. 

Note the difference between these two actions if the statistical function 
happens to be the AVERAGE,  and if the value selected in the second 
approach is zero. The first action omits the departments that have zero 
members, while the second generates zero for each such department. 

The empty set qualifier, a function ESR with a single argument, say x, 
causes each occurrence of an empty set to yield the result x and does not 
affect the result obtained from each non-empty set. Omission of this qualifier 
altogether causes each occurrence of an empty set to be ignored. 

9.6 m I n t e r f a c e  to  H o s t  L a n g u a g e s  

Host languages do not include support specifically aimed at the semantics 
of the fact that information in databases may be missing. This means there 
is bound to be an interface problem, whatever approach is taken in the data 
sublanguage. If the approach taken on the database side of the interface is 
uniform and systematic (independent of data type), the interface is likely to 
be simpler than an approach like the DV scheme, which requires database 
users to keep inventing, column by column, their own techniques for dealing 
with this problem~not  to mention the burden of communicating their 
inventions to other users of the database. 

The relational approach therefore has a strong advantage in this area 
over the DV scheme. In this chapter and in the relational model itself, one 
major concession has been made to reduce user confusion about the host-- 
language interface~namely, a change from the terms "null" and "null 
value" to the term "mark" for the indicator that designates the fact that a 
db-value is missing. 

9.7 • P r o b l e m s  E n c o u n t e r e d  in  t h e  
D e f a u l t - V a l u e  A p p r o a c h  

There are six main problems with the DV approach: 

The DV approach does not appear to provide any tools for the handling 
of missing information, but merely provides a means for representing 
the fact that something is missing. 
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2. The representation proposed is by means of a db-value, which forces 
the testing of functional dependencies and other kinds of dependencies 
at the time data is enteredmthe wrong time if a missing value is involved. 

3. The representation of the fact that a db-value is missing is not only 
dependent on the data type of each pertinent column, but can even vary 
across colUmns having a common data type. All of this presents a severe 
burden in thinking and in inter-personal communication for the DBA, 
end users, and programmers. 

4. The numerous and varied techniques for handling missing data will be 
buried in the application programs, and it is highly doubtful that they 
will be uniform or systematic, or even documented adequately. 

5. Each missing db-value is treated as if it were just another db-value (i.e., 
the DV approach ignores the semantics and suffers from the value- 
oriented misinterpretation). 

6. The DV approach is a step backward from the relational model to an 
ad hoc, unsystematic approach frequently adopted in the pre-relational 
era. 

In the case of item 5, numerous specific consequences were cited earlier in 
this chapter, along with the ensuing penalties. 

It is also important to realize that, whatever the approach, the DBA, 
application programmers, and end users must cope with the semantics of the 
fact that some db-values for some columns may bemissing. Because the DV 
scheme offers no tools for handling missing information in a uniform, sys- 
tematic way, users are forced to invent a variety of ad hoc, unsystematic 
ways, over which the DBMS cannot exert any real integrity control. Finally, 
research in this area is still being pursued, and I make no claim that the 
relational model, as it now stands, treats missing information in a way that 
is unsurpassable. Any replacement, however, must be shown to be techni- 
cally superior. 

9 .8  • A L e g i t i m a t e  U s e  o f  D e f a u l t  V a l u e s  

Suppose that a bank has a central database that includes information on all 
of its customer accounts. When a branch of the bank enters a new account, 
the information is inserted into the database from a terminal located in that 
branch. If the person making the entry omits the branch code (which 
identifies the branch), the system could assume with reasonable safety that 
the branch is identified by the particular terminal used for the entry. 

In this example, a default value is being used for the branch code, and, 
during the entry of a new account, it is the system that computes an 
appropriate value for this code, and then inserts that code into the database 
along with the rest of the account information from the terminal. It is 
important to realize that at no time is the branch code actually missing from 
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its database context: a record that describes a customer account in detail. 
Therefore, this example is clearly distinguishable from a case of information 
missing in the database. 

Use of the word "system" in the last two paragraphs is intentionally 
vague. It should not be interpreted as meaning the DBMS. No specific 
feature of RM/V2 supports this kind of use of default values, which can be 
handled adequately by terminal support that is programmed by use r s~  
provided, of course, that the system, of which the DBMS is part, can make 
the identification of a requesting terminal available along with each request. 

9 .9  • C o n c l u d i n g  R e m a r k s  

In the past, I have intentionally included in the relational model a systematic 
treatment of missing-but-applicable information (information that is tem- 
porarily unknown). In RM/V2, I am now adding similar treatment for 
missing-and-inapplicable information (information that is unknowable). The 
whole treatment of missing information is intended to remove from database 
administrators and users the burden of solving this problem in highly spe- 
cialized, and often inadequate, ways. 

I make no claim that this systematic treatment is either intuitive or 
counter-intuitive. Neither do I claim that users who have used the old style 
with non-relational DBMS will be able to avoid the burden of learning the 
new approach. I also do not claim that missing-but-applicable information, 
inapplicable information, and the derivation of deductions therefrom are 
thoroughly understood yet. 

Finally, I do not claim that RM/V2 handles the "half-missing" case, in 
which a specific and precise value is unknown, but either a small range of 
possible values is known, or else there is a high probability that the missing 
value is one of a very few values. This case may not be ignored in RM/V3, 
but it is now more urgent for DBMS products to handle the cases for which 
RM/V2 provides support. In any event, it will be necessary to show that the 
extra machinery (hardware and/or software) needed to support the "half- 
missing" case is going to pay its way. 

The old-style approach used values that were specially earmarked by 
users to represent missing information (and misrepresent the semantics). 
The earmarking and the invention of manipulation techniques were likely 
to be different for each different column and were a significant burden on 
database administrators and users. The reader will undoubtedly agree that 
the present scheme in the relational model is far more systematic than the 
old-style approach, and moves more of the burden of handling missing 
information from the users to the DBMS. 

Version 1 of the relational model was defined precisely in [Codd 1968- 
1979]. One of the great advantages of the relational approach is the unpar- 
alleled power of its treatment of integrity. It is high time for vendors and 
users to place more emphasis on the introduction and retention of database 
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integrity, and consequently invest more effort in learning the systematic 
treatment of missing information as described in this book. 

Exercises  

9.1 

9.2 

9.3 

9.4 

9.5 

What is the default-value approach, and in what ways is it unsatisfactory 
for representing and handling the treatment of missing values? State 
five undesirable properties. 

In what circumstances is it appropriate to store default values in a 
relational database? Has this anything to do with values that are missing 
from the database? If so, what is the connection? 

Suppose that functional dependencies and multi-valued dependencies 
that are applicable to a certain database are stored in the catalog as 
DBA-defined integrity constraints. How does the relational model cope 
with these constraints when numerous columns are allowed to have 
missing values? 

How does RM/V2 cope with the application of an aggregate function 
to an empty set? What does SQL deliver as the result? Which of these 
actions makes sense? Explain your answer. 

Provide a legitimate case in which a default value (one not supplied 
by the user) should be stored in a database? Does the DV scheme 
support this type of default value? How is this case related to the 
representation and handling of missing information? 
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Qualifiers 

A qualifier is an expression that can be used in a command to alter some 
aspect of the execution of that command. In the context of this book, the 
commands of interest are relational commands; during execution of these 
commands, the focus of interest is the effect of the qualifiers on database 
management. Features RQ-1-RQ-13 (the 13 qualifiers) are discussed in this 
section. 

Normally, when a truth-valued condition in a relational command is 
evaluated, the specified combination of target values is extracted from the 
database, if and only if the complete condition evaluates to TRUE (abbre- 
viated t). The first three features, RQ-1-RQ-3,  are used to change the 
qualifying truth-value from t to one of the MAYBE truth values (a or i) for 
whatever scope of the condition is embraced by the MAYBE qualifier. Table 
10.1 exhibits for each pertinent feature which truth-value becomes the 
qualifying truth-value in place of t. 

Table  10.1 

RQ-1 

RQ-2 

RQ-3 

Qualifiers and Truth Values 

Q 

T R U E  

A - M A Y B E  

I - M A Y B E  

M A Y B E  

t 
a 

i 

both a and i 
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Table lO.2  Qualif iers  

Feature Qualifier 

RQ-1 A-MAYBE 
RQ-2 I-MAYBE 
RQ-3 MAYBE 
RQ-4 AR(x) 
RQ-5 IR(x) 
RO-6 ESR(x) 
RQ-7 ORDER BY 
RQ-8 ONCE ONLY 
RQ-9 DOMAIN CHECK 

OVERRIDE 
RQ-10 EXCLUDE SIBLINGS 
RQ-11 DEGREE OF 

DUPLICATION 
RQ-12 SAVE 
RQ-13 VALUE 

Pertinent Context 

Condition part of any operator 

Any column in any request 

Any command 
Any retrieval command 
Any inner join 
Any operator involving inter- 
column comparisons 
Operators involving PKs 
Any retrieval operator 

Any relational assignment 
Any command that can generate 
marked values ~ 

The absence of a TRUE or MAYBE qualifier indicates the TRUE case 
by default. 

Features RQ-4 and RQ-5 deal with the temporary replacement of missing 
occurrences of values by specified values, where "temporary" means during 
execution of the pertinent command only. Feature RQ-4 provides for tem- 
porary replacement of A-marked values, while RQ-5 provides for temporary 
replacement of I-marked values. The need for these features is explained in 
Chapter 8. 

Feature RQ-6 deals with the handling of empty sets. Feature RQ-7 
imposes ordering upon the rows of the resulting relation, while RQ-8 forces 
each tuple from each operand to be used once if possible, or else not at all, 
in executing a join. Feature RQ-9 is the qualifier that suppresses the checking 
of domains when a relational command involves using one or more pairs of 
columns as comparands. 

Feature RQ-10 pertains to controlling the propagation of certain oper- 
ators (such as update and delete) to the sibling values of a given primary- 
key value. RQ-11 requests the DBMS to append to each row a count of the 
degree of potential duplication of that row in the result of a projection or 
union, if duplicate rows had not been prohibited in the relational model. 
RQ-12 requests the DBMS to save the relation formed as a result of 
executing a command. Table 10.2 provides a list of all the qualifiers and the 
context in which they are applicable. 
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10.1 • T h e  13 Qualifiers 

In the context of a command that can generate marked values, RQ-13 causes 
a specified value to be inserted instead of these marked values. The three 
qualifiers in Features RQ-1-RQ-3,  all based on four-valued logic, are con- 
cerned with extracting values when the condition part of a query has a truth- 
value other than TRUE or FALSE. A relation EMP that identifies and 
describes employees is used to illustrate the effect of these qualifiers: 

EMP ( EMP# ENAME DEPT# SALARY BONUS) 

1 E107 Rook D12 10,000 - - i  
2 E912 Knight D05 - -  A 2,000 
3 E239 Knight D03 12,000 1,800 
4 E575 Pawn D12 - -  A - -  I 
5 E123 King D01 15,000 R A 
6 E224 Bishop D03 - - I  2,500 

"A" denotes an A-mark, and the corresponding value is missing and appli- 
cable. "I" denotes an I-mark, and the corresponding value is missing and 
inapplicable. The row numbers are purely expository. 

The query to be applied in each case is as follows: retrieve the employees 
whose salary exceeds 11,000 and whose bonus is less than 4,000. This query 
can be expressed using the Boolean extension of the select operator: 

Q <- EMP [(SALARY > 11,000)/k (BONUS < 4,000)]. 

Without any qualifier, query Q selects row 3 of the EMP relation. 

RQ-I T h e  M A Y B E _ _ A  Qualifier 

This qualifier, based on four-valued logic, can be applied to any 
truth-valued expression in an RL command. The DBMS focuses on 
those items for which this expression has the truth-value a (which 
denotes MAYBE-AND-APPLICABLE).  For example, if the 
M A Y B E m A  qualifier is applied to the whole condition, then the 
DBMS yields as the final result just those items for which the whole 
condition has the truth-value a. 

Do not confuse the M A Y B E m A  qualifier with the truth-value a or with an 
A-marked value. The query Q qualified by M A Y B E m A  selects rows 2 and 
5 of the EMP relation. 
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RQ-2 T h e  M A Y B E _ _ I  Qualif ier  

This qualifier, based on four-value logic, can be applied to any truth- 
valued expression in an RL command. The DBMS focuses on those 
items for which this expression has the truth-value i (which denotes 
maybe and inapplicable). For example, if the M A Y B E ~ I  qualifier 
is applied to the whole condition, then the DBMS yields as the final 
result just those items for which the whole condition has the truth- 
value i. 

Do not confuse the qualifier MAYBEmI  with the truth value i or with an 
I-marked value. The query Q qualified by MAYBEmI  selects rows 4 and 
6 of the EMP relation. It does not select row 1, since the non-missing salary 
is less than 11,000. 

RQ-3 The MAYBE Qualif ier  

This qualifier, based on four-valued logic, can be applied to any 
truth-valued expression in an RL command. The DBMS focuses on 
those items for which this expression has the truth-value a or i 
(either applicable or inapplicable). For example, if the MAYBE 
qualifier is applied to the whole condition, then the DBMS yields 
as the final result just those items for which the whole condition has 
the truth-value a or i. 

Do not confuse the qualifier MAYBE with the truth-values a or i, or with 
marked values (an A-marked value or an I-marked value). The query Q 
qualified by MAYBE selects rows 2, 4, 5, and 6 of the EMP relation. 

If the DBMS supports features RQ-1-RQ-3 fully, it must support four- 
valued logic under the covers. For more details on four-valued logic, see 
Chapter 8. 

RQ-4, RQ-5 TempOrary R e p l a c e m e n t  of  Miss ing 
Database  Values  

In applying statistical functions to database values in one or more 
columns of an R-table, missing occurrences of such values can be 
temporarily replaced (during the execution of the function only) by 
applying the qualifier AR(x), which replaces A-marked values by x 
(in the case of Feature RQ-4) or the qualifier IR(x), which replaces 
I-marked values by x (in the case of Feature RQ-5). 
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RQ-6 Temporary Replacement of E m p t y  

Relation(s) 

The qualifier ESR(x) appended to an RL expression causes each 
empty relation encountered as an argument during the execution of 
that expression to be replaced by the set whose only element is x, 
provided x is type-compatible with the pertinent relation (normally, 
of course, x is a tuple). 

10.1.1 O r d e r i n g  I m p o s e d  o n  Retrieved Data 

The ability of a DBMS to deliver derived data in any specified order that 
is based on values within the result should be understood from two points 
of view: (1) the terminal users, and (2) the application programmers. 

Frequently, a terminal user must see the data retrieved from a relational 
database in some specific sequence. Moreover, an application programmer 
may be faced with the task of taking the retrieved data, an entire derived 
relation, and interfacing that data to a host language that, for computing 
reasons, is able to process no more than a single record at a time. Such a 
programmer is likely to require that the retrieved data be ordered in some 
specific sequence. 

The relational model does not permit the programmer to take advantage 
of the sequence in which the data in the database happens to be stored. 
Two important reasons for this are as follows: 

1. the DBA may alter the way data in the database is stored at any time 
to improve performance and to cope with changes in traffic on the 
database; 

2. the program should work correctly on a system of different design (even 
if it is supplied by another vendor), and a different design may not 
support precisely the same representations of data in storage; 

R Q - 7  T h e  O R D E R  B Y  Q u a l i f i e r  

An O R D E R  BY clause consists of the following: 

• the O R D E R  BY qualifier; 

• names for those columns of the operands whose values are to 
act as the ordering basis; 

• a symbol ASC or DESC indicating whether the ordering is to 
be by ascending values or descending values. 

An ORDER BY clause can be appended to a relational command 
that retrieves data. The DBMS then delivers the data in the order 
specified. 
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One option available to the user is to base the ordering on the values 
occurring in a simple or composite column of one of the operands or of the 
resulting relation. If the ordering in the result is not represented (redun- 
dantly) by values in one or more columns of the result, the DBMS must 
warn the user of that fact (see Feature RJ-10 in Chapter 11). 

If the ordering is based on character strings, a collating sequence is used 
that is declared by name only, if standard, or by name and extension, if 
non-standard. 

If the comparator < is inapplicable to the extended data type of any of 
the columns upon which the ordering is based, the DBMS applies the 
comparator to the corresponding basic data type. (See Chapter 3 for the 
distinction between basic data type and extended data type.) 

As just noted, the DBMS must warn the user when the ordering in the 
result is not represented (redundantly) by values in one or more columns 
of the result. This warning is required because a user might expect to be 
able to use all of the information in the result for further interrogation. It 
is important to remember that the relational operators are incapable of 
exploiting any information that is not represented by values in R-tables. 
This incapability is neither an accident nor an oversight. It is intended to 
keep the relational operators from becoming overly complicated in handling 
simple tasks. 

Consider the example of the relation C, which identifies and describes 
the capabilities of suppliers. This relation is intended to provide information 
concerning which suppliers can supply which kinds of parts. Examples of 
properties that are applicable to capabilities are as follows: speed of delivery 
of parts ordered, the minimum package size adopted by the supplier as the 
unit of delivery, and the price of this unit delivered. 

S# 

P# 

Supplier serial number 

Part serial number 

SPEED 

QP 

UNIT QP 

MONEY 

PRICE 

Number of business days to deliver 

Quantity of parts 

Minimum package 

U.S. currency 

Price in U.S dollars of minimum package. 

There are five domains: S#, P#,  TIME, QP, and MONEY. 

c (S# P# S P E E D  UNIT_QP PRICE) 

sl pl 5 100 10 
. .  

sl p2 7 100 20 
sl p6 12 10 600 
s2 p3 5 50 37 
s2 p5 8 100 15 
s3 p6 15 10 700 



10.1 The 13Qualifiers • 213 

s4 p2 10 100 15 
s4 p5 15 5 300 
s5 p6 10 5 350 

Suppose there is an urgent need for fast delivery of certain parts. The 
following request tabulates triples consisting of the serial numbers of sup- 
pliers, the serial numbers of parts, and the speed of delivery; all the triples 
are ordered by part serial number (major participant) and speed (minor 
participant): 

C[S#, P#, SPEED] ORDER BY (P#, SPEED). 

Upon receipt of this request, the DBMS delivers the following result' 

c (s# P# SPEED) 
sl pl 5 pl 
sl p2 7 } p2 
s4 p2 10 ~ p3 
s2 p3 5 

s2 p5 8 t 
s4 p5 15 ~ p5 
s5 p6 10 ] 
sl p6 12 I p6 
s3 p6 15 

Note that the option of requesting the ordering to be based on values 
in a column of the result allows the values computed according to a specified 
function to be used as the ordering basis. For example, suppose that a 
relation EMP containing information about employees is being interrogated, 
and that EMP has: 

• a column containing the present salary of each employee; and 

• a column containing the department number of each employee. 

Consider this query" find the department number together with the total 
salary earned by all employees assigned to that department. It must be 
possible to display the result ordered by these total salaries. 

10.1.2 The  ONCE Qua l i f i e r  a n d  Its  Effec t  u p o n  T h e t a - j o i n s  

The inner and outer T-joins were introduced in Section 5.7. An interesting 
property of the T-joins is that each tuple of the operands participates at 
most once in the result. It is entirely possible that some of the operands' 
tuples do not participate at all in mid-sequence--neither at the early end 
nor at the late end. 
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RQ-8 T h e  O N C E  O N L Y  Q u a l i f i e r  

( a b b r e v i a t e d  O N C E )  

When attached to a request for an inner T-join, the qualifier ONCE 
converts this request into a special inner T-join, in which every tuple 
of the operands participates exactly once with few exceptions. The 
exceptions can occur at the early end, the late end, or both ends of 
the sequence, where early and late are based on values of date and/ 
or time in the comparand columns. Similarly, the qualifier ONCE 
converts an outer T-join into a special outer T-join, in which every 
tuple of the operands participates exactly once without exception. 

How is this full participation realized? Consider the example that was 
introduced in Section 5.7. The sample operands are relations S and T: 

S ( P  A )  T ( Q  B) 

kl 4 ml  3 
k2 6 m2 5 
k3 12 m3 9 
k4 18 m4 11 
k5 20 m5 13 

m6 15 

The result of taking the inner T-join based on < of S on A with T on B 
(omitting the qualifier ONCE) is the relation V, assuming that 

v s [[ A < B ]] T. 

V (P A B Q ) 

kl 4 5 m2 
k2 6 9 m3 
k3 12 13 m5 

Notice that tuples < k4, 18 > and < k5, 20 > of relation S and tuples 
< ml,  3 >, < m4, 11 >, and < m6, 15 > of relation T did not participate 
at all in the result. 

If the qualifier ONCE is attached, however, the result is generated by 
first sorting each relation by increasing time (S is sorted by A, T is sorted 
by B). The next step is to start at the tuple in S with the earliest time, 
namely < kl, 4 >. This tuple is coupled with the earliest tuple in T, namely 
< ml,  3 >. To do this and still comply with the comparand <, the time 
component of the tuple < ml,  3 > from T is incremented by the least 
integer amount (i.e., 2) to make it satisfy the LESS THAN condition. When 
coupled, the resulting tuple is < kl,  4, 5, ml >. Note that I have reversed 
the last two components for expository reasons. 
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The next step is to couple < k2, 6 > from S with < m2, 5 > from T 
by incrementing the time component of the row from T by the least amount 
(again, 2) to make it comply with the LESS THAN condition. The resulting 
tuple is < k2, 6, 7, m2 >. These steps are repeated and yield first < k3, 
12, 13, m3 >,  then < k4, 18, 19, m4 >, then < k5, 20, 21, m5 >,  and 
finally the tuple < m6, 15 > from T is left as a non-participant. Notice that 
the necessary increments are not constant. The resulting relation is 

W (P A B Q ) 

kl 4 5 ml  
k2 6 7 m2 
k3 12 13 m3 
k4 18 19 m4 
k5 20 21 m5 

If, instead of the inner T-join, the symmetric outer T-join had been used 
with the ONCE qualifier, the result would have been 

w (p A B Q ) 

kl 4 5 ml 
k2 6 7 m2 
k3 12 13 m3 
k4 18 19 m4 
k5 20 21 m5 
- -  - -  22 m 6  

Note that the time component of the last tuple < m6, 15 > from T has 
been incremented by the least integer amount (i.e., 7) that will make it 
greater than the largest time component in the rest of the result. 

Note that the operands S and T remain in the database unchanged. 
Thus, it would be incorrect to regard this operation as an update of either 
S or T. The user may need to bear in mind, however, that the values in the 
result are not necessarily drawn from the database without change. Whatever 
changes take place are certainly not the result of applying a simple trans- 
formation uniformly across all the values in a column. 

RQ-9 The D O M A I N  C H E C K  O V E R R I D E  ( D C O )  

Q u a l i f i e r  

If specifically authorized, use of the qualifier DCO in a command 
permits values to be compared during the execution of the command 
that are drawn from any pair of distinct domains in the entire 
database. The qualifier may, however, be accompanied by the name 
of a unary relation containing a specific list of the names of domains. 
The effect of this list is to request the DBMS to permit comparing 
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activity that involves pairs of distinct domains, only when the names 
of those domains appear in the list. 

A user who is authorized to use qualifier RQ-9 across the entire database 
is endowed with tremendous power for doing good or evil. This is why I 
would recommend that the authorization for domain check override normally 
be confined to a short, specified list of domains only, and even then only 
for a short time and specific trouble analysis. 

For more detail, see Features RJ-6 in Chapter 11, RM-14 in Chapter 
12, and RA-9 in Chapter 18. Use of this qualifier would seldom be author- 
ized, and then for only a short time. The principal use is for detective work 
in trying to determine how a portion of the database lost its integrity. For 
example, if the domains for a particular database happen to include a part 
serial number domain and a supplier serial number domain, and they happen 
to have identical basic data types (both character strings of length 12, say), 
one might wish to ask which of these semantically distinct serial numbers 
happens to be identical to one another when viewed simply as character 
strings. 

RQ-IO T h e  E X C L U D E  S I B L I N G S  Q u a l i f i e r  

In some of the manipulative operators (Features RB-33-RB-34, 
RB-36-RB-37), the primary key of some base relation is either 
specified directly or is indirectly involved, and certain action is to 
be taken on the siblings of this primary key. This action on the 
siblings is thwarted if the EXCLUDE SIBLINGS qualifier is at- 
tached to the command. 

See Section 4.3 for definitions and details. 

RQ-11 T h e  A p p e n d e d  D E G R E E  O F  

D U P L I C A T I O N  ( D O D )  Q u a l i f i e r  

Assume that the DOD qualifier is appended to the projection of a 
single relation or to the union of two union-compatible relations. 
For each row in the result, the DBMS calculates the number of 
occurrences of that row if duplicate rows had been permitted in the 
result. This count is appended to each row in the actual result as 
an extra component. Thus, the result is a relation with an extra 
column, which is called the DOD column here. 

This qualifier enables the DBA to grant a user access to enough information 
from the database for him or her to make correct statistical analysis, without 
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granting access to some primary keys that happen to be sensitive. See 
Chapter 18 for further information on this topic, as well as an alternative 
approach that can be taken by the DBA and DBMS. 

Examples of projection with the DOD qualifier appear next. The op- 
erand is as follows" 

R (K A B C D . . . ) 

kl a l  b l  c l  d l  . . . 

k2 a l  b l  c l  d2 . . . 

k3 a l  b l  c l  d2 . . . 

k4 a l  b l  c2 d3 . . . 

k5 a2 b l  c l  d3 . . . 

k6 a2 b2 c2 d4 . . . 

The results are as follows" 

R [A B C ] DOD 

al  b l  c l  

a l  b l  c2 

a2 b l  c l  

a2 b2 c2 

R [A B ] DOD 

al  bl  4 

a2 b l  1 

a2 b2 1 

R [A ] DOD R [B ] DOD R [C ] DOD 

al  4 b l  5 c l  4 

a2 2 b2 1 c2 2 

R [B C ] DOD 

b l  c l  4 

b l  c2 1 

b2 c2 1 

R [O ] DOD 

d l  1 

d2 2 

d3 2 

d4 1 

Clearly, any DOD projection of R that includes the primary key K of 
R will have as many rows as R does, and in each row the DOD component 
will be exactly one. Note also that if relation R happens to be empty, every 
projection of R is empty, whether or not the pertinent projection is DOD- 
qualified. 

An example of union with the DOD qualifier appears next. The operands 
are as follows: 

S (A B C ) T (A B C ) 

al  b l  c l  a2 b2 c2 

a2 b2 c2 a3 b2 c2 

The result is as follows" 

s UNION T (A B C DOD) 

al  b l  c l  1 

a2 b2 c2 2 

a3 b2 c2 1 
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Note that 1 and 2 are the only two possible values for the DOD component 
of the DOD-qualified union of any two union-compatible relations. Note 
also that, if both operands happen to be empty, the result is empty whether 
the union is DOD-qualified or not. 

Implementation of Feature RQ-11 in an index-based DBMS is quite 
easy and cheap~most  of the code needed for RQ-11 must be developed to 
support the CREATE INDEX command in any case (see Feature RE-14 in 
Chapter 7). 

Each of the statistical functions built into the DBMS should have two 
flavors" one that treats each row as it occurs (just once, ignoring any DOD 
component, if such exists); the other that treats each row as if it occurred 
n times, where n is the DOD component of that row (see Chapter 19 for 
details). 

RQ-12 T h e  S A V E  Q u a l i f i e r  

The SAVE qualifier may be attached to any relational assignment 
(see Feature RB-30 in Chapter 4). Let T be the relation formed by 
this assignment. The SAVE qualifier requests the DBMS to store 
the description of T in the catalog, and to save T as if it were part 
of the database. 

If the SAVE qualifier is omitted, and if T still exists at the end of the 
interactive session or after the pertinent application program is executed, 
then the DBMS drops T. Thus, the SAVE qualifier causes a relation to be 
saved for shared use. Omitting the SAVE qualifier restricts the pertinent 
relation to private and temporary u s e ~ a s  far as the DBMS is concerned. 
A user must have the necessary authorization to make a copy of a base or 
derived relation to be saved for private use (outside the control of the 
DBMS). He or she may then issue an EXTRACT command (see Feature 
RE-19 in Chapter 7). 

RQ-13 T h e  V A L U E  Q u a l i f i e r  

When this qualifier is attached along with a value v to a command 
or expression that (1) creates a new column in a relation (base or 
derived) and (2) would normally fill this column with marked values, 
it causes v to be inserted in this column instead of each of the 
marked values. 

This qualifier can be used with the advanced operator RZ-2 to extend 
a relation per another relation or with the DBA command RE-10 to append 
a named column to the description and to the extension of a base relation. 
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Exercises  

10.1 Which qualifiers in RM/V2 support the extraction of data for which 
the truth value of the whole condition is 
1. a = unknown due to a missing-but-applicable datum? 
2. i = unknown due to a missing-and-inapplicable datum, and 
3. either a or i. 

10.2 Describe the effect of appending the AR qualifier with 912 as its 
argument to a statistical function applied to a numeric column. 

10.3 Describe the effect of appending the IR qualifier with the character 
string "??"  as its argument to a statistical function applied to a 
character-string column. 

10.4 What is the DBMS required to do if the user includes the O R D E R  
BY qualifier in his or her request, and the ordering is not represented 
redundantly by values in the result? 

10.5 With what kind of operators can the O N C E  qualifier be attached to 
one or both of the operands? What is the effect of this qualifier? 

10.6 How is a regular join on < with the ONCE qualifier related to a 
T-join on <? 

10.7 Describe the domain checking that is inhibited by the domain check 
override. 

10.8 What action is excluded on what primary keys when the E X C L U D E  
SIBLINGS qualifier is used? 
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Indicators  

An indicator is a side effect of executing a relational command. If turned 
on during the execution of a relational command, it indicates the occurrence 
of an exceptional condition pertaining to the relational result, an interme- 
diate result, or one of the arguments. Note that indicators are best imple- 
mented as return codes, preferably with explanatory comments. There is 
likely to be a need for more indicators than the 14 listed in Table 11.1. 

Each of the 14 indicators cited in Features RJ-1-RJ-14 is turned off at 
the beginning of the execution of each type of RE command that is capable 
of turning such an indicator on, so that its state at any time reflects the 
outcome of the most recently executed command of this type. 

Of course, the language RE must permit use of these indicators as part 
or all of a condition expressed within an immediately following RE command. 
To support this, each of the 14 indicators (except RJ-11-RJ-14) comes in 
pairs, say u and v, because it is necessary to distinguish between the use of 
an indicator as an argument in a command and its use as a result of that 
command. 

During execution of an R E  command, the indicator u is used to remember  
the indication from the immediately previous RE command, and the indicator 
v is prepared to accept the indication from execution of the current RE 

command. During execution of the immediately following RE command, the 
roles of u and v are reversed. All a user must know is that, when an indicator 
(no matter  what its type) is tested in the condition part of an R L  request, it 
reflects the execution of the immediately preceding R E  command. 

221 
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Table 11.1 I n d i c a t o r s  

Feature Type Indicator 

RJ-1 Result Empty relation 
RJ-2 Argument Empty divisor 
RJ-3 Result Missing 

information 
RJ-4 Argument Non-existing 

argument 
RJ-5 Argument Domain not 

declared 
RJ-6 Argument Domain check 

error 
RJ-7 Argument Column still 

exists 
RJ-8 Argument Duplicate row 
RJ-9 Argument Duplicate primary 

key 
RJ-10 Result Non-redundant 

ordering 
RJ-11 Result Catalog block 

RJ-12 Result View not tuple- 
insertible 

RJ-13 Result Tuple-component 
not updatable 

RJ-14 Result View not tuple- 
deletable 

Pertinent Features 

All operators 
Relational division (RB-27) 
All operators 

RE-2, RE-3, RE-5, RE-6, RE-8, 
RE-9, RE-12 
Drop domain (RE-4) 

Selects, joins, relational division 
(RB-27) 
Alter domain (RE-3) 

Loading 
Loading 

ORDER BY qualifier (RQ-7) 

Blocks to alter database description 
(RM-7) 
Create view 

Create view 

Create view 

The term "immediately preceding RL command" means the RL command 
that the DBMS encountered as the immediately preceding one from the 
particular terminal or program, whichever is pertinent. The terms "preced- 
ing" and "following" apply in this case to RE commands only, not to any 
host-language commands in between the RE commands. 

As can be seen from Table 11.1, most of the indicators are argument 
indicators. This means that, when turned on, they reflect an exceptional 
condition that applies to one of the arguments of a command. 

Two of the six result indicators (Features RJ-1 and RJ-2) are intended 
to relieve users of the burden of detailed (and possibly programmed) ex- 
amination for emptiness in one or more relations, and for the possibility 
that one or more cases of missing information were encountered during the 
execution of the command. 
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11.1 m Indicators Other than the 
View-Defining Indicators 

R J - I  Empty-relation Indicator 
(Result Indicator) 

When the result of any retrieval or manipulative command expressed 
in RL is generated, an empty-relation indicator is turned on whenever 
the final result happens to be (or to include) an empty relation. 

R J -2  E m p t y  D i v i s o r  I n d i c a t o r  

(Argument Indicator) 

If (1) a command in RE is about to be executed, (2) it involves 
relational division, and (3) the divisor relation happens to be empty, 
then an empty-divisor indicator is turned on, and the result generated 
by the DBMS from the division is the dividend with the divisor 
columns removed. 

The empty-divisor indicator is set to zero at the beginning of the execution 
of each RL command. The indicator is set to one (and remains set to one) 
whenever within any command a relational division is encountered for which 
the divisor is empty. Therefore, upon completion of the execution of a single 
command of RE, if the empty-divisor indicator is in state one, this indicates 
that an empty divisor was encountered in one or more of the relational 
divisions within that command. This indicator is most helpful when the 
divisor happens to be an intermediate result, one that exists for only a short 
time during the execution of a more comprehensive command. 

The relation that results from a relational division by an empty set is 
just what one would expect from the corresponding expression in predicate 
logic involving the universal quantifier. For example, suppose the database 
includes an R-table indicating in each row that supplier S# can supply part 
P#.  If the user is finding the suppliers, each of whom can supply every one 
of a list of parts, and if that list happens to be empty, then every supplier 
recorded in the C A N ~ S U P P L Y  relation qualifies. 

R J-3  Missing-information Indicator 
(Result Indicator) 

Whenever, during the execution of any retrieval or manipulative 
command expressed in RE, the DBMS encounters a database value 
declared to be missing, the missing-information indicator is turned 
o n .  
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RJo4 Non-existing Argument Indicator 
(Argument Indicator) 

The DBMS is unable to find an argument in accordance with the 
name specified in the command being executed. Execution of the 
command is aborted. 

R J -5  Domain-not-declared Indicator 
(Argument Indicator) 

An attempt has been made to execute a CREATE R-TABLE 
command in which a column draws its values from domain D, and 
the DBMS finds that domain D has not been declared. Execution 
of the command is aborted. 

R J-6  D o m a i n - c h e c k - e r r o r  I n d i c a t o r  
( A r g u m e n t  I n d i c a t o r )  

An operator has been requested that involves comparing values 
from two columns. The DBMS discovers that (1) the columns cited 
do not draw their values from a common domain, and (2) the user 
has not specified DOMAIN-CHECK-OVERRIDE in his or her 
command. The domain-check-error indicator is turned on, and ex- 
ecution of the command is aborted. 

This feature protects the database from damage by those users who happen 
to make errors in formulating selects, joins, and divides. Such errors are 
quite likely when a naive or tired user is trying to exploit a powerful relational 
language. For more detail, see Feature RQ-9 in Chapter 10, Feature RM- 
14 in Chapter 12, and Feature RA-9 in Chapter 18. 

The following feature is effective when the DBA or some other suitably 
authorized user attempts to drop a domain from the catalog without making 
sure that there no longer exists in the database a column that draws its 
values from that domain. 

R J - 7  Domain Not Droppable, Column Still 
Exists Indicator (Argument Indicator) 

An attempt has been made to execute a DROP DOMAIN com- 
mand, but a column still exists that draws its values from that 
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domain. When this indicator is turned on, the DBMS aborts the 
DROP DOMAIN command. 

See Features RE-3 and RE-6 in Chapter 7 for more detail. 

R J -8  D u p l i c a t e - r o w  I n d i c a t o r  

( A r g u m e n t  I n d i c a t o r )  

When loading data from a non-relational source into the base 
R-tables of a relational database, the DBMS examines the data to 
see whether duplicate rows occur. If so, the duplidate-row indicator 
is turned on. 

For both Feature RJ-8 and Feature RJ-9, it is assumed that the descrip- 
tion of each base R-table is in the catalog before the loading is started. This 
applies even if the base R-table is empty before the loading. Of course, the 
description includes an identification of which column(s) constitute the pri- 
mary key. 

The duplicate-row indicator is not intended for use during any manip- 
ulative operations that are totally within the relational model. Such opera- 
tions never generate duplicate rows. 

R J -9  D u p l i c a t e - p r i m a r y - k e y  I n d i c a t o r  

( A r g u m e n t  I n d i c a t o r )  

When loading data from a non-relational source into a base R-table 
of a relational database, the DBMS examines the data to see whether 
there are duplicate occurrences of primary key values. If so, the 
duplicate-primary-key indicator is turned on. 

Features RJ-10 and RJ-11, which follow, are also described in Section 
4.3 in the context of the insert operator RB-31. 

R J - I O  N o n - r e d u n d a n t  O r d e r i n g  I n d i c a t o r  

(Result Indicator) 

As noted in Feature RQ-7 in Chapter 10, the ORDER BY qualifier 
can generate a result in which tuples are ordered according to 
information not included in the result. When this occurs, the non- 
redundant-ordering indicator (NRO) is turned on. 
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R J-11 Catalog Block Indicator (Result  Indicator) 

This indicator indicates that a catalog block of commands is being 
executed. It is turned on by a BEGIN CAT command only and 
turned off by an END CAT command only. Thus, it stays on 
throughout the execution of a catalog block. 

During the execution of a catalog block, the DBMS uses this indicator 
to suppress cascading action that would occur if the indicator had been off. 
See the DROP R-TABLE command (Feature RE-9 in Chapter 7) for an 
example of a command in which the cascading action is dependent on the 
state of the catalog-block indicator. 

11.2 • The View-Def in ing  Indicators 

At the beginning of execution of a CREATE VIEW command, the indicators 
RJ-13, RJ-14, RJ-15 are all turned off. The DBMS then examines the 
updatability of the declared view using algorithm VU-1 or some stronger 
algorithm (see Chapter 17). Each of the three indicators is either left off or 
turned on, whichever accurately reflects the extent of updatability of the 
view. 

R J-13 View Not  Tuple- insert ible  

From the view definition contained in a CREATE VIEW command, 
the DBMS has inferred that the view is not tuple-insertible. 

R J-14  View Not  Compone nt -updatab le  

From the view definition contained in a CREATE VIEW command, 
the DBMS has inferred that at least one Component of every tuple 
in the view is not updatable. 

Of course, as part of the execution of a CREATE VIEW command, the 
DBMS determines for each component (virtual column) whether it is or is 
not updatable. This information is stored in the catalog (a bit for each 
component), so that it is not necessary to recompute any of it when any 
update is requested on this view. 
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R J -15  V i e w  N o t  Tuple-deletable 

From the view definition contained in a CREATE VIEW command, 
the DBMS has inferred that the view is not tuple-deletable. 

For more information on view updatability, see Chapter 17. 

E x e r c i s e s  

11.1 Describe the empty-relation indicator and the empty-divisor indicator. 
In what ways is each of these indicators useful? 

11.2 Upon completion of the execution of an RL command, it is found that 
the missing-information indicator has been turned on. What does this 
mean? 

11.3 What are the domain-oriented indicators, and what is their purpose? 

11.4 A file is being loaded into a relational database from a non-relational 
source. Explain the two indicators that may be turned on, and indicate 
two distinct forms of undesirable redundancy. 

11.5 A user is trying to drop a domain. The DBMS refuses, and the column 
still exists indicator is turned on. What does this mean? 

11.6 What is the purpose of the non-redundant ordering indicator? 

11.7 Consider a request for tuple insertion, component update, or tuple 
deletion acting on a view. Is it at request time or at view-definition 
time that the DBMS determines whether the request can be honored 
while maintaining integrity? Justify the timing adopted in the relational 
model. 
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Query and Manipulation 

The features described in this chapter concern the general properties and 
capabilities of the relational language, not its specific features, and certainly 
not its syntax. 

12.1  • P o w e r - o r i e n t e d  F e a t u r e s  

R M - I  G u a r a n t e e d  A c c e s s  

Each and every datum (atomic value) stored in a relational database 
is guaranteed to be logically accessible by resorting to a combination 
of R-table name, primary-key value, and column name. (This feature 
is Rule 2 in the 1985 set.) 

The access path supporting this feature cannot be canceled. Most other 
access paths, however, are purely performance-oriented, and can be both 
introduced and canceled. Both Feature RM-1 and Feature RM-3 are needed 
in order to support ad hoc query without pre-defined access paths. 

Clearly, each datum in a relational database can be accessed in a rich 
variety (possibly thousands) of logically distinct ways. It is important, how- 
ever, to have at least one means of access, independent of the specific 
relational database, that is guaranteed~because  most computer-oriented 
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concepts (such as scanning successive addresses) have been deliberately 
omitted from the relational model. 

Note that the guaranteed-access feature represents an associative- 
addressing scheme that is unique to the relational model. It does not depend 
at all on the usual computer-oriented addressing. Moreover, like the original 
relational model, it does not require any associative-addressing hardware, 
even though the need for such hardware was once frequently claimed by 
opponents of the relational model. 

The primary-key concept, however, is an essential part of Feature 
RM-1. Feature RS-8 requires each base relation to have a declared primary 
key (see Chapter 2). Feature RM-1 is one more reason why the primary 
key of each base relation should be supported by every relational DBMS, 
and why its declaration by the DBA should be mandatory for every base 
relation. 

RM-2 Parsable Relat ional  Data Sublanguage 

There is at least one relational language (denoted RL in this book) 
supported in the DBMS (not in an optional additional software 
package) such that (1) RE statements must be capable of being 
represented as parsable character strings, and can therefore be 
written or typed by a programmer, (2) for each manipulative op- 
eration, each and every operand is a relation, and (3) for each 
manipulative operation, each generated result is a relation with the 
result indicators (see Chapter 11) acting as a possible source of 
additional information. 

A few vendors strongly promote interaction by programmers based on 
multiple-choice questions generated by the DBMS. This is claimed to be an 
alternative to writing programs, but I believe that the claim is insufficiently 
substantiated. This unproven claim is one important reason for requiring 
statements that are parsable character strings. Three additional reasons for 
this requirement are as follows: 

1. it facilitates program maintenance; 

2. the language is then in a form suitable for formal analysis; 

3. the language may represent a standard for interfacing the DBMS to 
software packages on top (e.g., application development tools and expert 
systems). 

Interactive tools that are claimed to make written or typed programs 
obsolete do not yet appear to support the maintenance requirement ade- 
quately. Moreover, these tools are badly in need of a published abstract 
model. 
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R M - 3  P o w e r  o f  t h e  R e l a t i o n a l  L a n g u a g e  

Excluding consideration of general logical inference, RL as a lan- 
guage has the full power of four-valued, first-order predicate logic 
[Pospesel 1976, Stoll 1961, Suppes 1967, Church 1958]. 

The DBMS is capable of applying this power to all the following 
tasks: 

• retrieval (database description, contents, and audit log); 

• view definition; 

• insertion; 

• update; 

• deletion; 

• handling missing information (independent of data type); 

• integrity constraints and authorization constraints. 

If the DBMS is claimed to be able to handle distributed data, it can 
handle the following task: 

• Distributed database management with distribution indepen- 
dence, including automatic decomposition of commands by the 
DBMS and automatic recomposition of results by the DBMS 
(see Features RP-4 and RP-5 in Chapter 20). 

This last task represents a target to which the DBMS should apply the 
relational language RL, rather than a reason to extend RL. In other words, 
RL is scarcely affected by the need to support the management of distributed 
databases. 

Of course, if the DBMS is to handle all the tasks specified in Feature 
RM-3, it would need additional capabilities beyond predicate logic. Clearly, 
to take just two examples, functions and arithmetic operators may also be 
needed. We emphasize the predicate logic because it is vital as a source of 
power of the relational language, and will remain so until another logic as 
powerful and rigorous is developed, which could take another two millennia. 

R M - 4  H i g h - l e v e l  I n s e r t ,  U p d a t e ,  a n d  D e l e t e  

The relational language RL supports retrieval, insert, update, and 
delete at a uniformly high, set level (multiple-records-at-a-time). 
(This Feature is Rule 7 in the 1985 set.) 

This requirement gives the system much more scope in optimizing the 
efficiency of its execution-time actions. It allows the system to determine 

- -  i -  I . . . . .  
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which access paths to exploit to obtain the most efficient code. It can also 
be extremely important in obtaining efficient handling of transactions across 
a distributed database. In this case, users would prefer that communication 
costs are saved by avoiding the necessity of transmitting a separate request 
for each record obtained from remote sites. 

If a product supports retrieval only at this high level, it is not a relational 
DBMS, but merely a system that includes a relational retrieval subsystem. 

R M - 5  O p e r a t i o n a l  C l o s u r e  

RL is mathematically closed with respect to the relational operators 
it supports. 

This means that the retrieval and manipulative operators that can be 
invoked by statements in RL are incapable (and must remain incapable) of 
generating a result that is neither a relation nor a set of relations (although 
the indicators mentioned in Chapter 11 may provide additional output). The 
following misinterpretations are common: 

• that R L  cannot be expanded to support more operators than are currently 
part of the relational model; 

• that an operator must not generate a relation that lacks a primary key. 

Regarding the second misinterpretation, it is worth noting that, when a 
relation is generated that does not have a primary key, it always has a weak 
identifier. Note also that, as mentioned in Chapter 1 and elsewhere, in RM/ 
V2 no relation, whether base or derived, is allowed to have duplicate rows. 

Feature RM-5 is as necessary in database management as arithmetic 
closure is in accounting. When applying addition, subtraction, and multipli- 
cation to numbers, the accountant knows that the result is always a number. 
Therefore, it is always possible to continue the process and use a result from 
one activity as an argument for another. Similarly, when a user interrogates 
a relational database, the result is always a relation. Thus, it is always 
possible to continue the process and use a result from one activity as an 
argument for another. This feature makes it possible for users to employ 
interrogation in a detective style. 

12.2 • B l o c k i n g  C o m m a n d s  

If a DBMS is to be more than a simple query system, it must support the 
transaction concept. The precise definition accepted today is due to the 
System R team at IBM Research. (I believe that a principal contributor to 
this definition was Jim Gray.) 
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A transaction is a logical unit of work that transforms a consistent state 
of the database into a consistent state, without necessarily preserving con- 
sistency at all intermediate points. All actions within this logical unit of work 
must succeed, or else none of them must succeed. This atomicity of the unit 
of work must be applicable even though a sequence of several commands is 
normally involved in specifying the work to be done within that unit. 

Within the logical unit of work, the DBMS may build up numerous 
changes for the database: entirely new rows to be inserted, rows that have 
been updated, or deletions. Usually these changes are accumulated in a 
cache memory until a command to commit the changes (usually called 
COMMIT) is received. Then, all the changes are recorded in the database. 

If a failure occurs in either the hardware or the software during execution 
of the transaction, it is the responsibility of the DBMS to ensure that none 
of the changes accumulated in the cache memory is recorded in the database. 
If the program discovers some irregularity, such as an attempt to divide by 
zero, it issues a ROLLBACK command to abort the transaction and cause 
none of the changes to be committed to the database. 

Three commands are necessary (the System R terms are adopted): 

1. BEGIN signals the DBMS that a transaction is about to begin. 

2. COMMIT signals the DBMS that a transaction has been completed in 
a normal manner, and that therefore all the changes to the database 
generated by this transaction can be committed to the database. 

3. ROLLBACK signals the DBMS that none of the changes to the database 
generated so far in the execution of this transaction is to be committed. 

R M - 6  T r a n s a c t i o n  B l o c k  

The BEGIN and COMMIT commands identify the beginning and 
ending of a block of commands. At least one of the commands 
within a block must be expressed in the relational language; the 
others may be expressed in either the relational language or in the 
host language or in both. Such a block constitutes a transaction if, 
during its execution, either all parts succeed or none succeeds. 
ROLLBACK signals the DBMS (1) to terminate this execution of 
the transaction requested by the program, and (2) to avoid com- 
mitting to the database any of the changes already developed during 
this execution of the transaction." 

The following practical example illustrates the need for this feature. 
Suppose that a customer requests a bank to transfer $1,000 from his or her 
checking account to his or her savings account. Such a transfer is normally 
programmed so that the first action is an attempted withdrawal of $1,000 
from the checking account (which incidentally checks to see whether the 
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balance in the checking account is sufficient for the withdrawal to be made). 
If the first action is successful, the second action is to deposit this amount 
in the savings account. 

Suppose that immediately after the withdrawal succeeds, a hardware 
failure occurs and the computer is taken off-line. Then, the corresponding 
deposit has not been put into effect. If the withdrawal has been recorded in 
the database and the deposit has not been recorded, the customer has lost 
$1,000. Therefore, such a transfer of funds from one account to another 
should be treated as a logical unit of work (i.e., as a transaction) so that all 
of it succeeds, or none of it succeeds. 

R M - 7  Blocks to Simplify Altering the 
Database Description 

An R L  commandmlabeled CAT here--signals the DBMS that the 
immediately following commands are all RL commands (i.e., no host 
language occurs in the package) and that each of these commands 
deals with changes in the catalog. The sequence of commands is 
ended bythe  RL command END CAT. In executing a block of RL 
commands defined in this way, the DBMS postpones certain actions 
until the command END CAT is encountered. The postponed ac- 
tions include cascading actions normally associated with dropping 
base R-tables and views, plus the application of certain I-timed 
integrity constraints. Immediately before encountering END CAT, 
the DBMS cancels that part of the postponed cascading of view 
elimination, which has become unnecessary by END CAT time. It 
also cancels cascading of deletion for those authorization assertions 
that are still meaningful. 

This feature concerns reducing or eliminating cascading actions on the 
catalog that result from changes in the catalog requested by isolated (un- 
blocked) RL commands. Examples of such actions follow: 

• dropping every view whose definition depends on an R-table (base or 
view) when that table is being dropped; 

• dropping all authorization commands that refer to an R-table when that 
table is being dropped. 

In many cases, Feature RM-7 enables the DBMS to eliminate or dras- 
tically reduce cascading action (such as the dropping of all views defined on 
a relation R when R is dropped) that results from unblocked commands 
that request changes in the catalog. 

The main purpose of this feature is to relieve the DBA and any other 
suitably authorized user from the burden of having to redefine or redeclare 
all the items dropped in cascading action, when it would be necessary to 
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restore many of them by hand as soon as one or more replacement R-tables 
are created. A second purpose is to permit the DBMS to optimize its 
treatment of the block of catalog commands as a whole. 

For example, the addition in the catalog of a new column to the de- 
scription of a base R-table can involve a complete scan of all rows of that 
R-table to alter the way each row is stored. If two columns are added to a 
single R-table by means of two consecutive, but unblocked, catalog com- 
mands, the DBMS will make two complete scans of all rows of that R-table. 
On the other hand, if these two commands are placed within a catalog 
block, then the DBMS can handle both columns by means of just one scan. 
If the pertinent R-table is large, the gain in performance could be significant. 

12.3 a M o d e s  o f  E x e c u t i o n  

R M - 8  D y n a m i c  M o d e  

The DBMS supports the following kinds of changes dynamically~ 
that is, without bringing activity on the regular data to a halt, without 
changing the source coding of any application programs, and without 
any off-line recompiling of any source RL statements: 

1. creating new and dropping old domains, R-tables, and columns 
for already-declared R-tables; 

2. creating new and dropping old representations in storage for 
parts of the database; 

3. creating and dropping performance-oriented access paths; 

4. changing the authorization data in the catalog; 

5. changing declarations in the catalog (e.g., data types, user- 
defined functions, integrity constraints). 

The relational approach is intentionally highly dynamic. In contrast to 
non-relational DBMS, it should rarely be necessary to bring the database 
activity to a halt for any reason. 

R M - 9  T r i p l e  M o d e  

The same language, RL, can be used in three distinct ways. First, 
R L  can be used interactively at terminals. Second, statements in RE 
can be incorporated into application programs. Third, statements in 
RE can be combined to specify the action to be taken in case of 
attempted violation of an integrity constraint (see Chapters 13 and 
14). 
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Generally speaking, adherence to this feature enables an application pro- 
grammer to develop and debug the database statements separately from the 
remainder of the program in which these statements occur. 

1 2 . 4  • M a n i p u l a t i o n  o f  M i s s i n g  I n f o r m a t i o n  

R M - I O  F o u r - v a l u e d  L o g i c :  T r u t h  T a b l e s  

The DBMS evaluates all truth-valued expressions using the four- 
valued logic defined by the truth tables that follow: 

not P P k/Q t a i f P / k Q  

Q 

t a i f 

t t t t t t t a i f 
P a t a a a P a a a i f 

i t a i f i i i i f 
f t a f f f f f f f 

In these tables, t stands for TRUE,  a for MISSING AND 
APPLICABLE,  i for MISSING AND INAPPLICABLE,  and f for 
FALSE. Note that t, f, i, and a are actual values, and should not 
be regarded as marked values. Because the sets retrieved and ma- 
nipulated in database management are all finite, the existential and 
universal quantifiers can be treated as iterated OR and iterated 
AND,  respectively. 

Evaluation of a truth-valued expression according to this logic is executed 
by the DBMS without assistance from the user. This does not mean that 
users should be unaware of four-valued logic, but they need not be contin- 
uously concerned with the details. 

RM/V1 involved only three-valued logic; no distinction was made on 
the basis of reasons why information might be missing. Such a distinction, 
however, is made by RM/V2. (For details, see Chapter 8.) 

R M - I I  M i s s i n g  I n f o r m a t i o n :  M a n i p u l a t i o n  

Throughout the database, missing database values are manipulated 
by the DBMS uniformly and systematically, and, in particular, in- 
dependent of data type. 

Users should be able to exploit the full expressive power of the 
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four-valued predicate logic in RL.  In particular, the MAYBE qual- 
ifier should be applicable to any truth-valued expression, whether a 
complete logical condition or just part of such a condition. 

(This feature is part of Rule 3 in the 1985 set; see Feature 
RS-13 in Chapter 2 for the representation part.) 

RL should permit the MAYBE qualifier to be applied either to the whole 
condition or to part of it. When a view is cited within a query command, 
the DBMS must replace the name of the view by its definition. As a result, 
the expanded query can contain a condition that originates partly from the 
original query and partly from the view definition. Exactly one of these, the 
command or the definition, could have a MAYBE qualifier attached to all 
of its condition, while the other has no such qualifier. Thus, in the expanded 
command, the MAYBE qualifier applies to no more than part of the 
condition. It is, however, appropriate to remember that any part of a 
condition to which the MAYBE qualifier is attached must be a truth-valued 
expression. 

R M - 1 2  A r i t h m e t i c  O p e r a t o r s :  
E f f e c t  o f  M i s s i n g  V a l u e s  

A marked database value in a numeric column cannot be arithmet- 
ically incremented or decremented by the DBMS, whereas the un- 
marked values can be subjected to such operators. 

If x denotes a numeric database value, A denotes an A-mark, 
and I denotes an I-mark, 

x + x  = 2 x  
A + A = A  
I + I  = I  

x + A = A  
A + I  = I  
x + I  = I  

A + x  = A  
I + A = I  
I + x  = I  

A similar table holds for the three arithmetic operators minus, times, 
and divide. When both arguments are unmarked database values, however, 
the result is what would be expected from ordinary arithmetic. 

R M - 1 3  C o n c a t e n a t i o n :  E f f e c t  o f  M a r k e d  V a l u e s  

A marked value in a character string column cannot be subjected 
to concatenation with any other string by the DBMS, whereas the 
unmarked values can. 

L e t / ~  denote the concatenation operator and x an unmarked 
character string. Using the symbols A, I as in Feature RM-12, 
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x A x  = xx x A A  = A 
A A A = A  A A I  = I  
I A I  = I  x A I  = I  

A A x  = A  
I A A = I  
I A x  = I  

12.5 m S a f e t y  F e a t u r e s  

R M - 1 4  D o m a i n - c o n s t r a i n e d  O p e r a t o r s  a n d  

D O M A I N  C H E C K  O V E R R I D E  

Those relational operators that involve comparison of database val- 
ues are normally constrained to compare pairs of values if and only 
if both are drawn from the same domain (and therefore have the 
same extended data type). 

There should seldom be any need to override this constraint. 
However, if the need does arise, the qualifier DOMAIN CHECK 
OVERRIDE (or DCO) may be attached to the command or to an 
appropriate expression in the command. 

See Feature RA-9 in Chapter 18 for the authorization required to use 
the DCO qualifier. See Feature RQ-9 in Chapter 10 for the DCO qualifier 
itself, and Feature RJ-6 in Chapter 11 for the DOMAIN CHECK ERROR 
indicator. 

The normal mode of operation helps protect users from formulating RL 
commands incorrectly, but of course does not provide complete protection. 

As just pointed out, those relational operators that involve comparing 
database values are normally constrained to compare pairs of values if and 
only if both values in a pair have the same extended data type (see Chapter 
3). Occasionally, however, a function may be applied to one or more 
database values in certain columns to yield a value to be compared with 
database values in another column or columns. Alternatively, two functions, 
possibly distinct, may be applied to each pair of comparands before the 
comparison is carried out. Since ordinary programming languages can be 
used to implement the function(s) involved, and since these languages do 
not support the extended data types of the relational model, it is not easy 
to specify the extended data type of such function-generated values. The 
following feature should prove helpful. 

R M - 1 5  O p e r a t o r s  C o n s t r a i n e d  b y  

B a s i c  D a t a  T y p e  

In using any operator that normally compares pairs of database 
values to compare a function-generated value with a database value 
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or a function-generated value with another function-generated value, 
the requirement of Feature RM-14 that the values to be compared 
must be of the same extended data type is relaxed: they are merely 
required to be of the same basic data type (e.g., both character 
strings or both integers). 

R M - 1 6  P r o h i b i t i o n  o f  E s s e n t i a l  O r d e r i n g  

It is never the case that an R-table, whether base or derived, contains 
an ordering of rows or ordering of columns, in which the ordering 
itself carries database information not carried by values within the 
R-table. 

If such an ordering were permitted, the information carried in or by 
that ordering would not be retrievable using relational operators. Assuming 
that such an ordering is not permitted, it is always possible to continue using 
RE in order to pursue a line of investigation by requesting additional queries 
or manipulations on these results. An example of this feature being ignored 
is the CONNECT command of the ORACLE product. 

R M - I  7 I n t e r f a c e  t o  S i n g l e - r e c o r d - a t - a - t i m e  

H o s t  L a n g u a g e s  

The programming languages FORTRAN, COBOL, and PL/1 are obvious 
candidates (others may be candidates also) as host languages for 
any relational language RE. The DBMS must therefore be able to 
deliver the retrieved relation a block of rows at a time, where a 
block can be as small as one row, but is preferably many hundreds 
of rows. 

A cursor that traverses the retrieved relation may be supported by the 
DBMS, although it is preferable that the traversal be executed using the 
HL. Normally this cursor scans from block to block, touching each block 
only once. Note that this type of cursor does not scan data within the 
database, but scans retrieved data only. Such a cursor is more easily managed 
by programmers in a bug-free way than those cursors that scan data within 
the database. 

If the programmer has omitted the ORDER BY clause in his or her 
relational request, the program should not be based on the assumption that 
the sequence in which rows of the result are delivered by the DBMS will 
remain unchanged when a similar request is executed at a later time. 
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R M - 1 8  T h e  C o m p r e h e n s i v e  D a t a  S u b l a n g u a g e  

The relational language RL is comprehensive with respect to data- 
base management in supporting all of the following items interac- 
tively at a terminal and by program (see the triple mode feature, 
Feature RM-9): (1 )da ta  definition, (2) view definition, (3) data 
manipulation, (4) integrity constraints, (5) authorization, and 
(6) transaction boundaries (BEGIN, COMMIT, and ROLLBACK). 
(This feature is Rule 5 in the 1985 set.) 

In the relational approach, most of these services require the use of 
four-valued, first-order predicate logic. It seems counter-productive to re- 
quire users to learn several different languages to make use of this power. 
Therefore, it does not make sense to separate the services just listed into 
distinct languages. 

As an aside, in the mid-1970s ANSI/SPARC generated a document 
advocating 42 distinct interfaces and (potentially) 42 distinct languages for 
database management systems. Fortunately, that idea seems to have been 
abandoned. 

12 .6  m L i b r a r y  C h e c k - o u t  a n d  R e t u r n  

In some installations, a database may be used as an engineering tool. It will 
then contain details of the engineering design of various pieces of machinery. 
For each piece of machinery, there may exist several versions representing 
successive improvements in design. Since the creation or modification of a 
design can take hours or days to conceive and to express in detail, an 
engineer is likely to spend much more time on changing the database than 
that required for commercial transactions. Therefore, concurrency control 
for engineering-type activities must be quite different in nature from that 
appropriate for commercial transactions. It seems essential that the DBMS 
provide some support for distinctly engineered versions. The library check- 
out and return features that follow represent a minimum level of support 
for those DBMS products that are intended to support computer-aided 
engineering. 

R M - 1 9  L i b r a r y  C h e c k - o u t  

A duly authorized user can retrieve for several hours or days a copy 
of part of the database representing an engineering version of a 
piece of machinery (hardware or software) for the purpose of making 
design changes and creating a new version for that piece of machin- 
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ery. The DBMS marks the version from which the copy is retrieved 
as one that is being improved. 

R M - 2 0  L i b r a r y  R e t u r n  

A duly authorized user can store a new version of the design of a 
piece of machinery in the database. The request to store this version 
must be accompanied by a new identifier for it. The request is 
rejected if this identifier already exists as a version identifier in the 
database. 

E x e r c i s e s  

12.1 

12.2 

12.3 

12.4 

12.5 

12.6 

12.7 

12.8 

What is meant by navigating through the database one record at a 
time? Does the relational model support such navigation? State two 
reasons for your answer. 

List 10 tasks to which the principal relational language can apply 
four-valued, first-order predicate logic. 

What is a transaction? Is it safe for the database to lose integrity in 
some early portion of a transaction if it regains integrity by the end 
of that transaction? 

What is the purpose of the CAT block? Explain how it works. 

You wish to make the following changes in the database or in its 
description: 
1. Rename one of the base relations. 
2. Unload a second relation, drop it from the DBMS, reorganize 

the data, and reload a reorganized version of it, restoring the 
same name as before in the catalog. 

In each case, is it necessary first to bring all of the database traffic 
to a halt? When the drop occurs in Case 2, is there a way to prevent 
all authorization data for this relation from being lost? Or to prevent 
all views defined on this relation from being lost? Explain. 

List five kinds of activities that are supported dynamically by RM/ 
V2 (i.e., without bringing the traffic on the database to a halt). 

The triple mode feature indicates that the principal relational lan- 
guage can be used in three distinct ways. What are they? 

List the truth values of (1) a OR f, (2) t AND i, (3) NOT i, and 
(4) NOT a, where t denotes TRUE, a denotes MISSING AND 
APPLICABLE, i denotes MISSING AND INAPPLICABLE, and f 
denotes FALSE. 

2 : 
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12.9 

12.10 

Under what circumstances does the relational model merely require 
comparand columns to have the same basic data type, instead of 
requiring these columns to have the same extended data type? What 
are the reasons for this relaxation? 

What six capabilities must the principal relational language have, if 
it is to be comprehensive? 
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Integrity Constraints 

Preserving the accuracy of information in a commercial database is extremely 
important for the organization that is maintaining that database. Such an 
organization is likely to rely heavily upon that accuracy. Critical business 
decisions may be made assuming that information extracted from the data- 
base is correct. Thus, incorrect data can lead to incorrect business decisions. 

In the relational model, the approach to maintaining the accuracy and 
integrity of the database is preventive in nature. General methods for 
preventing the database from being damaged by users of all kinds are far 
easier to conceive than general methods for repairing the damage once it is 
done. 

One major step toward the goal of correctness of the data is the en- 
forcement of integrity constraints by the DBMS. Many of these constraints 
represent rules pertaining to the business. When enforced, these constraints 
require the data to be continually consistent with those rules. 

Continual and dynamic enforcement is the responsibility of the DBMS 
itself. Enforcement is totally misplaced if it is made the responsibility of a 
software package added on top of the DBMS as an afterthought, because 
such a package can easily be bypassed.  

Without doubt, the relational approach is opening up databases to many 
more people than any previous approach. It is no longer the case that just 
a few members of an organization can access the data because of the highly 
specialized skills and knowledge needed. Therefore, far more responsibility 
must be placed on the DBMS to maintain the integrity of the data. Up to 
the time of writing this book, DBMS vendors have failed to provide adequate 
support for the integrity features of the relational model. 

243 
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Occasionally in this chapter and the next, the term "user-defined integ- 
rity constraints" is used ~This term means integrity constraints defined by 
suitably authorized users. Normally, such authorization is assigned to the 
DBA and his or her staff only, since these are the people ultimately re- 
sponsible for the correctness of the data. 

Many people have the incorrect notion that integrity constraints merely 
amount to validation of data upon its entry into the database. Integrity 
constraints, however, are much broader in scope. They may be applicable 
upon insertion, update, or deletion of data,  and the timing of applicability 
is normally specified as part of the pertinent declarations. 

13.1 m L i n g u i s t i c  E x p r e s s i o n  o f  I n t e g r i t y  C o n s t r a i n t s  

Early in the development of non-relational DBMS (and also in the devel- 
opment of artificial-intelligence prototypes), the objective was often adopted 
of casting as much as possible of the system's behavior into data structure. 
This approach was thought desirable because it might simplify the program- 
ming. Actually, the programming often became much more complicated, 
and the systems became much harder to understand. 

In the relational approach, in sharp contrast to non-relational ap- 
proaches, declaration of user-defined integrity constraints is made largely 
independent of the data structure (both physical and logical) to achieve in- 
tegrity independence (see Feature RP-3 in Chapter 20). Such constraints 
must be specified linguistically using the principal relational language, RL. 

Features RI-25-RI'27 and RI-31 in Chapter 14, together with Features 
RL-10 and RL-11 in Chapter 22, help users to specify those kinds of 
constraints that involve inter-set relationships, such as inclusion dependence 
(the inclusion 0f one set of database values within another). 

13.2 • T h e  F i v e  T y p e s  o f  I n t e g r i t y  C o n s t r a i n t s  

Information about inadequately identified objects is never recorded in a 
relational database. To be more specific, the following two integrity con- 
straints apply to the base relations in every relational database, and should 
be enforced by the DBMS: 

1. Type E, entity integrity. No component of a primary key is allowed to 
have a missing value of any type. No component of a foreign key is 
allowed to have an I-marked value (missing-and-inapplicable). 

2. Type R, referential integrity. For each distinct, unmarked foreign-key 
value in a relational database, there must exist in the database an equal 
value of a primary key from the same domain. If the foreign key is 
composite, those components that are themselves foreign keys and un- 
marked must exist in the database as components of at least one primary- 
key value drawn from the same domain. 
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Note that the domain concept plays a crucial role in this and in other kinds 
of integrity. For convenience, the following abbreviations are adopted: PK 
denotes primary key; FK denotes foreign key. 

Cases in which the key is a combination of columns and some (perhaps 
all) of the component values of a foreign key-value are allowed to be marked 
as "missing, need special attention." Those components of  such a foreign- 
key value that are unmarked should adhere to the referential-integrity con- 
straint. This detail is often not supported in today's DBMS products, even 
when the vendors claim that their products support referential integrity. 

Of these two types of integrity, some versions or releases of relational 
DBMS products support entity integrity. Only a few, however, provide even 
partial support for referential integrity. The most important reason for this 
partial support or lack of support is omission of support for the domain 
concept. Also, support is omitted in most products for primary and foreign 
keys. In addition, there is failure to support features that would enhance 
the performance of this kind of integrity constraint, such as domain-based 
indexes (see Feature RD-7 in Chapter 21). 

To a large extent, Version 2 (Release 1) of IBM's DB2 supports refer- 
ential integrity, a substantial improvement over Version 1. The support is 
incomplete, however, for the following reasons. 

• It fails to include domains supported as extended data types (see Chapter 
3). 

• The primary key of each base relation is optional, when it should be 
mandatory. 

• There is no TC timing (PK update problem). 

• There is no TT timing (cyclic key state problem). 

• A foreign key is allowed to cross-refer to only one primary key (when 
more than one base relation may each have a primary key based on the 
same domain). There is no partial check on composite FK, for which 
at least one component is missing and at least one is not missing. 

• The only alternative to on-the-fly checking involves use of a utility 
program (see Sections 13.3 and 13.6, including Feature RI-22). 

Before introducing the types of integrity constraints in the relational 
model, it is worth noting that the terms "integrity constraint" and "violation 
of an integrity constraint" convey the original motivation for the concept. 
These terms fail, however, to convey certain important future uses of the 
concept. Its use is likely to grow beyond maintenance of database integrity 
into application-oriented actions based on specified states of data arising in 
the database and on date and time occurrences. 

For example, for certain kinds of parts held in inventory, whenever the 
quantity-on-hand sinks to pre-specified levels, the DBMS may take the action 
of ordering certain computed or pre-specified quantities of those parts. This 
kind of use will probably receive more attention in RM/V3. 
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R I - 1 - R I - 5  T y p e s  o f  I n t e g r i t y  C o n s t r a i n t s  

Integrity constraints are of five types: (1) D-type or domain integrity 
(Feature RI-1), (2) C-type or column integrity (Feature RI-2), (3) E- 
type or entity integrity (Feature RI-3), (4) R-type or referential 
integrity (Feature RI-4), and (5) U-type or user-defined integrity 
(Feature RI-5). 

In English, an easy way to remember the five types is that the corre- 
sponding letters are those of the words CURED (the pleasing one to 
remember) and CRUDE. All five types must be supported by the DBMS 
using declarations expressed in RL. In this task the full power of RL, including 
but not limited to four-valued, first-order predicate logic, must be applicable. 

One reason that C-type integrity is part of the relational model is that 
it makes it possible to avoid the needless complexities and proliferations of 
domains that are subsets of other domains. For example, suppose that a 
database contains many currency columns, all of the same currency type (all 
U.S. dollars, say). Then, only one currency domain need be declared. The 
range of values that is included in the definition of this domain is wide 
enough for all company uses. Each column, however, that reflects a more 
narrowly defined range (maximum expenditure by certain departments, say) 
would have an additional range constraint applied to the column: in other 
words, a C-type integrity constraint that the DBMS links with the D-type 
constraint by logical AND. 

Referential integrity is defined and discussed in Section 1.8. Its definition 
was briefly repeated earlier in this section. User-defined integrity is discussed 
in Chapter 14. 

13.3 • T i m i n g  a n d  R e s p o n s e  S p e c i f i c a t i o n  

In RM/V2 each integrity constraint is assigned a timing, and there are 
precisely two types of timing. The timing type TC specifies that integrity- 
constraint checking is to be executed by the DBMS no later than the end 
of execution of whatever relational request (normally originating from a 
user or application program) is now active. The timing type TT specifies 
that integrity-constraint checking is to be executed by the DBMS at the end 
of execution of whatever transaction the relational request participates in. 
Of course, a request may be free of any transaction context: that is, the 
request does not participate in any transaction. In this case, all those integrity 
constraints of type TT are inapplicable. 

To explain these two timing types in more detail, consider the action 
taken by the DBMS whenever a relational request is being executed. It is 
advisable to remember that the normal source of each relational request is 
either an application program or a user who is interacting with the database 
using a terminal. On the other hand, the normal source of an integrity 
constraint is the catalog. 
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The catalog is the direct source for types D, C, R, and U, whose 
definitions are explicitly stored in the catalog. It is the indirect source for 
type E through use of the declarations of all primary keys, and, of course, 
these declarations are stored in the catalog. The action taken by the DBMS 
consists of Steps 1-5 for a request that participates in a transaction, and 
Steps 1-3 only for a request that does not participate in any transaction. 

Step 1 Some time during the execution of the request (possibly at the 
very beginning) the DBMS determines which of the five types of integrity 
constraints and which of the possibly many instances of these types are 
applicable to the current request. 

Step 2 The DBMS inspects the timing types of each applicable integrity 
constraint that is not of type E. Integrity constraints of type E are always 
of timing type TC. Most integrity constraints of types D and C are also 
of timing type TC. 

Step 3 Before the end of execution of the relational request, the DBMS 
completes the checking of those constraints that are applicable to this 
request and of timing type TC. 

Step 4 The DBMS appends those constraints that are applicable to this 
request and of timing type TT to a fist pertaining to the current transaction. 

Step 5 Immediately before committing all changes resulting from a 
transaction to the database, the DBMS checks all the constraints of type 
TT in the list of applicable type TT constraints accumulated during the 
execution of that transaction. 

Note that Step 3 is applicable to every manipulative request regardless 
of whether that request participates or does not participate in a transaction. 

Of course, designers of DBMS products may choose to implement early 
and tuple-by-tuple execution of type TC integrity checking for performance 
reasons, but then the onus is on them to prove that the total support for 
integrity checking in their DBMS product covers all the RM/V2 requirements 
(see Feature RI-22). 

RI-6  T i m i n g  o f  T e s t i n g  for  T y p e s  R a n d  U 

Each constraint specification of Type R or U must include a symbol 
specifying a timing condition. Thus, whenever the DBMS determines 
that a particular constraint is pertinent to a command just executed, 
it must also examine the timing symbol to determine whether the 
constraint is to be tested either (1) immediately, upon completion 
of execution of the command being executed (type TC), or (2) as 
part of the execution of a COMMIT command in attempting to 
complete a transaction (type TT) and immediately before commit- 
ting any changes to the database. 
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In Case (2), it is entirely possible that the DBA may have requested 
the abortion of any transaction that attempts to violate a particular integrity 
constraint. Note that the timing types TC and 'IT are independent of the 
types D, C, E, R, U cited earlier in Features RI-1-RI-5. Use of T-timing 
for types D, C, or E, however, will probably be quite rare. 

The on-the-fly timing of IBM's DB2 is discussed in Section 13.6. 

R I - 7  R e s p o n s e  to A t t e m p t e d  Vio la t ion  for 
Types  R and U 

Accompanying each R-type and U-type integrity constraint, there 
must be a violation response V, which defines the action to be taken 
by the system in case of attempted violation of the constraint. The 
system permits this action to be expressed in RE, in the host lan- 
guage, or in both. Of course, every execution of V is also subject 
to whatever integrity constraints are applicable to V. These con- 
straints may be of any of the five types D, C, E, R, or U, and either 
of the two timings TC or TT. 

ROLLBACK is an example of a command that should be permitted. It 
is reasonable, however, for the DBMS to prohibit use of the COMMIT 
command as part of the violation response, because normally a transaction 
is in progress (originating from an application program or interactively from 
a terminal), and execution of that transaction may not be completed. 

R I - 8  D e t e r m i n i n g  Appl icab i l i ty  of  Constraints  

Before completion of the execution of any R L  statement, the DBMS 
must examine the catalog to see whether any C-timed integrity 
constraints must be tested. Before completion of the execution of 
any transaction (indeed, before committing any of the changes to 
the database), the DBMS must examine the catalog to see whether 
any T-timed integrity constraints must be tested. Whenever the 
DBMS finds that a constraint must be tested, it proceeds to execute 
the specified test. 

R I - 9  R e t e n t i o n  o f  C o n s t r a i n t  D e f i n i t i o n s  for 
Types  R and U 

The DBMS stores the following in the catalog: (1) the definition of 
the violation response for each instance of a referential-integrity 
constraint, along with identification by column names of the perti- 
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nent PK-FK association; (2) the definition of each user-defined 
integrity constraint, including its violation response. 

R I - I O  A c t i v a t i o n  o f  C o n s t r a i n t  T e s t i n g  

As a consequence of Feature RI-8, integrity constraints are directly 
activated by the DBMS. They are not activated by an explicit call 
from any application program, and not by any user at a terminal. 
If integrity constraints were activated in either of these ways, it 
would be all too easy to bypass them altogether. 

There are two important reasons for Features RI-9 and RI-10. First, 
integrity constraints are a concern of the community of users, not just of a 
single application programmer. Second, the act of keeping the database in 
compliance with any integrity constraint should not depend on any voluntary 
action whatsoever by any user or programmer (whether it be including the 
code in his or her program to do the checking or including a call to invoke 
a checking program). 

Now, relational DBMS products have been put on the market without 
adequate support for integrity constraints. Thus, some users have been 
forced to place these constraints temporarily in their application programs 
until the vendor supports them in the catalog, which is where they belong. 
Consequently, when a vendor introduces support for new types of these 
constraints should in no way depend on whether each constraint does or 
does not appear in any application program. 

Users of today's relational DBMS products are advised to provide 
themselves with standard procedures to develop application code so that 
whatever integrity constraints are incorporated in applications today can be 
easily identified and removed, when the products are improved in their 
handling of all five types of integrity constraints. 

R I - I I  V i o l a t i o n s  o f  I n t e g r i t y  C o n s t r a i n t s  of  
T y p e s  D ,  C,  a n d  E 

Violations of integrity constraints of Types D, C, and E are never 
permitted. If the source of an attempted violation is an application 
program, the DBMS returns a code indicating that it has not exe- 
cuted the request. Then, the programmer can choose (if appropriate) 
to include commands in his or her program to bring the program to 
a complete halt if this code is encountered. If the source is a user 
at a terminal, the DBMS simply denies the user's request and sends 
a messageexplaining the denial. 
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If a user were allowed to record in the database the immediate properties 
of an object without recording that object's primary-key value, serious 
problems would arise in trying to maintain database integrity. For example, 
if two rows in the R-table for employees have equality in corresponding 
property values (whenever these values do not happen to be missing from 
the database), but one or both primary-key values is missing, how can one 
resolve the following question: Do these two rows represent two distinct 
employees or just one? In such a case, the count of the number of rows 
may not be equal to the number of employees in the company. 

In the following example of a relation EMP that identifies and describes 
employees, notice that, in each of the two rows for employee(s) named 
Knight, the primary-key value is missing. Do these two rows represent two 
distinct employees or just one? 

EMP (EMP# ENAME BIRTH_DATE SALARY H_CITY BONUS) 

E107 R o o k  23-08-19 10,000 Wimborne 5,500 
--A Knight 38-11-05 12,000 Poole --I 
mA Knight mA 12,000 Poole ~1 

E575 P a w n  31-04-22 11,000 Poole 3,100 

" ~ A "  denotes missing-and-applicable; " ~ I "  denotes missing-and-inapplic- 
able. This is a good example of a database that has lost its integrity. It is 
also one of the simplest of such examples. 

13 .4  • S a f e t y  F e a t u r e s  

RI-12  U s e r - d e f i n e d  P r o h i b i t i o n  o f  M i s s i n g  
D a t a b a s e  V a l u e s  

For any column of any base R-table other than a column that is a 
component of the primary key of that table, the DBA can explicitly 
request that missing database values of specified types be prohibited. 
As a result, the DBMS will reject as unacceptable any execution of 
a single RL command that attempts to place an A-mark or an 
I-mark (whichever has been prohibited) in such a column. 

See Feature RI-19 regarding the introduction of such a constraint. The 
DBMS must not require that, if C is a column in which missing values are 
prohibited, then C must be indexed, because indexes are supposed to b e  
creatable and droppable at any time for performance reasons only. A pro- 
hibition of missing values of either type, of course, is quite redundant and 
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unnecessary if the column happens to be part of or the whole of the primary 
key of the pertinent base R-table. In this case, the entity-integrity constraint 
is automatically applied (see Feature RI-3). An explicit prohibition of 
I-marks in any foreign-key column is redundant for the same reason. 

In no way, however, does Feature RI-12 make the entity integrity feature 
RI-3 unnecessary. The mere fact that a column or combination of columns 
of a base R-table is prohibited from accepting missing database values cannot 
be interpreted by the DBMS as a declaration that the pertinent combination 
is the primary key of that base R-table. 

Duplicate values are automatically prohibited from each simple or com- 
posite column that happens to be the primary key of a base relation. 
Occasionally, there is a need to prohibit duplicate values from occurring in 
simple or composite columns other than the primary key. The following 
feature provides this capability. 

RI-13  User-defined Prohibition of 
Duplicate Values 

A suitably authorized user can declare of any simple or composite 
column in a base relation that duplicate values are prohibited from 
occurring in that column. 

The DBMS may either ignore or reject any attempt by the user to apply 
Feature RI-13 to the primary key, since such an attempt is completely 
unnecessary. The DBMS prohibits duplicate values from occurring in the 
primary key without an explicit request to do so. 

It is also unnecessary to apply Feature RI-13 to the combination of all 
columns in a base relation in an attempt to prevent the occurrence of 
duplicate rows, since the DBMS performs this task without an explicit 
request to do so. 

RI-14  Illegal Tuple 

A tuple consisting of nothing but marked values is prohibited from 
all R-tables, whether base or derived. 

Such a tuple is already prohibited from base R-tables because each such 
table must have exactly one primary key, none of whose component values 
can be missing. In derived relations, such a tuple is clearly devoid of 
information. 
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R I - 1 5  A u d i t  L o g  

The DBA can request the DBMS to maintain an audit log of at 
least all the changes committed to the database (both description 
and contents). The information recorded in this log includes at least 
the date, time, and identifiers of the user, the terminal, and the 
application program (if any such program was involved). 

The information in this log need not be directly recorded in a manner 
seen by users as a collection of relations, but it must be dynamically trans- 
latable to such a form by a program that is part of the DBMS. The audit 
log thus generated can be interrogated by any suitably authorized user who 
makes use of RL. The translating utility can be executed with a frequency 
specified by the DBA (once a day and once a week must be supported as 
options). 

The term "dynamically" in this context means without bringing the 
database traffic to a halt. 

Most database management systems maintain a recovery log, but this 
log is often inadequate for auditors to trace who was responsible for each 
change made to the database (in terms of both description and contents), 
and at what date and time the changes were made. In a few products, an 
audit log is supported that goes beyond the requirements of Feature RI-15 
by recording all querying activity as well as all manipulative activity. 

R I - 1 6  N o n - s u b v e r s i o n  

Languages other than RL may be supported by the DBMS for 
database manipulation (the relational model does not prohibit such 
languages). If any of these languages is non-relational (e.g., single- 
record-at-a-time), there must be a rigorous proof that it is impossible 
for the integrity constraints expressed in R E  and stored in the catalog 
to be bypassed by using one of these non-relational languages. 
(Feature RI-16 is Rule 12 in the 1985 set.) 

Note that an example of inability to bypass an integrity constraint does not 
constitute a proof of adequate generality. The following general assertion 
must be proved: For all possible database requests permitted by the DBMS 
product, all possible transactions permitted by that product, and all possible 
integrity constraints permitted by that product, it is impossible to bypass 
any applicable integrity constraint. Also note that Feature RI-16 is extremely 
difficult for a system to support if the system is "evolving" from a non- 
relational architecture to a relational architecture; such a system already 
supports an interface at a lower level of abstraction than the relational 
language in which the integrity constraints are specified. 
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13.5 • C r e a t i n g ,  E x e c u t i n g ,  a n d  D r o p p i n g  
I n t e g r i t y  C o n s t r a i n t s  

R I - 1 7  C r e a t i n g  a n d  D r o p p i n g  a n  

I n t e g r i t y  C o n s t r a i n t  

RL includes a CREATE CONSTRAINT command and a DROP 
CONSTRAINT command. The CREATE command includes the 
following items: (1) a name for the constraint distinct from any 
constraint name currently in the catalog, (2) the type D, C, E, R, 
or U, (3) the constraint definition, and (4) the timing type TC or 
TT. Execution of this command causes this information to be stored 
in the catalog. The DROP command identifies the integrity con- 
straint to be dropped by name. Its execution merely causes the 
named integrity constraint to be removed from the catalog. 

RI -18  N e w  I n t e g r i t y  C o n s t r a i n t s  C h e c k e d  

When a new integrity constraint of any type (except the type covered 
in Feature RI-19) is introduced into the catalog, or an integrity 
constraint that already exists in the catalog is modified, the activity 
must be part of a CAT block (Feature RM-7). The DBMS imme- 
diately checks those parts of the database that are potentially af- 
fected by the new constraint in an attempt to find all violations of 
that constraint that already exist in the database. The user is notified 
of each such violation and the DBMS stops execution in the CAT 
block until the user responds by rectifying the violation. If no such 
remedial action is forthcoming within a reasonable time, the DBMS 
rejects the integrity constraint. After all violations of the new in- 
tegrity constraint in the entire database have been detected and 
rectified, the DBMS accepts the integrity constraint and completes 
the CAT block. From then on, the DBMS enforces the constraint. 

RI-19  I n t r o d u c i n g  a C o l u m n  I n t e g r i t y  

C o n s t r a i n t  ( T y p e  C) f o r  D i s a l l o w i n g  M i s s i n g  

Database  Values  

When a Type C integrity constraint, which disallows the occurrence 
of missing values in a specified column, is introduced into the 
catalog, the database at that instant may be inconsistent with this 
constraint. That is, the pertinent column may happen to contain 
numerous occurrences of missing values. Enforcement of this integ- 
rity constraint in full is therefore delayed in the following sense. 
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Those marks that already occur in this column at the time of dec- 
laration of the constraint are allowed to continue to exist until each 
and every such mark is updated to an acceptable database value. 
On the other hand, the DBMS rejects any attempt to update a 
database value already in the pertinent column to a mark that 
indicates the value is now missing. 

In other words, the introduction of a constraint that disallows missing 
database values in a specified column is enforced gradually. No new occur- 
rences of marks are allowed, but those that exist in the specified column 
are allowed to continue to exist until they are updated to database values. 
This kind of gradual enforcement can be applied to certain types of integrity 
constraints other than the prohibition of missing values. The next version 
of the relational model (RM/V3) is likely to include such gradual enforce- 
ment as an additional option on these other types. 

If the column happens to be a foreign-key column, referential integrity 
is applied as usual to the non-missing foreign-key values only. Note that a 
column of a base R-table that is either the whole primary key or a component 
of the primary key is not allowed to have any database values missing, 
beginning with the creation of that R-table. 

13 .6  • P e r f o r m a n c e - o r i e n t e d  F e a t u r e s  

In the following feature, the database scope of a command or transaction is 
discussed. This is the part of the database that could have been adversely 
affected by execution of the command or transaction. Note that this scope 
can be broader than just the part of the database that was actually touched 
by the command or transaction. 

For example, a simple update applied to a primary-key value touches 
only that primary-key value, but it may damage referential integrity in 
several parts of the database not touched. Those foreign-key values that 
previously matched this primary-key value (scattered widely in the database 
and not touched) may be, and probably will be, adversely affected by the 
change in primary-key value. 

RI-20  M i n i m a l  A d e q u a t e  S c o p e  of  C h e c k i n g  

When integrity constraints must be checked dynamically either at 
the end of a command or at the end of a transaction, the DBMS is 
designed to make this check over that part of the database that 
could have been adversely affected by the command or by the 
transaction, but no more than that. 
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The preceding feature is applicable during DBMS-initiated dynamic 
checking of integrity constraints. Occasionally, the DBA must be able to 
initiate a complete check of an integrity constraint over an entire relation or 
over several entire relations if it is a multi-relation constraint. For example, 
such a check is needed soon after loading a new relation from a non,relational 
source. 

RI-21 E a c h  I n t e g r i t y  C o n s t r a i n t  E x e c u t a b l e  

a s  a C o m m a n d  

One of the commands in RL is intended for DBA-initiated execution 
of any designated integrity constraint that is stored in the catalog. 
The name of the particular constraint, not its type, is specified as 
part of the command to designate the operand. The result of exe- 
cuting the command is a complete listing of all violations of the 
specified integrity constraint. 

This command can be applied to integrity constraints of all five types. 
To support this feature, it is essential that each occurrence of a particular 
kind of integrity constraint (e.g., referential) must be given a distinct name 
(see Feature RN-13 in Chapter 6). The term "occurrence" in this sentence 
should not be interpreted in a row-by-row sense, but instead at the relational 
level. 

To avoid a reduction in performance when the DBMS checks referential 
integrity, designers of IBM's DB2 invented the on-the-fly technique. This 
technique is also applicable to checking other kinds of integrity constraints. 
As its name implies, an integrity constraint is checked piece by piece as the 
execution of a command proceeds to affect pieces of the database. 

This technique is excellent for attaining acceptable performance, but it 
fails to support cases in which the execution of a command or transaction 
initially violates an integrity constraint, but later recovers from this violation. 
In fact, the transaction concept of System R was invented for this reason. 

The occasional inapplicability of the on-the-fly'approach is the justifi- 
cation of the following feature. Note that it does not adversely affect per- 
formance in those cases in which the on-the-fly technique is applicable in a 
correct manner. 

R I - 2 2  O n - t h e - f l y ,  E n d  o f  C o m m a n d ,  

a n d  E n d  o f  T r a n s a c t i o n  T e c h n i q u e s  

If the DBMS uses the on-the-fly technique as its normal technique 
for checking integrity constraints, it must be able to resort to an 
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end-of-command or end-of-transaction technique in those cases when 
the on-the-fly technique does not work correctly. 

IBM's DB2 Version 2 does not support this feature. Consequently, 
extreme care is necessary when a user wishes to update a primary-key value 
and have the corresponding foreign-key values similarly updated to conserve 
the matching of values that existed earlier. Using DB2 and assuming no 
specially favorable circumstances, neither of the following steps is valid as 
the first step: 

1. update the primary-key value; 

2. update one of the foreign-key values. 

In both of these cases, the on-the-fly implementation of referential integrity 
fails. 

Is there any way of handling this kind of update in DB2? Yes, but it is 
very complicatedmand needlessly so, especially when a single command is 
adequate in the relational model (see Features RB-31 and RB-32 in Chapter 
4). In the following explanation, assume that the foreign keys are those that 
refer to the given primary key, that x is the old primary-key value, and that 
y is the new primary-key value. 

1. Copy a new row into the relation S with the same component values as 
the row whose primary key is to be updated, except for the primary- 
key value itself, which in the new row is set to y. 

2. Update each corresponding foreign-key value from x to y. 

3. Delete the row containing the old primary-key value x. 

Although this algorithm may appear to be simple, its complexity is 
enormous. Step 1 involves using host-language commands (SQL alone is 
inadequate for this task). Step 2 requires the user either 

[] to know all of the columns that are foreign-key columns with respect to 
the given primary key column (a very risky assumption due to the highly 
dynamic nature of relational DBMS), or 

[] to develop a program to scan all the foreign-key declarations in the 
catalog and find all those that refer to the given primary key. 

While this scan and all the remaining actions in Step 2 are taking place, the 
user of DB2 must ensure through explicit or implicit locking that no other 
user either introduces a new foreign-key referencing the given primary key, 
or deletes the row of S that has the new primary-key value. 

At least one alternative algorithm handles this problem correctly in 
DB2, but it is also needlessly complicated. In any event, the algorithm 
involves multiple SQL statements instead of just one (See Feature RB-33 or 
RB-34), and therefore degrades performance. 
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With regard to the problem of updating primary keys, the complexity 
of D B 2 ~ f r o m  the user's standpoint and in terms of implementation~stems 
from the omission of a simple and cheap feature in the relational model 
(namely, support of domains as extended data types; see Chapter 3). When 
I introduced the domain concept into database management 20 years ago as 
part of the relational model [Codd 1971b, 1971a], it was regarded by almost 
all of my IBM colleagues as a purely academic exercise. It is now time for 
the implementors of DBMS products to recognize that the domain concept 
m u s t  be implemented as part of the DBMS if these products are to provide 
adequate support for database integrity. Without adequate support for da- 
tabase integrity, DBMS vendors are asking DBMS consumers to put their 
businesses at unnecessary risk. 

E x e r c i s e s  

13.1 What are the five types of integrity in the relational model? Is 
recoverability from failures in hardware or software directly related 
to any of these five types? If so, how? Does it matter whether a 
vendor's DBMS supports any of these forms of integrity? 

13.2 Is the relational approach to database integrity based on prevention 
or on cure? Why? 

13.3 Are integrity constraints explicitly invoked from an application pro- 
gram? If not, why not, and how are these constraints invoked? 

13.4 What does it mean to say that a cyclic key state exists in the 
description of a relational database? How does this concept relate 
to the transaction concept? 

13.5 IBM introduced partial support for referential integrity in Version 2 
(Release 1) of its DBMS product DB2. List six ways in which this 
release falls short of full support for referential integrity, and explain 
the consequences for users. 

13.6 Sometimes people assert that it would be adequate if a DBMS always 
responded to an attempted violation of a referential integrity con- 
straint by rejecting the user's request. Describe an example that 
demonstrates the need for at least one alternative reaction. 

13.7 IBM's Version 2 of DB2 uses the on-the-fly technique during exe- 
cution of a transaction for checking whether referential integrity is 
being maintained. Develop a set of necessary and sufficient condi- 
tions under which this technique is guaranteed to work correctly. 

13.8 If Exercise 13.7 is solved, can the end-of-transaction timing be used 
by the DBMS as a fallback for checking referential integrity whenever 
the system discovers that the conditions for correctness of the on- 
the-fly technique are not in effect? What does this improved support 
provide in the case of row insertions when there happens to be a 
cyclic key state? 
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13.9 

13.10 

13.11 

13.12 

Can a user prohibit the occurrence of duplicate values in" (1) a 
simple column (2) a composite column? If so, how? 

A row is generated in a derived relation, and it contains nothing but 
marked values. 
1. What does RM/V2 do with the row? 
2. Can such a row occur in a view? 
3. Can such a row occur in a base relation? In each case, explain 

why RM/V2 behaves this way. 

What are the major differences in content between a recovery log 
and an audit log? 

Missing values were permitted in a column that has existed for some 
time. What problems can arise in introducing a new constraint on 
that column that prohibits the occurrence of missing values? 
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User-defined Integrity 

Constraints 

Integrity constraints other than those of the domain, column, entity, and 
referential types are needed for relational databases. There are two main 
reasons. First, these user-defined integrity constraints permit the database 
administrator to define, in a way that can be enforced by the DBMS, many 
of the company regulations pertaining to the company operations that are 
reflected in the database. Second, these constraints permit the database 
administrator to define, also in a way that can be enforced by the DBMS, 
many of the government and other regulations that apply to these company 
operations. Once these constraints are defined and entered into the catalog, 
the DBMS enforces them. Consequently, there is no need to depend on 
voluntary compliance by application programmers or end users. 

Although the term user-defined is applied to these integrity constraints, 
any user who is attempting to define such an integrity constraint must be 
authorized to do so (see Chapter 18, "Authorization"). Normally, where 
the number of users is large and the database is production-oriented, few 
users are so authorized. The DBA, of course, is one such user, since he or 
she bears primary responsibility for the safety and accuracy of the database 
and its compliance with company and governmental regulations. It is likely 
that any other users similarly authorized would be on the DBA's staff. 

As mentioned in Chapter 13, it is important to keep in mind that 
eventually integrity constraints, especially those of the user-defined type, 
will be applied not only to keep the database in an accurate state by 
preventing violations of these constraints, but also to trigger specified pos- 
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itive actions (that cannot be interpreted as responses to violations) when 
specified conditions arise in the database. Actually, a small class of this type 
(clock-triggered actions) is supported by RM/V2. 

14.1  • I n f o r m a t i o n  in  a U s e r - d e f i n e d  
I n t e g r i t y  C o n s t r a i n t  

What information must a user-defined integrity constraint contain? It is easy 
to see that the four components named in Feature RI-23 are necessary; 
normally, these four should also be sufficient. 

RI-23  I n f o r m a t i o n  in  a U s e r - d e f i n e d  
I n t e g r i t y  C o n s t r a i n t  

A user-defined integrity constraint has four components: (1) Timing 
type TC or TT, (2) those actions by terminal users (TU), application 
programs (AP), or the date-time clock that trigger the testing of the 
condition, (3) a specification of the condition to be tested, and 
(4) the name of a procedure that specifies the action to be taken in 
case of attempted violation. Both the user-defined integrity con- 
straint and its violation procedure are stored in the catalog. 

Let us consider each of these items in turn. The timing type, described 
in Chapter 13, is set to TC if the specified condition (Item 3 in the preceding 
list) is to be tested at the end of execution of the triggering command. It is 
set to TT if the condition is to be tested at the end of execution of whatever 
transaction includes the triggering command. 

Now for those actions by application programs or terminal users that 
trigger the testing of the specified condition. 

RI-24  T r i g g e r i n g  B a s e d  o n  A P  a n d  TU A c t i o n s  

The DBMS detects as actions that trigger the testing phase of user- 
defined integrity constraints at least the following types of encoun- 
ters: (1) a retrieval from a specified relation, (2) an insertion into 
a specified relation, (3) an update of a specified relation and column 
(either not involving an I-marked value or involving an I-marked 
value), and (4) a deletion from a specified relation. These actions 
are detected by the DBMS regardless of whether they stem from 
application programs (AP) or from terminal users (TU). 
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R I - 2 5  T r i g g e r i n g  B a s e d  o n  D a t e  a n d  T i m e  

The DBMS is stimulated to invoke the testing phase of user-defined 
integrity constraints by the advance of date and/or time to pre- 
specified absolute values or by the lapse of pre-specified date and/ 
or time intervals from some specified starting date and time. 

The timing types TC and TT are inapplicable to integrity constraints for 
which the triggering is based on date and time. 

Each integrity constraint of this type has exactly one absolute date and/ 
or time. If it is to be periodically activated, this is merely the starting time, 
and a date and time interval need to be specified also. Such a timing is 
recorded in the catalog as the triggering action of an integrity constraint. If 
the condition-to-be-tested component of such a constraint is omitted, or if 
that component is specified and happens to have the value TRUE, action 
is invoked and it is specified in the integrity constraint as the action-to-be- 
triggered component. 

It is worthwhile to digress for a moment into issues related to imple- 
mentation. When the DBA enters a clock-triggered integrity constraint into 
the catalog, the request must indicate (perhaps indirectly) an absolute date 
and/or time and indicate whether the activation is to be periodic with some 
specified interval. 

The DBMS maintains a queue of date-time combinations ordered so 
that the earliest is at the top of the queue. This earliest combination is 
transmitted to the clock as the next date and time to create an alarm. At 
that time the alarm takes the form of an interruption of the DBMS's activities 
(at some convenient time, but not significantly delayed). The DBMS then 
finds the pertinent integrity constraint, and executes its condition part. If 
the constraint is to be periodically activated, the DBMS places a freshly 
incremented date-time combination in the queue. 

14.2 • C o n d i t i o n  P a r t  o f  a U s e r - d e f i n e d  
I n t e g r i t y  C o n s t r a i n t  

The third component of a user-defined integrity constraint is the specification 
of a condition to be tested. Such a condition is normally a truth-valued 
expression of the relational language. This expression must have the value 
TRUE if the integrity constraint is to be satisfied; the qualifier MAYBE is 
not permitted in such an expression. 

Conditions can be imposed either on states of the database or on changes 
in states of the database. Consider two conditions that stem from a company's 
policy. One is imposed on database states; the other, on changes of state: 
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1. each employee's salary cannot exceed a certain limit determined by the 
employee's position or job in the company; 

2. each salary cannot be increased by more than a certain percentage 
determined by the employee's position or job in the company. 

The following example illustrates the practical reasons for including 
user-defined integrity constraints in RM/V2 and the information contained 
in these constraints. 

EMP EMP# 

ENAME 

BIRTH__DATE 

SALARY 

JOBCODE 

EMP (EMP# ENAME 

Employee serial number 

Employee name 

Date of birth of employee 

Present salary 

Position or job within company 

BIRTH~DATE SALARY JOBCODE) 

el0 Rook 1923-08-19 17,000 j5 
e91 Knight 1938-11-05 12,000 j7 
e23 Knight 1938-11-05 14,000 j7 
e57 Pawn 1931-04-22 10,000 j9 
e01 King 1922-05-27 23,000 j l  
e34 Bishop 1930-09-17 16,500 j7 

A relation called CONTROL contains for each position held by em- 
ployees the maximum salary for that position" 

CONTROL JOBCODE Job within company 

MAXSAL Limit on salary for the job 

PERCENT Limit on percentage increase in salary 

CONTROL (JOBCODE MAXSAL PERCENT) 

j l  30,000 20 
j2 25,000 10 
j5 20,000 10 
j7 15,000 8 
j9 15,000 8 

Suppose that the salary of an employee is being raised to some new 
level. Clearly, this employee's row in the relation EMP must be modified. 
It is the new version of this row that must be checked by the DBMS before 
the row is committed to the database. It is quite inadequate for the DBMS 
to check intermediate results that are developed along the way to the new 
version of the pertinent row. The DBMS is responsible for ensuring that all 
the values being committed to the database conform to the integrity 
constraints. 
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Now, in the example under consideration, the salary increase may be 
entered from a terminal or may be computed. The DBMS is not responsible 
for monitoring how the new salary is created. After the new salary has been 
created and has become a component of the new row, and after this row is 
ready for commitment to the database and is no longer under the control 
of the application program or user, then the DBMS must go into action and 
check that the new salary complies with the pertinent integrity constraints. 
Regardless of how the salary increase is created, it is only a step on the way 
to the new salary. Checking this increase as an intermediate result is irrelevant. 

That is why integrity constraint 2 in the preceding list is expressed in 
terms of the new and old salaries, not in terms of a salary increase that may 
have been generated already. Although these two versions of the increase 
in salary are very likely to be identical, the possibility of mathematical 
equality is not at issue. Instead, the question is which o c c u r r e n c e  of the 
increase must be checked if database integrity is to be enforced. 

Incidentally, the use of the prefixes "new" and "old" makes this kind 
of integrity constraint easier to write and more comprehensible to those who 
did not write it. Let the updated salary (when it is under the control of the 
DBMS) be denoted by n e L S A L A R Y .  

Suppose that the pertinent employee has jobcode = j. 

Condition 1" n e w _ S A L A R Y  < CONTROL.MAXSAL 
where JOBCODE = j 

Condition 2: ( n e L S A L A R Y  - old__SALARY) 
< old__SALARY × CONTROL.PERCENT 

where JOBCODE = j 

The kind of command that is to trigger the testing of these conditions 
is an update on the SALARY component of a row of the EMP relation. 
The timing type is TC. 

On update of EMP.SALARY: If NOT condition 1, then REJECT 

On update of EMP.SALARY: If NOT condition 2, then REJECT 

For information on the REJECT command, see Section 14.9. 
It is not difficult to conceive of similar examples that stem from gov- 

ernment regulations instead of company policy. In one such example, the 
total year-to-date income tax withheld from each employee's salary must be 
within 10% of the total tax on the year-to-date salary, where that tax is 
defined by a formula that conforms to the pertinent law or regulation. 

If the preceding condition is not satisfied, it is reasonable to say that an 
attempted violation of the pertinent integrity constraint has taken place. 
However, when specifying an appropriate user-defined integrity constraint, 
it is important to identify the condition when TRUE must trigger the 
exceptional action by the DBMS, because this is the condition that is required 
in that integrity constraint. 
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As an example of a clock-triggered constraint, consider the following 
command. Starting on October 8 at 3A.M. and every 7 days thereafter, 
archive the derived relation S consisting of all those rows of R for which 
the component DONE has the value 1. In a manufacturing company, R 
might be information about orders of parts, and DONE = 1 might mean 
that the ordered parts and invoice have been received, and the invoice paid. 
In an airline, R might be a passenger list for each flight on each day. 
Moreover, DONE = 1 might mean that the flight has been successfully 
completed. In this second case, deletion might be more appropriate as the 
triggered action instead of archiving. 

14.3 • The  Tr iggered  A c t i o n  

The fourth and final component of a user-defined integrity constraint is the 
action to be taken in the event the condition is TRUE (see Feature RI-23). 
This action takes the form of a simple proceduremknown as the triggered 
action--encoded in some combination of the principal host language and 
the principal relational language. Such a procedure is stored in compiled 
form in the catalog and given a name. 

The fourth component of a user-defined integrity constraint is the name 
of the triggered action procedure. For performance reasons, there might be 
a symbolic name table under the covers that would accelerate access to the 
code when needed. 

14.4 • E x c e c u t i o n  of  U s e r - d e f i n e d  Integr i ty  
Constra int s  

All user-defined integrity constraints (whether of timing type TC or TT) are 
examined by the DBMS at the end of executing each RE command to 
determine which ones are applicable. If an applicable constraint is of type 
TC, it is executed immediately. If an applicable constraint is of type TT, 
the DBMS notes that this constraint must be executed at the end of this 
transaction. In this way, the DBMS avoids, at the end of the transaction, a 
burdensome exploration of the commands within the transaction to deter- 
mine which integrity constraints are applicable at that time. 

Execution of the condition part of a constraint of type TT must be 
postponed to the end of the transaction. If executed earlier, the condition 
could evaluate to TRUE (triggering the exceptional action), even though, 
if executed at the end of the transaction, the condition would evaluate to 
FALSE (no exceptional action necessary). 
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Note that it is completely unnecessary for any application program or 
any terminal user to invoke any integrity constraint at any time. This 
statement applies to all such constraints, whether user-defined or not. Once 
an integrity constraint has been defined and entered into the catalog, it is 
the sole responsibility of the DBMS to invoke it whenever it is applicable. 
Thus, with a relational DBMS there is no reliance on voluntary action by 
users in order to maintain the integrity of the database. 

Consider what happens whenever a relational command is executed. Let 
us assume that the user-defined integrity constraints are kept in the catalog 
in separate tables as shown next (although the relational model does not 
specify such an organization). 

Table Basis of Constraints 

1 Pure retrieval (i.e., no update intended, this is the least important 
case) 

2 Insertion 
3 Update 
4 Deletion 
5 Date and time clock 

The implementor may also decide to split each of the first four tables 
into two by timing type (TC and TT). With either of these organizations, if 
it is desired to base an integrity constraint upon two of these types of 
commands (e.g., insertion and update), the constraint must be recorded in 
two tables (a table for insertions and a table for updates). 

Suppose that a relational command is being executed, and that it is one 
of the four types: pure retrieval, insertion, update, and deletion. Suppose 
also that this command involves just one relation, say R. Then, at the end 
of execution of this command, the DBMS scans the table that corresponds 
to the type of command (Table 1, 2, 3, or 4). From this table, the DBMS 
selects only those user-defined integrity constraints (if any) that specify the 
relation R. 

For each constraint selected, the  DBMS examines the timing type. 
Suppose that the timing type is TC. Then, the DBMS proceeds to execute 
the condition part of the integrity constraint. If the result of this execution 
is FALSE, the DBMS proceeds to the immediately following command. If 
the result of this execution is TRUE,  the DBMS executes the designated 
procedure for attempted violation. Now, this procedure may simply reject 
the pertinent command. If so, the DBMS aborts the entire transaction, 
which means that none of the changes that this transaction would have made 
to the database are committed. 

If the timing type is "IT, the DBMS merely notes that the condition part 
of this integrity constraint must be checked at the end of the transaction. 
Just before committing the transaction, the DBMS checks whether any 
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integrity constraints have been postponed to this time. If there are several 
such constraints, the sequence in which they are executed must not affect 
the outcome. If the outcome is affected, this is most likely because of an 
inconsistency between integrity constraints (a DBA error)~this  is a poten- 
tial problem for which the DBA must maintain a careful watch. It will be 
some time before tools are available to simplify the discovery of inconsis- 
tencies between integrity constraints. 

14.5 • i n t e g r i t y  C o n s t r a i n t s  T r i g g e r e d  b y  Date 
and Time 

In many commercial installations certain activities need to be triggered on 
the basis of date and/or time only. A good example of an activity that needs 
to be done automatically on a routine basis is archiving of some information 
in the database. If such tasks are executed automatically, neither the DBA 
nor anyone else has to watch a calendar or clock. An assumption is that the 
DBMS has access to a clock within the computer system that registers both 
date and time, and that this clock can act as a rather sophisticated alarm. 

Each integrity constraint triggered by date and time must contain a 
clause specifying either an absolute or a relative date and time. An example 
of a relative date is every seven days starting on October 8. An example of 
a relative time is every 24 hours starting at 3:00A.M. A combination of date 
and time might be every seven days at 3:00A.M. starting on January 12 at 
3:00A.M. Normally, the DBMS acts as soon after the specified date and/or 
time as the necessary locks are released. Of course, at any time various 
locks may be held by Commands and transactions that are already in the 
process of being execui~ed. 

Note that, if date d and time t are specified as a triggering event, the 
action to be taken when the combination d, t occurs is precisely that specified 
in the catalog as the triggered action procedure. As pointed out earlier, the 
phrases triggering event and triggered action are more appropriate in this 
context. Note also that in the case of actions triggered by date and time it 
is either the truth of the specified condition or the absence of such a condition 
that triggers the action. 

14 .6  • I n t e g r i t y  C o n s t r a i n t s  R e l a t i n g  t o  
Missing Information 

Marked values represent the fact that some information is missing from the 
database. How are these marked values created at data entry time and at 
later times? How is the choice made between an A-mark and an I-mark? 
These questions are answered by an insertion feature, RI-26, and an update 
feature, RI-27. 
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RI-26 Insert ion  Invo lv ing  I -marked  Values  

In any tuple that is to be inserted into a database there may be 
component values missing. For each missing value, the DBMS must 
determine which of the following is appropriate: (1) a default value 
based on the source of the request (a terminal or work station or 
an application program), (2) an A-marked value, or (3) an I-marked 
value. If none of these is appropriate, the DBMS must reject the 
insertion of this tuple. Note that item (1) is a real value, and it must 
therefore comply with all the integrity constraints for this column. 
On the other hand, items (2) and (3) denote the fact that the value 
is actually missing. 

At data entry time, one or more rows are inserted into a base relation, 
possiblythrough a view. If a component of a row is missing from the input, 
the DBMS examines the description in the catalog of the corresponding 
column and poses the following sequence of questions to the catalog: 

1. Is there a default value based on the terminal or work station from 
which the input came (e.g., the branch identifier in the case of a bank 
with many branches)? 

2. Which types of mark, if any, are permitted in that column? 

3. Is there an integrity constraint that generates the correct type of mark? 

If the answer to Step 1 is yes, the sequence terminates after Step 1: the 
DBMS inserts the default value and accepts the input. If the answer to Step 
1 is no, the DBMS proceeds to Step 2. If the answer to Step 2 is that both 
types of marks are prohibited, the sequence terminates after Step 2, and 
the DBMS rejects the input. 

If in Step 2 the DBMS finds that I-marks are prohibited (as in the case 
of a foreign key) but that A-marks are permitted, the DBMS terminates the 
sequence after Step 2, and prepares to insert an A-marked value as the 
pertinent datum. The actual insertion takes place only if it is in compliance 
with any existing integrity constraint pertaining to A-marked values in that 
column. In case of non-compliance, the DBMS terminates the sequence and 
rejects the input. 

Similarly, if in Step 2 the DBMS finds that A-marks are prohibited but 
I-marks are permitted, the DBMS terminates the sequence after Step 2, and 
prepares to insert an I-marked value as the pertinent datum. The actual 
insertion takes place only if it is in compliance with any existing integrity 
constraint pertaining to I-marked values in this column. In case of non- 
compliance, the input is rejected. 
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Now, if both types of marked values are permitted, the DBMS first 
seeks an explicitly stated preference in the request. If a preference is stated 
there, the DBMS inserts the preferred type of marked value. If the system 
fails to find such a preference, it then searches the description of the pertinent 
column to see which one, A or I, is to be inserted. If a preference is stated 
in that part of the catalog, the DBMS honors the preference. Otherwise, 
the DBMS inserts an A-marked value (the default case). 

An external symbol is needed for the marks in several cases. Whenever 
such a symbol is needed, the following are suggested: 

Type of Mark 

External symbol 

A-mark 

77 

I-mark 

R I - 2 7  Update Involving I-marked Values 

In any tuple within the database that is to be updated, there may 
be an attempt to replace a database value or A-marked value by an 
I-marked value. The DBMS must then search the catalog to deter- 
mine (1) if 1-marked values are prohibited from belonging to that 
column or (2) if their entry is permitted, but they do not conform 
to some other integrity constraint. In either case a violation of some 
integrity constraint is being attempted, and the DBMS must invoke 
the appropriate violation response. 

In the case of an update rather than an insertion, a concern that integrity 
is preserved arises if the update is an attempt to change a db-value into an 
I-marked value, or vice versa. The DBMS is designed to seek as a first step 
a DBA-defined integrity constraint in the catalog pertaining to I-marks and 
the column affected. If the system finds a pertinent constraint, it checks the 
constraint and either accepts the update (if the constraint is satisfied) or 
rejects it (if the constraint is not satisfied). If the DBMS fails to find a 
pertinent constraint, it accepts the update. In any event, of course, the user 
must be specially authorized to make  such an update. The DBMS treats 
such authorization quite separately from the enforcement of integrity 
constraints. 

14.7 • Examples of User-defined Integrity Constraints 

In Section 14.2, the example was discussed of enforcing limits on salary 
increases by means of user-defined integrity constraints. Now follow some 
new examples. 
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14.7.1 C u t t i n g  Off  O r d e r s  t o  S u p p l i e r  s3 

Suppose that an instruction has been issued within a company that no new 
orders are to be placed for parts from supplier s3, but that existing com- 
mitments to s3 will be completed. Then, user-defined integrity constraints 
such as the following two are needed: 

On insertion into ORDER" 

On update of S# in ORDER: 

If S# = s3, then REJECT 

If n e w _ S #  = s3, then REJECT 

14.7.2 R e - o r d e r i n g  P a r t s  A u t o m a t i c a l l y  

The first of the following two examples illustrates the need for responding 
to attempted violations of integrity constraints in more complicated ways 
than simply rejecting the command or the transaction. In this context, even 
the term "attempted violation" seems incongruous. A more appropriate 
term is "triggering event." 

The first example involves two relations, one called PART, which iden- 
tifies and describes the various kinds of parts, and one called REORDER,  
which provides "standard orders" for use when the quantity-on-hand of a 
particular kind of part falls so low that it becomes necessary to re-order that 
part. Suppose that the relations are as follows: 

PART P# Part serial number Primary key 
PNAME Part name 
SIZE Part size 
Q Quantity of parts 
OH__Q Quantity of parts on hand 
OOmQ Quantity of parts on order 
M I N ~ Q  Minimum quantity of parts 

of this kind to be stored 

There are only four domains. 

P# PNAME SIZE O 
PART ( P# PNAME SIZE OH__Q OO__~ MIN__Q) 

pl shaft 10 400 300 300 
p2 wheel 20 850 0 800 
p3 radiator 5 400 200 300 
p4 chassis 12 400 0 200 
p5 bumper 6 620 150 400 
p6 lever 15 420 200 350 
p7 fan 5 500 50 400 
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REORDER P# 

S# 

R__Q 

O__D 
• . . 

R E O R D E R  

Part serial number Primary key 

Supplier serial number Foreign key 
(preferred supplier) 

Re-order quantity 

Date of order 
• , • , , , , o . 

P #  S #  Q 

( P #  S #  R _ _ Q  . . .  ) 

p l  s 1 2  6 0 0  . . . 

p 2  s 5  1 6 0 0  . . . 

p 3  s 5  6 0 0  . . . 

p 4  s 1 7  4 0 0  . . . 

p 5  s 6  8 0 0  . . . 

p 6  s 2  7 0 0  . . . 

p 7  s 8  8 0 0  . . . 

Whenever quantities of part p are withdrawn from inventory, and the 
remaining quantity is less than that specified in the minimum quantity 
component MIN__Q of the p row of the PART relation, a DBA-defined 
integrity constraint causes the DBMS to extract a copy of the p row from 
REORDER,  to update the order date to the current date, and to transmit 
this order to the preferred supplier. The quantity of part p that should be 
ordered and the preferred supplier of part p are also components of the p 
row of REORDER.  In this context, placing an order is merely constructing 
a one-line order. 

14.7.3 A u t o m a t i c  P a y m e n t  for  Par t s  

Suppose that it is current company policy to make payment for parts as soon 
as they are delivered. Consider the action taken at the time of receipt of 
the parts--namely, the insertion of a new row into the parts-received relation 
PR. The new row specifies the supplier and the date of receipt. This insertion 
must trigger generating a check and recording in the PR relation that 
payment has been made. 

If the company policy in this example is to pay at least 21 days later 
and no more than 31 days later, the problem takes on a new aspect, involving 
an action that is triggered on a delayed basis. The delay is begun by a delay- 
triggering event (the receipt of parts accompanied by an invoice). The reader 
may wish to consider the simple extensions to RM/V2 to enable it to cope 
with this practical requirement. Extensions of the relational model to cope 
with this practical need are postponed to RM/V3. 

These exercises clearly indicate the need for the host language to be 
usable in programming the triggered action. 
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1 4 . 8  • S i m p l i f y i n g  F e a t u r e s  

In the late 1960s, I decided to take a close look at how databases were being 
designed. At that time it was clear to me that there did not exist any 
engineering discipline upon which database design could be established. One 
result was that designers found it extremely diff icult~and frequently im- 
possible~to explain why they had chosen a particular design. The only 
reason that appeared meaningful to me was the attainment of acceptable 
performance on the first application that was developed to run on the 
database. Of course, this often meant that the database design was in- 
consistent with attaining good performance on subsequently developed 
applications. 

Two major problems, and hence challenges, presented themselves. First, 
there was a complete absence of concern for the database as an object that 
would continue to exist and evolve independently of any collection of ap- 
plication programs that might exist at some instant in time. Second, there 
was no rational basis for database design because there were no carefully 
conceived concepts at a sufficiently high level of abstraction. Database design 
cannot be successfully pursued if the only concepts available are bits and 
bytes. For these reasons, I developed the first three normal forms [Codd 
1971b and 1971c] and created the field of normalization of relations for 
database managemen t~a  field that now requires a textbook of its own to 
explain adequately. 

Normalization was originally conceived as a systematic way (with proper 
theoretical foundations, of course) of ensuring that a logical design of a 
relational database would be free from insertion, update, and deletion 
anomalies. And indeed, designs that are proposed today can be defended 
on a rational basis! This subject is pursued further in Section 17.5.1. 

In developing the logical design for a database, it is now quite usual to 
consider the following types of dependency: functional, multi-valued, join, 
and inclusion. These dependencies, however, should not be treated as if 
they were valuable at database design time only. All of them should remain 
in effect until the database is redesigned in part or completely. This means 
that many of these dependencies should be cast in the form of DBA-defined 
integrity constraints. Certain elementary constraints can be managed by the 
DBMS without specific instruction from the DBA. 

From time to time, but not frequently, it may be necessary to change 
one or two of the integrity constraints that define the dependencies. Con- 
sequently, to establish these dependencies in the first place, and to modify 
them later, there is a need for a data model that can easily accommodate 
such changes without impairing the correctness of already developed appli- 
cation programs. 

The relational model was designed to accommodate these and other 
kinds of changes gracefully. Going beyond this adaptability to changes in 
database design, there is a need for several extensions to the principal 
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relational language: extensions that simplify the expression of these depen- 
dency constraints. Some sample features are listed in Section 14.8.1. 

14.8.1 Integrity Constraints of  t h e  D a t a b a s e  D e s i g n  Type 

These constraints are truth-valued expressions that are applicable whenever 
the pertinent data is present in the database. Each one is not applicable in 
those instances (tuples or rows) where any of the pertinent data happens to 
be missing from the database. In the following discussidn, the term "column" 
should be interpreted as a column that may be simple or composite. 

RI-28  F u n c t i o n a l  D e p e n d e n c y  

Column B is functionally dependent on column A: R.A ~ R.B. 
For each base relation, the DBMS assumes that all columns that 
are not part of the primary key are functionally dependent on the 
primary key, unless otherwise declared. 

Using this assumption, the DBA need not declare a very large number 
of obvious functional dependencies. A simple example is the case of a 
relation EMP that identifies employees by employee serial number and 
describes employees by their immediate properties that are of concern to 
the company, including the department DEPT# to which the employee is 
assigned. Suppose, however, that EMP also includes an immediate property 
of the department, namely the contract type CT for that department (inci: 
dentally, I am not advocating this step). In this case, the three pertinent 
functional dependencies within the EMP relation are as follows: 

E #  ~ DEPT# 

E #  ~ CT 

DEPT# ~ CT. 

Of these three functional dependencies, the DBA would need to declare 
only the third one. 

RI-29  M u l t i - v a l u e d  D e p e n d e n c y  

Column B is multi-valued dependent on column A and column C is 
independent of B's dependency on A: R.A ~ R.B / R.C. 

The symbol ..4 is intended to distinguish this kind of dependency from the 
functional dependency of Feature RI-28, in which the symbol ~ was used. 
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R I - 3 0  Jo in  D e p e n d e n c y  

Column A is join dependent on columns B and C: R.A = R.B * 
R.C. 

RI-31 Inc lus ion  D e p e n d e n c y  

Column A is inclusion dependent on Column B. That is, the set of 
db-values in R.A is a subset of the db-values in R.B: R.A is-in R.B. 
The DBMS assumes that each declared foreign key is inclusion 
dependent on (1) its target primary key, if just one target is declared, 
or (2) the union of its target primary keys, if several happen to be 
drawn from the pertinent primary domain. 

This assumption is justified by the fact that referential integrity must be 
maintained. The term "is-in" stands for "is included in." As usual, a different 
syntax may be adopted, but the truth-valued expressions should not be any 
more complicated than these. As noted earlier, the columns A, B, and C 
involved may be simple or composite. 

This concludes the coverage of user-defined integrity constraints. This 
type of constraint represents an exciting opportunity for DBMS vendors to 
demonstrate their technical and inventive capabilities. It also presents new 
challenges for DBAs. In part this is due to the richness with which conditions 
can be expressed in the principal relational language, RL. 

14 .9  l Specia l  C o m m a n d s  for Triggered A c t i o n  

A few commands must be added to RL to enable the DBA to define certain 
kinds of responses to attempted violations of referential and user-defined 
integrity by application programs and terminal users. These commands make 
use of the awareness of the DBMS with respect to the following: 

• whether the DBMS is making a C-timed check or a T-timed check; 

• if it is a C-timed check, what kind of command is causing the attempted 
violation; 

• whether a primary domain is directly involved; 

• whether an application program or an interactive user is involved. 

Regarding the last item, the desired response to attempted violation 
may be different in the case of an interactive user and an application program 
because the DBMS can communicate with the interactive user. For example, 
the system can tell the user that his or her request is denied, and supply the 
reason for this denial. 
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One of the commands in the immediately following Features RI-32, 
RI-33, and RI-34 is likelyto prove to be what is needed in such a response. 
There is no requirement, however, that any one of these commands be used 
in any triggered action. 

RI -32  T h e  R E J E C T  C o m m a n d  

If checking is C-timed, reject the command and, if that command 
is part of a transaction, reject the transaction also. If checking is T- 
timed, reject the transaction. 

RI-33  T h e  C A S C A D E  C o m m a n d  

Case 1" If a primary key is being updated or deleted without using 
the cascade option in the command, and the CASCADE command 
is used in the violation response, the DBMS cascades the update or 
delete to all corresponding foreign keys. Case 2: Let D be a primary 
domain. If a foreign-key value from this domain D is being inserted 
in the database as a component of a row, and if there is no equal 
value in a primary key defined on D, then a new row is inserted 
into a relation whose primary key is defined on D, and the primary- 
key value in this row is equal to the foreign-key value just men- 
tioned. This action takes place only if all the non-primary-key columns 
accept marks, if one or more of these columns does not accept 
marks, the DBMS executes a REJECT instead. 

R I - 3 4  T h e  M A R K  C o m m a n d  

If the cause of attempted violation can be pinned on non-primary- 
key column(s) and missing values happen to be acceptable in those 
columns, mark the corresponding components as missing but appli- 
cable. If the marking fails, the DBMS executes a REJECT instead. 

Of course, the marking can also fail because of declarations in the catalog 
that prohibit marks from occurring in certain columns. 

E x e r c i s e s  

14.1 If you were a DBA, would you grant users who did not report to you 
permission to add new integrity constraints to the catalog? Supply 
reasons for your answer. 
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14.2 

14.3 

14.4 

14.5 

14.6 

14.7 

What are the three principal reasons for supporting user-defined 
integrity constraints? Supply a fourth that is more futuristic in nature. 

What are the four main components of a user-defined integrity con- 
straint? What does each component mean? 

Are user-defined integrity constraints incorporated in application pro- 
grams? If not, why not, where are they stored, and how are they 
invoked when they must be invoked? 

What language features make it simpler to express the dependencies 
of database design as integrity constraints? 

List three commands that must be part of the principal relational 
language, if that language is to support the types of violation responses 
that are frequently needed. 

Why should the DBMS support integrity constraints based on date 
and time? Supply an application-oriented example that illustrates the 
need for this feature of RM/V2, and that does not involve archiving. 
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Catalog 

An important property of the relational model is that both the database and 
its description are perceived by users as a collection of relations. Thus, with 
very few exceptions, the same relational language that is used to interrogate 
and modify the database can be used to interrogate and modify the database 
description. No new training is needed. 

Of course, as we have seen in Chapter 7, there are a few extra commands 
in RE that deal primarily or even solely with the catalog. These commands 
cannot be applied to the regular data only. A user who wishes to access the 
database description or any of its parts must be authorized to do so. Oth- 
erwise, the authorization mechanism will prevent the user from gaining 
a c c e s s .  

The database description is stored in the catalog, which also contains 
its own description. 

15.1 • A c c e s s  t o  t h e  C a t a l o g  

In the relational model, the catalog holds the database description. In some 
relational DBMS products this description is also called the catalog, while 
in others it is called the directory. Whatever it is called, it should be carefully 
distinguished from a dictionary, which normally includes all of the infor- 
mation found in the catalog, but also contains a large amount of information 
concerning the application programs that operate on a scheduled or non- 
scheduled basis upon various parts of the database. 

277 
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It is important that the DBMS provide very fast access to the information 
in the catalog, to prevent a major bottleneck. On the other hand, normally 
the need for speed of access is significantly less in the part of the dictionary 
that does not include the catalog. 

R C - I  D y n a m i c  O n - l i n e  Cata log  

The DBMS supports a dynamic on-line catalog based on the rela- 
tional model. The database description is represented (at the logical 
level) just like ordinary data, allowing authorized users to apply the 
same relational language to the interrogation of the database de- 
scription as to the regular data. (This feature is Rule 4 in the 1985 
set.) 

This feature is a very important tool for database administrators. When 
asked whether a specific piece of information is in the database under his 
or her supervision, a DBA can rapidly use a simple terminal or workstation 
to interrogate the database description and obtain the answer, even if the 
DBMS is on a mainframe system. Pre-relational DBMS products often failed 
to provide the DBA with this tool. 

One consequence of Feature RC-1 is that each user, whether an appli- 
cation programmer or end user, needs to learn only one data model, an 
advantage that most non-relational systems do not offer. For example, IMS 
(IBM, n.d.), together with its dictionary, required the user to learn two 
distinct ways of structuring data. Another consequence is that authorized 
users can easily extend the catalog so that it becomes a full-fledged, active, 
relational data dictionary, whenever the DBMS vendor fails to do so. 

RC-2  C o n c u r r e n c y  

The DBMS has a sufficiently sophisticated concurrency-control 
mechanism that it can support multiple retrieval and manipulative 
activities on the catalog, on the regular data, or on both concurrently. 

It is important to remember, however, that the catalog can easily become 
a major bottleneck, since the DBMS must access the catalog when it pro- 
cesses many of the accesses to the regular data, whether by application 
programs or by terminal users. Therefore, during hours of heavy traffic on 
the regular data, it is unwise to grant many users the privilege of accessing 
the catalog. The term "regular data" means data not in the catalog. 
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15.2 m D e s c r i p t i o n  o f  D o m a i n s ,  B a s e  R e l a t i o n s ,  
a n d  V i e w s  

Domains, relations, views, integrity constraints, and user-defined functions 
are each described separately because, to a large extent, they are objects 
whose existence is mutually independent. 

• Many relations may make use of a single domain. 

• Some views cite more than one base relation in their definitions. 

• Integrity constraints often involve more than one base relation. 

• User-defined functions are most often needed in constructing various 
types of queries. 

Domains, base relations, and views are now discussed in that order. Integrity 
constraints were discussed in detail in the two preceding chapters. In Section 
15.3, they are discussed from the standpoint of the catalog. User-defined 
functions are discussed from the standpoint of the catalog in Section 15.4 
and in more detail in Chapter 19. 

R C - 3  D e s c r i p t i o n  o f  D o m a i n s  

For each distinct domain (i.e., extended data type) upon which the 
database is built, the catalog contains its name, its basic data type, 
the range of values permitted, and whether the comparator LESS 
THAN (<) is meaningfully applicable to the values drawn from this 
domain. 

Note that, if the comparator < is applicable, then all the other com- 
parators are also applicable. For details of domain description, see Section 
3.2. 

R C - 4  D e s c r i p t i o n  o f  B a s e  R - t a b l e s  

For each base R-table, the catalog contains at least the following 
items: (1) the R-table name, (2) synonyms for this name, if any (a 
DBA option), (3) the name of each column, (4) for each column, 
the name of an already-declared domain, from which the column 
draws its values, (5) for each column, which kinds of missing values 
are permitted (if any), (6) for each column, whether the values are 
required to be distinct within that column, (7) for each column, 
constraints beyond those declared for the domain, (8) for each 
column, the basic data type, if applicable, (9) whether the column 
is a component (possibly the only one) of the primary key (required 
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for a base R-table), and (10) for each foreign key, the sequence of 
columns (possibly only one column) of which it is composed, and 
the target primary keys (possibly only one) in the database. 

Regarding Item 6, it must be possible to request distinctness of values 
in any column without that column having to be indexed! If the DBMS 
requires there to be an index in this case, the design is in error in coupling 
a semantic property (distinctness of values) with a performance-oriented 
feature (an index). 

Regarding Item 9, according to Feature RS-8, each base R-table is 
required to have exactly one primary key. Regarding Item 10, according to 
Feature RS-10 (see Chapter 2), each base R-table may have any number of 
foreign keys, including the possibility of having none at all. 

~.~, . 

Occasionally a column is encountered in which the values are constant; 
that is, these values should not be updated, although any value can be 
removed if the entire row is deleted. Instead of introducing a declaration to 
this effect as one r~ore property of a column, RM/V2 leaves it to the DBA 
to use the authorization mechanism to withhold updating privileges on such 
a column. 

The declaration of any composite column is optional; this decision is 
normally made by the DBA. Each composite column that is declared is an 
ordered combination of two or more simple columns, all of which belong 
to a single base relation. 

R C-5 Descr ip t ion  of  C o m p o s i t e  Co lumns  

For each composite column declared, the catalog contains its name, 
the name of each simple component column, and an order-defining 
integer for each of these simple columns. The order-defining integer 
is one for the first component, two for the second, and so on. 

R C - 6  Descr ip t ion  of  V iews  

For each view, the catalog contains at least the following items: 
(1) the view name, (2) synonyms for this name, if any, (3) the name 
of each simple column, (4) for each column, the name of an already 
declared domain (unless the column is not directly derived from a 
single base column), (5) whether the column is a component (pos- 
sibly the only one) of the primary key (if applicable) of the view, 
(6) the RL expression that defines the view, (7) whether insertions 
of new rows in the view are permitted by the DBMS, (8) whether 
deletions of rows from the view are permitted by the DBMS, and 
(9) for each column of the view, whether updating of its values is 
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permitted by the DBMS. For more information on items 7, 8, and 
9, see Feature RV-6 in Chapter 16 and the whole of Chapter 17. 

The domains (extended data types) of computationally derived columns 
can be difficult to determine. Present-day host languages normally do not 
deal with this problem, although it seems necessary for both relational and 
host languages to deal with it. Hence, determining the domains of compu- 
tationally derived columns is not a requirement at this time. The basic data 
type of each computationally derived column, however, should be recorded 
in the catalog. 

15.3 • I n t e g r i t y  C o n s t r a i n t s  i n  t h e  C a t a l o g  

As noted in Chapter 14, integrity constraints that are called user-defined 
are normally defined by the DBA or by staff reporting to the DBA. Each 
of these constraints represents company policy and rules, or  government 
regulations, or  database design factors that stem from the meaning of the 
data. 

R C - 7  U s e r - d e f i n e d  I n t e g r i t y  C o n s t r a i n t s  

For each multi-variable integrity constraint of type U (user-defined), 
the catalog contains its complete definition. This includes its name, 
the triggering event, timing type, the logical condition to be tested, 
and the response to any attempted violation of this condition. 

The DBMS fails to support this feature if it does not support user- 
defined integrity constraints. See Feature RI-5 in Chapter 13, and the whole 
of Chapter 14. 

R C - 8  Referential Integrity Constraints 

For each integrity constraint of type R (referential), the catalog 
contains its complete definition. This includes its name, its triggering 
event, its timing type, the keys that are involved, and the response 
to attempted violation (relating this action to the keys involved). 

The DBMS fails to support this feature if it does not support referential 
integrity constraints (see Feature RI-4 in chapter 13). 

Features RC-7 and RC-8 are extensions of Feature RC-3. 
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15.4  m F u n c t i o n s  i n  t h e  Catalog 

R C-9  User-def ined Functions i n  t h e  Catalog 

For each user-defined function, the catalog contains its name, the 
source code, the compiled code, the names of relations in the 
database to which the function requires read-only access, whether 
the function has an inverse, the name of this inverse, the source 
code for the inverse, and the corresponding compiled code. 

It is certainly permissible for the four types of code cited in this feature 
to reside in the regular database, especially if the host system has the 
performance-oriented feature that keeps any data that is frequently a bot- 
tleneck cached in fast memory. 

15.5 • F e a t u r e s  f o r  Safety and Performance 

RC-IO Authorizat ion  Data 

The catalog contains all the data specifying which interactive users, 
which terminals, and which application programs are authorized to 
access what parts of the database for what kinds of operations and 
under what conditions (see Chapter 18). 

In the relational model, all authorization is based on explicitly stated 
permission rather than explicitly stated denial. This means that users and 
application programs are unable to gain access to any part of the database 
other than those parts that they have been explicitly granted permission to 
access. The granting of permission must be by means of one or more GRANT 
commands from a user, such as the DBA, who has the pertinent authori- 
zation to grant. 

R C - I I  Database Statistics in the  Catalog 

The catalog contains all statistical information about the database 
that is used by the optimizer ' in precompiling and recompiling RL 
commands. This includes at least (1) the number of rows in each 
base R-table and (2) the number of distinct values in every column 
of every base R-table (not just those columns that happen to be 
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indexed at any specific time). (See also Features RD-8 and RD-9 
in Chapter 21.) 

Consider two extreme cases. If the catalog contains statistical informa- 
tion about the database, and if the optimizer fails to use any of this infor- 
mation in precompiling or recompiling each RL command, the DBMS fails 
to support this feature. Similarly, if the catalog does not contain any statis- 
tical information at all, the DBMS fails to support this feature, whatever 
use the optimizer makes of its privately held statistics. 

Exercises  

15.1 List the major items stored in the catalog. What extra information 
does a dictionary contain? Which of these components, catalog or 
dictionary, is used by the DBMS to compile or interpret relational 
requests? 

15.2 How many primary keys can a base relation have? Can the number 
of primary keys change over time? 

15.3 How many foreign keys can a base relation have? Can the number 
of foreign keys change over time? 

15.4 Supply an example of a view that does not have a primary key. Which 
column(s) constitute the weak identifier? 

15.5 List the four items that are required in the description of a domain. 
Supply a reason for each item. 

15.6 List the five items that are required in the description of a user-defined 
integrity constraint. Supply a reason for each item. 

15.7 List the five items that are required in the description of a referential 
integrity constraint. Supply a reason for each item. 

15.8 List the eight items that are required in the description of a user- 
defined function, if that function has an inverse. Supply a reason for 
each item. 

15.9 Concerning statistical information about the database, what is the 
minimum information required by RM/V2, and where must it be 
kept? 
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V i e w s  

Views are intended to insulate users, including application programmers, 
from the base relations, allowing (1) changes in definition to be made in 
the base relations, and (2) corresponding changes to be made in the view 
definitions, in such a way as to keep the views unchanged in content. Views 
also permit users to perceive the database in terms of just those derived 
relations that directly belong in their applications. These views can also be 
used to confine a user's interaction with the database by approving one or 
more views as the only way they are authorized to interact with the database. 

16.1 m D e f i n i t i o n s  of  V i e w s  

R V-1 V i e w  Definit ions" What  They  Are 

Views are virtual relations represented by their names and defini- 
tions only. Apart from these names and definitions, the DBMS does 
not retain any database information (other than DBMS-derived 
view-updatability information) explicitly for views. The DBMS stores 
view definitions in the catalog, and supports view definitions ex- 
pressed in terms of the following three alternatives only: (1) base 
R-tables alone, (2) other views alone, or (3) mixtures of base R- 
tables and views. 
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Consider some examples of views. Suppose that the database includes 
relations as follows: S stands for suppliers, P stands for parts, and C stands 
for capabilities of suppliers in supplying parts. The relation S includes 
columns S# for supplier serial number, SNAME for name of the supplier, 
CITY for the city in which the supplier is located, and STATUS for a simple 
rating of the supplier. Suppose that the extension of S happens to be as 

S (S# SNAME CITY STATUS) 

follows' 

Sl Smith London 20 
S2 Jones Poole 10 
$3 Blake Poole 25 
S4 Clark London 20 
S5 Adams New York 15 

The relation P includes columns P#  for part serial number, PNAME 
for name of the part, SIZE for size of the part, OH__Q for quantity-on- 
hand, and O O _ Q  for quantity-on-order. Suppose that the extension of P 
happens to be as follows" 

P (P# PNAME SIZE OH_Q OO_OJ 

P1 nut 10 500 200 
P2 nut 20 235 150 
P3 bolt 5 39 240 
P4 screw 12 50 0 
P5 cam 6 50 8 
P6 cog 15 10 10 

The capabilities relation C includes columns S# for supplier serial number, 
P#  for part serial number, SPEED for speed of delivery expressed in 
business days, UNIT_.Q for the quantity that represents a unit in which the 
part is sold, and PRICE for the cost of the unit quantity when obtained 
from the specified supplier. Suppose that the extension of C happens to be 
as follows: 

c (s# P# S P E E D  UNIT_Q PRICE) 

$1 P1 5 100 10 
$1 P2 5 100 20 
$1 P6 12 10 6000 
$2 P3 5 50 15 
$2 P4 5 100 15 
$3 P6 5 10 7000 
$4 P2 5 100 15 
$4 P5 15 5 3000 
$5 P6 10 5 3500 
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Then, an example of a view derived from a single base R-table (a so- 
called single-table view) is the relation that represents the suppliers located 
in London. Such a view would be represented in the catalog by a formula 
such as 

S [ CITY = London ], 

along with the name of the view and certain properties of the view that are 
discussed later in this chapter and the next. 

The DBMS is designed to evaluate views as infrequently as possible and 
as partially as possible. If this view were fully evaluated from the base 
R-table S in the state just indicated, its extension would be as follows: 

S i S #  S N A M E  CITY STATUS)  

Sl  Smi th  London 20 

S4 Clark London 20 

An example of a more complicated view is the equi-join of S on S#,  
with C on S# represented by 

s [  s #  = s #  ] c .  

If this view were fully evaluated with the database in the state indicated 
above, the extension would be as follows" 

VIEW ( S #  S N A M E  CITY S #  P#  SPEED . . . PRICE) 

Sl  Smi th  London Sl  P1 5 10 

Sl  Smi th  London $1 P2 5 . . . 20 

Sl  Smith London $1 P6 12 6000 

S2 Jones Poole $2 P3 5 . . . 15 

S2 Jones Poole S2 P4 5 15 

S3 Blake Poole $3 P6 5 . . . 7000 

S4 Clark London $4 P2 5 15 

S4 Clark London S4 P5 15 . . . 3000 

S5 Adams  New York S5 P6 10 3500 

The ellipses ( " . . . " )  indicate that the UNI~__Q column has been 
omitted to conserve space. Note that, just as with base relations, it is 
normally unnecessary at any time for the user to know what extension any 
view happens to have at that time. 

R V-2 V i e w  D e f i n i t i o n s :  W h a t  T h e y  A r e  N o t  

No view definition is of a procedural nature (e.g., involving iterative 
loops). Also, no view definition entails knowledge of the storage 
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representation, access paths, or access methods currently in effect 
for any part of the database, whether these techniques directly 
support relations as operands or single records as operands. 

This feature makes it simple for any user to define views, whether the 
user happens to be a programmer or not. 

R V - 3  V i e w  D e f i n i t i o n s "  R e t e n t i o n  a n d  
I n t e r r o g a t i o n  

View definitions are created using RL. These definitions are retained 
in the catalog. They may also be queried using the same language 
RL used for interrogating the regular data. In both activities-- 
view definition and interrogation of ~uch a definition--the full power 
of RL, including four-valued, first-order predicate logic, must be 
applicable. 

Retention of view definitions in the catalog is important because views 
are normally of concern to the community of users, not just one user or 
programmer. 

Figure 16.1 illustrates two views derived from a single base relation. 
One is a projection; the other, a row selection. 

16.2 • U s e  o f  V i e w s  

Features RV-4-RV-6 are motivated by a desire (1) to support a powerful 
authorization mechanism that depends heavily on views, and (2) to protect 
the user's investment in application programming and in training by requiring 
programs and users to interact directly with views, instead of the base 
R-tables. 

R V-4 R e t r i e v a l  U s i n g  V i e w s  

Neither the DBMS nor its principal relational language, RL, makes 
any user-visible distinctions between base R-tables and views with 
respect to retrieval operations. Moreover, any query can be used to 
define a view by simply prefixing the query with a phrase such as 
CREATE VIEW. 

An example of an undesirable distinction is found in Version 1 of IBM's 
major database management product, DB2. The operator union can be used 
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Figure 16.1 T w o  V i e w s  D e r i v e d  f r o m  a S ingle  Base  R e l a t i o n  
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in a query on base R-tables, but cannot be used in creating a view. Such a 
restriction can make life difficult for Companies that have Similarly structured 
data at several different sites. Such companies frequently must create a view 
based on the union or outer union operator to allow headquarters staff to 
use the view as a source of planning data. 

R V-5  Manipulation Using Views 

Neither the DBMS nor its principal relational language, RL, makes 
any user-visible manipulative distinctions between base R-tables and 
views, except that (1) some views cannot acceptrow insertions, and/ 
or row deletions, and/or updates acting On certain columns (Algo- 
rithm VU-1 or some stronger algorithm fails to support such action), 
and (2) some views do not have primary keys and therefore will not 
accept those manipulative operators that require primary keys to 
exist in their operands. 
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For more information on Algorithm VU-1, see Chapter 17, "View 
Updatability." 

R V - 6  V i e w  U p d a t i n g  

To evaluate the updatability of views at view-definition time, the 
DBMS includes an implementation of Algorithm VU-1 or some 
stronger algorithm. Neither the DBMS nor its principal relational 
language, RL, makes any user-visible manipulative distinctions be- 
tween base relations and views, except that: 

. 

0 

some views cannot accept row insertions, and/or row deletions, 
and/or updates acting on certain columns because Algorithm 
VU-1 or some stronger algorithm fails to support such action; 
and 

some views do not have primary keys (they have weak identifiers 
only) and therefore will not accept those manipulative operators 
that require primary keys to exist in their operands. 

(This feature is a slightly modified version of Rule 6 in the 1985 
set.) 

One result of adherence by a DBMS to Feature RV-6 is that all views 
that are theoretically updatable by Algorithm VU-1 are also correctly up- 
datable by the system without the DBMS having to guess the user's intent. 
VU-1 tackles a large class of views, including those that are frequently 
encountered. 

Note that a view is theoretically updatable if there exists a time-inde- 
pendent algorithm (based on data description and data content alone) for 
unambiguously determining a single series of changes to the base relations 
that will have as their effect precisely the requested changes in the view. 
Unfortunately, the general problem of determining whether or not a view 
is theoretically updatable cannot be decided logically [Buff 1986]. Thus, 
Features RV-5 and RV-6 are related to Algorithm VU-1 (see Chapter 17), 
which I consider just a beginning in tackling this problem. 

In Feature RV-6, the phrase "theoretically updatable" is intended to 
include insertion and deletion, as well as modification of data that is already 
in the database. The views handled by VU-1 are those that retain primary 
keys, in the case of Views defined on single relations; those that retain 
appropriate combinations of primary and foreign keys, in the case of join- 
type views; and those that involve traceability of source, in the case of 
union-type views. 

An alternative way of expressing Feature RV-6 is that, in its language(s), 
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the DBMS must not make any manipulative distinctions between base 
R-tables and views, except for those views that, according to Algorithm VU- 
1 or a more powerful algorithm, cannot accept row insertions and/or row 
deletions and/or updates acting upon certain columns. 

If a DBMS handles the view-updatability problem correctly for all those 
views supported by VU-1, and the vendor claims that its product can handle 
additional views, the view-updatability algorithm must be made publicly 
available for analysis, along with a proof that it is strictly more powerful 
than VU-1. 

16.3 m N a m i n g  a n d  D o m a i n  F e a t u r e s  

R V - 7  N a m e s  o f  C o l u m n s  o f  V i e w s  

In creating a view, RL permits a user to name any column of this 
view differently from the way its source column (if such exists) is 
named. The DBMS however, retains in the catalog the name of the 
source column (if any), as well as the new name for the pertinent 
view column. 

This feature is required to enable the DBMS to trace back to the base 
R-table and its appropriate column whenever an update is requested for this 
view column (see Chapter 17). 

R V-8 D o m a i n s  A p p l i c a b l e  t o  C o l u m n s  o f  V i e w s  

A view is created using a definition that does not indicate, for each 
column, the domain from which that column draws its values. Apart 
from the exception cited in the next paragraph, domain identification 
is deduced by the system at view-definition time, and is stored in 
the catalog along with the rest of the view definition. If, however, 
values for that column are computationally derived, then the basic 
data type (instead of the extended data type) is derived and stored 
at view-definition time. 

Note that the command defining a view provides a one-to-one corre- 
spondence between the columns of the operands and the columns of the 
result, except in the case of computationally derived columns and certain 
kinds of union-type views. 
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Exercises 

16.1 

16.2 

16.3 

16.4 

16.5 

What is the main reason for supporting views? For now, disregard 
the use of functions to transform values from base relations into values 
that will appear in views. Does RM/V2 permit views to be defined 
using (1)the host language only, (2) the principal relational language 
only, or (3)a  mixture of both? What is the answer to this question if 
functions are included in the view definition? 

Can a view definition involve details concerning storage-representa- 
tion and access methods in effect at view-definition time? Supply 
reasons for your answer. 

Can a primary key be deduced for every RM/V2 view? If not, cite 
an example to support your assertion. What is the row-identifying 
component called that can be used as an alternative, when necessary? 
Why is this component bound to identify each row uniquely within 
any view? 

A user asserts that RM/V2 requires that there should be no user- 
visible distinctions at all between base relations and views with respect 
to (1)retrieval,i (2) insert, (3) update, and (4) delete. Which of these 
can be achieved for all views? Explain. 

When a view iscreated, the domain of each column does not have to 
be declared. Under what circumstances is the DBMS unable to de- 
termine the domain for a column? What does the DBMS do in such 
a case? Supply one reason why the DBMS must know the domain of 
each column. 
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View Updatability 

In the relational model, a view is a virtual relation represented by its defining 
declaration, inserted by means of a command such as CREATE VIEW. It 
is not represented directly by stored data. Insertions, updates, and deletions 
can be requested as operators upon views in a relational database manage- 
ment system. 

Some views, however, cannot accept some of these operators unless the 
system guesses the user's intent. Such guessing is extremely dangerous unless 
the system checks with the user regarding his or her intentmwhich is not 
always possible and, when possible, not always convenient. 

The problem discussed in this chapter is the view-updatability problem: 
how to design the DBMS so that it is able to determine whether a request 
for an insertion, update, or deletion can be honored without guessing the 
user's intent. I introduce two algorithms, VU-1 and VU-2, as a first step in 
solving this problem for the whole range of basic operators in the relational 
model. 

Before proceeding, it is useful to consider two simple examples of non- 
updatable views to make sure that all readers understand the problem. First, 
suppose that the database contains a relation EMP that uniquely identifies 
employees by means of the primary key EMP# and provides their immediate 
properties: 

Base: EMP ( EMP# NAME BIRTH__DATE GENDER 
S A L A R Y . . .  ) 

293 
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Now suppose a single-table view E is created that is the projection of EMP 
onto two columns, neither of which is the primary key, say GENDER and 
SALARY. When the view is evaluated, true projection eliminates any 
duplicate rows. Corrupted projection (supported in some DBMS products, 
but not part of the relational model) does not. Regardless of whether 
duplicate rows are eliminated or not, suppose that a user is authorized to 
delete one or more rows from the view. 

Such a request must be reflected in some change applied to the base 
relations because they are the only relations that reflect the true state of 
the database. Corresponding to a single row in the view E, there may be 
many rows in EMP. Thus, the question arises" How can the DBMS decide 
which row or rows in the base relations must be deleted? Should it delete 
all the rows in EMP that have the particular combination of gender and 
salary specified in the request, or should it merely delete an arbitrarily 
selected row in EMP that has this combination? Whatever it does, the 
DBMS would be guessing the user's or program's intent; such behavior is 
unacceptable in managing a shared database. 

Now for a second example, this one involving union and a view based 
on two relations, not just one as in the first example. Suppose that two of 
the base relations in the database are SE and SW, where SE provides the 
identification and immediate properties of suppliers east of the Mississippi 
River, while SW provides similar information about suppliers west of the 
Mississippi. Suppose also that SE and SW are union-compatible and that 
neither SE nor SW contains a column that indicates directly by its values 
whether the supplier is east or west of the Mississippi. 

Base: 

Base: 

SE ( S#  SNAME CITY S T A T E . . .  ) 

SW ( S# SNAME CITY S T A T E . . .  ) 

Now, suppose that a view S is created as the union of SE and SW. 
Suppose also that a user is authorized to enter a new row into the view S. 
Such a request must be reflected in some change applied to the base relations, 
which are the only relations that reflect the true state of the database. How 
does the DBMS decide which of the two base relations SE and SW is to be 
the recipient of this row? Even if two of the immediate properties of suppliers 
recorded in SE and SW are the city and state in which each supplier is 
located, it is not appropriate to assume that the DBMS or the database has 
any knowledge about geography, and in particular about which cities and 
states are on which side of the river. 

It is worth noting that, in this second example, the view S is actually 
the disjoint union of SE and SW, a reasonably simple case; still, however, 
entry of new rows into the view is not admissible. Nevertheless, whatever 
it does, the DBMS would be guessing the user's or program's intent, and 
such behavior is unacceptable in managing a shared database. 
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Returning to the more general aspects of view updatability, in an article 
published in two parts in Cornputerworld [Codd 1985], I specified 12 rules 
intended to help users evaluate DBMS products that are claimed to be 
relational. Rule R6, pertaining to the question of view updatability, asserted 
in its original form 

All views that are theoretically updatable are also updatable by the 
system. 

This rule was a reaction to the ad hoc nature of the design of many 
relational DBMS products, specifically in regard to requests for row inser- 
tion, updating, and row deletion applied to views. Part of the problem with 
these systems, as we shall see, was and is their incredible lack of support 
for primary keys, foreign keys, and domainsmincredible because I made it 
clear to the designers well in advance that it was important not to omit these 
particular features. 

A few months after publication of the 1985 Computerworld article, I 
received a letter from H. W. Buff [1986] of a Swiss re-insurance firm in 
Zurich proving that the general question of whether a view is updatable 
cannot be decided in the logical sense. This means that there does not exist 
any general algorithm to determine whether an arbitrary view is updatable 
or not. What, then, can be designed into the system, if it is to be reasonably 
systematic in its support of views, and yet avoid unreasonable overhead? 

First, consider the question of whether a user is authorized to access 
data through a specific view, and whether he or she can cause the DBMS 
to take actions such as insertion, update, and deletion in accordance with 
this view. It is important to observe that this question can be separated 
completely from the topic of view updatability discussed in this chapter. In 
fact, the relational model requires these two topics to be treated separately 
from one another. Authorization is discussed in Chapter 18. 

In the approach adopted here, as a first step I define an algorithm that 
determines for any given view whether it belongs to an elementary class of 
views, each of which is clearly updatable in a non-ambiguous manner. If the 
view is found not to belong to this class, the system merely reports it cannot 
handle the request, avoiding any assertion that the view is not updatable at 
all. In Section 17.6, I cite a reasonable change to the 1985 form of rule R6, 
intended to reduce the possibility that it might be misleading. 

One of the reviewers for this book stated that [Dayal and Bernstein 
1982] and [Keller 1986] reported independent work on view updatability 
that is somewhat similar to the approach I describe in this chapter. I regret 
that, at the time of writing this book, I was unaware of this work and still 
have not seen the papers. 

One approach to view updatability that does not represent a solution 
places the burden completely on the DBA staff, in the following sense. For 
each view, the DBA is required to supply a program that translates each 
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kind of action on the view into corresponding actions on one or more base 
relations. There may have to be an escape mechanism of this kind, but it 
should not be the routine mechanism for handling views. 

17.1 • P r o b l e m - o r i e n t e d  D e f i n i t i o n s  

The term "tuple" is frequently used in this chapter. The reader is reminded 
that a tuple of a relation is a row of an R-table. In the title and in this 
chapter so far, the term "updatability" is used in making a general reference 
to the collection of operators: tuple insertion, tuple deletion, and update of 
specific components of a tuple that already exists in the database. 

Now it is necessary to be more specific, clearly distinguishing among 
these three kinds of operators. 

A view is considered tuple-insertible by a DBMS, if the DBMS accepts 
any collection of tuples (all of the same type and all compatible with the 
relation type) as an insertion to the view and correctly executes this insertion, 
provided only that the set of tuples and every one of its components meet 
the integrity constraints in the context of the transaction in process, and no 
help is needed from the user to resolve any ambiguities. 

Similarly, a view is considered tuple-deletable by a DBMS, if the DBMS 
accepts and correctly executes a request to delete any subset of its tuples, 
provided only that such a deletion meets the integrity constraints in the 
context of the transaction in process, and, once again, that no help is needed 
from the user to resolve any ambiguities. 

In dealing with the update operator, it is necessary to consider the action 
for each component of each of the tuples involved, and not deal with it in 
terms of complete tuples of a view as a whole. A column of a view is 
component-updatableby a DBMS, if the DBMS accepts and correctly exe- 
cutes a request to update that column, provided only that such an update 
meets the integrity constraints in the context of the transaction in process, 
and no help is needed from the user to resolve any ambiguities. 

In each of these three cases, "correct execution" means that, for the 
requested action upon the view V, the DBMS determines that there is either 
a unique or a uniquely sensible collection of corresponding changes to be 
made to the base relationsmchanges that have as their effect upon the 
extension of V (a view that is not necessarily materialized) precisely those 
changes requested on the view. Another way of expressing this is that the 
changes applied to the view would hold if view V were conceptually changed 
into a base table. 

Again, in each of these three cases, along with the phrase "meets the 
integrity constraints" goes the phrase "in the context of the transaction in 
process." This extra phrase is necessary because a single command within 
a multi-command transaction can validly and temporarily create a violation 
of any integrity constraint that has T-type timing for testing to see whether 
there has been an attempted violation. As explained in Feature RI-6 (see 



17.2 Assumptions • 297 

Chapter 13), T-type timing means just before committing the changes re- 
sulting from the transaction to the database. Normally, of course, temporary 
violations in the middle of a transaction are removed by the end of the 
transaction. 

17.2 m A s s u m p t i o n s  

By way of introduction, a view V for a relational database is defined solely 
in terms of base relations, other views, or both, using a relational language. 
If the definition of V happens to involve other views, the occurrences of 
names of these views can be replaced by their definitions, and so on until 
the definition of V has been expanded to involve base relations only. 

For brevity, the original view definition is called the unexpanded version, 
and the fully expanded definition is called the corresponding fully expanded 
version. Of course, if the definition of a view is given in terms of base 
relations only, then these two versions are identical. 

The two algorithms are collectively called the view updatability :algo- 
rithms. Whenever it is necessary to describe a property that is applicable to 
both of the algorithms VU-1 and VU-2, the term VU will be used. 

It is now appropriate to consider Assumptions A1-A4 underlying both 
of the proposed view updatability algorithms, VU-1 and VU-2. 

17.2.1 A s s u m p t i o n  A I  

The definition of a view and its consequences with respect to insertion, 
deletion, and update of its tuples must be understood by users. Users, 
however, need not know or exploit any details of the DBMS implementation 
or storage-representation. This includes as a special case that users need not 
know or exploit the ordering of tuples in base tables or any internal identifiers 
for specific tuples (so-called tuple ids). 

Assumption A1 should not be interpreted as requiring all users to 
understand the view-updatability algorithms; it is absolutely necessary that 
only the DBA and his or her staff should understand these algorithms. Many 
users may not wish to concern themselves with this issue. They may prefer 
to think of a view as if it were a base relation, although I am not advocating 
this over-simplification. 

17.2.2 A s s u m p t i o n  A2 

The decision regarding whether a view is tuple-insertible, tuple-deletable, 
or component-updatable can be made on the basis of the following: 

• the fully expanded definition of the view (not its extension); 

• the declarations of the base tables stored in the catalog; 

• integrity constraints in the catalog; 
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simple information about any statistical or aggregate functions explicitly 
involved in the view definition. 

The simple information in the last item amounts to whether the function 
has an inverse, and, if so, the name and program for this inverse. 

17.2.3 A s s u m p t i o n  A3 

The decision regarding whether a view V is tuple-insertible, tuple-deletable, 
or component-updatable is, on the one hand, dependent on parts of the 
database description at view-definition time. On the other hand, this decision 
is required to be independent of (1) whether any view other than V is 
affected by updating on V, and (2) the extension of the database at view- 
definition time. 

This decision can therefore be made without considering as a whole the 
potential or actual value of that view (the so-called extension of that relation) 
or the actual value of the base relations from which that view is derived. 

Thus, it is not necessary for algorithm VU to evaluate view V in order 
to make the decision regarding the updatability of view V. Assuming that 
the DBMS has decided that the view is updatable in one or more of the 
three senses cited, the system may have to examine part of the extension 
of the view whenever it encounters a manipulative request (a particular 
insertion, deletion, or row-component update) in order to handle this request 
correctly. 

The decision making by the DBMS in Assumption A3 is concerned with 
determining whether or not a view is updatable and, if so, in what ways it 
is updatable. The process of actually applying a request for an insertion, 
update, or deletion to a view is entirely different. Nothing in Assumption 
A3 prohibits this latter request-time process from including inspection of 
the extension of the pertinent view or of its operands. 

17.2.4 A s s u m p t i o n  A 4  

The translation activity invoked at request time is not permitted to convert 
an operator of one type into an operator of a quite different type. More 
specifically, an insertion must be converted into one or more insertions, an 
update into one or more updates, and a deletion into one or more deletions. 

For users, this constraint makes the updating of views much more 
comprehensible. Now let us consider the purposes served by each one of 
the first three assumptions. 

17.2.5 P u r p o s e s  o f  A s s u m p t i o n s  

Assumption A1 is valuable whenever the system responds with a message 
to the effect that a requested insertion, deletion, or update is refused. Users 
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can examine the problem themselves, if they so desire, because an exami- 
nation does not entail use of the unavailable information. 

Assumption A2 permits the decision algorithm to be independent of the 
implementation of any relational DBMS. 

Assumption A3 enables the DBMS to determine the tuple-insertible, 
tuple-deletable, and component-updatable characteristics of a view at the 
time of entry of the view definitionmwhen it should be doneminstead of 
every time the view is used. Suppose that a suitably authorized user, perhaps 
the DBA, requests a change in the database description that might affect 
the updatability of one or more existing views. Now, because the view- 
updatability decision is made at view-definition time and is dependent on 
parts of the database description, the DBMS must examine what effect, if 
any, the requested change in database description might have upon this 
decision. If the DBMS finds that the decision might be altered, it must re- 
execute Algorithm VU exactly as if the pertinent view definition had just 
been entered into the catalog. 

The assumptions underlying Algorithm VU-2 consist of Assumptions 
A1-A4, together with one additional assumption, A5. 

17.2.6 A s s u m p t i o n  A5 

For any view that the DBA or any other authorized user can introduce into 
the catalog, interpretation algorithms determine the action to be taken when 
a request is made for an insertion, update, or deletion to be applied to this 
view. 

17.3 • V i e w - u p d a t a b i l i t y  A l g o r i t h m s  V U - 1  a n d  V U - 2  

These algorithms are alternatives; only one is needed to make a decision 
regarding view updatability. Thus, only one should be implemented in a 
relational DBMS. Algorithm VU-2 is intended to be strictly more capable 
than Algorithm VU-1. As will become apparent, however, Algorithm VU- 
2 depends heavily on the interpretation algorithms of Assumption A5. Also, 
more research is needed to ensure compliance of both algorithms with 
Assumption A4. 

Each algorithm VU establishes the following for any given view whose 
definition involves only the basic relational operators: 

[] whether that view is tuple-insertible, 

[] whether that view is tuple-deletable, and 

• which of its columns, if any, are component-updatable. 

These algorithms are intended to be invoked by the relational DBMS 
whenever it receives the definition of a proposed view. The results generated 
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by either algorithm are stored in the catalog, and are therefore available to 
anyone who has authorization to access that part of the catalog. 

Incidentally, it may happen that users need a view for retrieval purposes 
only. Thus, when Algorithm VU encounters the definition of a view and 
finds that this view is not tuple-insertible, not tuple-deletable, and not 
component-updatable, it is not appropriate for VU to reject the view request 
altogether. Instead, VU returns its three-fold decision both by turning on 
appropriate indicators (see Features RJ-12-RJ-14 in Chapter 11) and by 
recording these results in the catalog along with the view definition. 

It is easier to understand Algorithm VU by keeping in mind that the 
algorithm makes its decision at view-definition t ime--not  later, at request 
time, when an actual request for a deletion, insertion, or update on a view 
is received. It is the responsibility of the DBMS to respond to a request 
made at request time in a manner that is consistent with the decision made 
by Algorithm VU at view-definition time. Nevertheless, to explain how VU 
works at view-definition time, it is necessaryto look at examples of the 
subsequent response by the  DBMS at request time. 

The main steps in algorithm VU are as follows: 

1. Convert the fully expanded view definition from the source language 
(e.g., QUEL [Relational Technology 1988] or SQL) into a sequence of 
operations of the relational algebra, a sequence that contains no super- 
fluous operations and no Cartesian product. 

2. Examine each of the relational algebra operations to determine whether 
it generates a view that is tuple-insertible, tuple-deletable, or component- 
updatable, or some combination of these properties. 

3. Let property P denote any one of the three properties tuple-insertible, 
tuple-deletable, component-updatable. Consider the collection of alge- 
braic operations resulting from Step 1. If any one of these operations 
by itself yields a view that does not have property P, write in the catalog 
that the given view definition yields a view that does not have property 
P. 

Step 1 was treated in [Codd 1971d] and [Klug 1982]. 
The remainder of this section deals with the treatment of each basic 

operator of the relational algebra by algorithm VU. No claim is made that 
either VU-1 or VU-2 is able to discover all the possibilities of tuple insertion, 
deletion, and updating. An implementor of VU within a DBMS may find it 
advantageous to save some of the intermediate results to help later in the 
actual execution stage of those insertions, deletions, and updates permitted 
on the pertinent view. 

17.3.1 P r o h i b i t i o n  o f  D u p l i c a t e  R o w s  w i t h i n  a R e l a t i o n  

An operator of the relational algebra may have either one or two operands. 
No operand is permitted to have duplicate rows, and the result does not 
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contain any duplicate rows. One of the many reasons for adhering to the 
prohibition of duplicate rows in any relation is that view updatability is 
impaired if duplicate rows are permitted at any stage (for details, see Chapter 
23). 

It is important to note that some of the relational languages supported 
by today's DBMS products are defective in permitting duplicate rows within 
a relation. SOL is one of these defective languages. Thus, much of what 
follows is applicable to an SOL environment only if the following discipline 
is pursued: 

• specify one primary key for each and every base relation; 

• use DISTINCT in every SOL command to which it can be applied; 

• avoid use of the qualifier ALL on each and every UNION command. 

The potential occurrence of duplicate tuples at any stage means that the 
DBMS will be unable to trace the origins of each tuple occurrence back to 
a particular row of the corresponding operand by means of an algorithm 
that is independent of the database state. Moreover, this inability to trace 
origins applies quite often even if duplicate tuples are eliminated as a last 
step in the derivation. 

Therefore, let us assume that, for each of the algebraic operators con- 
sidered next, each operand and each result is assumed to be devoid of 
duplicate tuples. Let us also assume (but only for the time being) that, for 
each of the algebraic operators considered next, the operands are base 
relations and the result is a view. Each operator is examined first with regard 
to tuple-insertions, then tuple-deletions, and finally updates of tuple- 
components. 

17 .3 .2  S o l u t i o n - o r i e n t e d  D e f i n i t i o n s  

When a component value of a row in a view is to be updated, or when a 
new row is to be inserted, it is necessary to consider which of the following 
cases is applicable: 

• The untransformed case: the pertinent component is a value stored in 
the database; 

• The transformed case: the pertinent component is the result of applying 
some function either to a single value or to several values stored in the 
database. 

The transformed case involves finding the name of the pertinent function 
in the catalog, searching its description for the name of its inverse (if any 
exists in the database), and finding where in the database the code for the 
inverse is stored. This phase of the inspection is called Part 1. In this case, 
if no inverse exists in the database, Algorithm VU declares that the pertinent 
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column of the view is not component-updatable, and Part 2 (specified next) 
is ignored. 

A column of a view is back-traceable if one of the following conditions 
is applicable: 

The transformed case: an inverse function exists, and the code for this 
inverse is retrievable from the database; 

• The untransformed case. 

Both cases involve tracing the row and its components back to one or 
more specific rows in the operand relation(s); this task is called Part 2 of 
the inspection. Whenever Part 2 is successful, the view is said to be back- 
traceable with respect to its rows. Part 2 is described for each operator when 
dealing with the insertion of rows. 

A view is completely back-traceable if every row and every column of 
that view is back-traceable. Part 1 of the inspection is successful if every 
column of the pertinent view is back-traceable. When Algorithm VU has 
determined that every column of the view is back-traceable, it proceeds to 
Part 2 and determines whether every row is back-traceable also. This last 
part of the inspection, Part 2, is described for each of the basic operators. 

17.3.3 Genera l  R e m a r k s  a b o u t  t h e  D e c i s i o n  P r o b l e m  

The view-updatability decision made by Algorithm VU is based on its finding 
in regard to the back-traceability of the view, as follows: 

• If the view is back-traceable with respect to rows, it is tuple-deletable; 

• If it is completely back-traceable (rows and all columns) it is tuple- 
insertible; 

If it is back-traceable with respect to rows and with respect to a specific 
column, then that column is component-updatable. 

Some views lack normalization, even those that the DBMS decides are 
updatable in one or more of the three respects just cited. For example, a 
join that matches primary-key values in one relation to corresponding foreign- 
key values in another is not normalized. In these cases, the user or program 
may encounter update anomalies of the type described in [Codd 1971b]. 

It is the responsibility of the DBA to declare for each base relation and 
view whether or not it is fully normalized. The information in this declaration 
is saved in the catalog. 

17.3.4 T h e  S e l e c t  O p e r a t o r  

Suppose that the view 

T = S E L E C T R ( A # x ) ,  
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where R is a relation, # is one of the comparators applicable to the select 
operator, and x is a constant, a host-language variable, or the name of a 
second column (say, B) of relation R. 

The select operator of the relational algebra selects complete tuples from 
the operand relation. Consequently, if there are no duplicate tuples in the 
operand, there are none in the result. Thus, the system encounters no 
problem relating which tuple of the result (the view) corresponds to which 
tuple of the operand. This view is therefore back-traceable with respect to 
its rows. 

Accordingly, Algorithm VU declares the following for every view based 
on the operator select: 

• The view is tuple-deletable; 

• If it has nothing but back-traceable columns, then it is tuple-insertible; 

• Each column that is back-traceable is component-updatable. 

Later, at request time, when a tuple is presented for insertion into the 
view T, the DBMS checks to see that this tuple satisfies the condition part 
of the view definition ( A # x ). If it does not, that particular insertion is 
rejected, and an error indicator is turned on. 

One final remark on updating views: an update to a component value 
of a row in a view can be non-compliant with the definition of the view. It 
can cause the entire row to be removed from the view. For example, if a 
row in the view 

T =  R I A <  100] 

happens to contain 90 as its value of A, and if a user requests that value be 
incremented by 25, then the DBMS updates the corresponding value of A 
in R to 115. The effect of this update is that the pertinent row is removed 
from the view T. 

If the DBA would prefer the request to be rejected, he or she must 
either place an additional authorization constraint upon the user~namely,  
that no update is allowed to take a row out of the view (this is one more 
reason why authorization should not be based on views only) or make use 
of the N-person turn-key feature, Feature RA-5 (see the remarks following 
Feature RA-6 in Chapter 18). 

17.3.5 T h e  P r o j e c t  O p e r a t o r  

Suppose that 

T =  R [ A , B , C , . . . ] ,  

where A, B, C denote columns of the relation R. 
When executed, the project operator selects only those columns whose 

names are cited in the view-defining command. If the primary key is included 
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in the list of columns to be selected, there is a clear one-to-one correspon- 
dence between the rows in the view and the rows in the operand. Such a 
view is declared by Algorithm VU to be tuple-insertible and tuple-deletable. 
Although Algorithm VU could make the same decision if a candidate key 
(and not the primary key) were included in the list of columns to be selected, 
it does not do this, partly because the class of updatable views would not 
be significantly enlarged in this way, and partly because RM/V1 and RM/ 
V2 do not require all of the candidate keys for every base relation to be 
recorded in the catalog. 

If, on the other hand, neither the primary key nor any candidate key is 
included in the list of columns to be selected, there is no guarantee that any 
row in the end result (a relation) corresponds to precisely one row in the 
operand. One way of describing this situation is that one or more rows in 
the result can have ambiguity of origin. Hence, for reasons of safety, a view 
based on projection in which the primary key is not preserved must be 
treated as not tuple-insertible, not tuple-deletable, and not component- 
updatable. Accordingly, for every view V that is based on the operator 
project and includes the primary key of the operand, Algorithm VU declares 
that, 

• view V is tuple-deletable; 

• if V has nothing but back-traceable columns, V is then tuple-insertible; 

• each column that is back-traceable is component-updatable. 

A possible improvement over both VU-1 and VU-2 in regard to projec- 
tion is for the DBMS to treat as tuple-deletable a projection that includes 
a column, all of whose values are declared in the catalog to be distinct within 
the column and in which it is also declared that missing information is not 
allowed. This is so slight an improvement, however, that it is not included 
in either algorithm. 

It is now appropriate to consider views, each of which is based on two 
relations. 

17.3.6 T h e  E q u i - j o i n  O p e r a t o r  

A simple example may help the reader to understand the problem. This 
example includes detailed commentary on the extension of a view, even 
though the aim is to have the DBMS decide whether the view is tuple- 
insertible, component updatable, and/or tuple-deletable at view-definition 
time. Think of this commentary as nothing more than an attempt to explain 
the problem. 

It should be remembered that extensions of base relations, and therefore 
of views when they are evaluated, are continually changing because of the 
many interactions by users with the database. One reason that the updata- 
bility decision should be made by the DBMS at view-definition time is that 
it is quite unstable behavior for the DBMS to decide when one request is 
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made that the view is updatable, then at an immediately following request 
to decide that it is not updatable, and at still another time to decide that, 
once again, it is now updatable. 

Suppose that R and S are two base relations, each having the present 
extension shown next. Suppose that column B of R and column C of S draw 
their values from a common domain. These two columns are accordingly 
chosen to act as the comparand columns in the equi-join of R with S. Suppose 
that V is a view defined by 

C R E A T E  V I E W V ~ R [ B  = C ] S .  

The extension of V is shown next, along with the operand relations R and 
S: 

R (A B) S (C D ) 

al 1 1 bl 
a2 2 2 b2 
a3 2 3 b3 
a4 3 3 b4 
a5 4 4 b5 
a6 4 4 b6 

4 b7 

V ( A  B C D )  

al 1 1 bl 1 
a2 2 2 b2 2 
a3 2 2 b2 3 
a4 3 3 b3 4 
a4 3 3 b4 5 
a5 4 4 b5 6 
as 4 4 b6 7 
a5 4 4 b7 8 
a6 4 4 b5 9 
a6 4 4 b6 10 
a6 4 4 b7 11 

The row numbers on V are for explanatory purposes only. 
Table 17.1 indicates what should take place when deletions are applied 

to the view V, if  the DBMS were to decide on the acceptability of a deletion 
at the time a request is made. The "if" clause is for explanatory purposes 
only. 

Deletion of any one of Rows 1-5 applied to V can be put into effect 
by deleting just one row in R only, in S only, or in both base relations. The 
effect is to delete just one row of V, exactly the one the user requested. It 
is worth noting that Row 1 involves matching one row of R with one row 
of S (the comparand value is one), while each of Rows 2 and 3 involves 
matching many rows of R to just one row of S (the comparand value is 
two), and each of Rows 4 and 5 involves matching one row of R to many 
rows of S (the comparand value is three). 

The reason why the DBMS rejects deletion of any one of the Rows 
6-11 of V is that it would be necessary for the DBMS to delete more than 
one row in V to maintain the view V in conformity with its definition as a 
join. 

The effect of this is to delete more information than the user would 
anticipate, and to make the view behave differently from a base relation. 
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Table  17.1 E f f e c t  o f  D e l e t i o n s  o n  t h e  V i e w  V 

Row in V Deleted Action on R Action on S 

1 Delete row 1 Delete row 1 
2 Delete row 2 Nil 
3 Delete row 3 Nil 
4 Nil Delete row 3 
5 Nil Delete row 4 
6 Reject Reject 
7 Reject Reject 
8 Reject Reject 
9 Reject Reject 
10 Reject Reject 
11 Reject Reject 

For example, deletion of Row 7 in view V < a5, 4, 4, b6 > appears to 
require deletion of the row < a5, 4 > in R, and the row < 4, b6 > in S. If 
just these deletions are executed, the rows that disappear from the view V 
are Rows 6, 7, 8, and 10~three  more than the user requested. It is worth 
noting that, in each of these cases, the relationship between rows of R and 
rows of T that have a common value in R.B and S.C is many-to-many. 

It is clearly unnecessary work for the DBMS to decide view updatability 
each time a request is received for insertion, update, or deletion. As pointed 
out earlier, repeated decision making at request time makes the DBMS 
behave in an unstable fashion. 

Furthermore, an early decision regarding view updatability at view, 
definition time ensures that the decision is not based on the somewhat 
ephemeral extension of the view. Therefore, the DBMS must know when 
it can depend on the continued existence of a one-to-one, many-to-one, or 
one-to-many relationship between those rows of R and those rows of S that 
have equal comparand values. In the relational model, such relationships 
are guaranteed, regardless of time and regardless of changes in extension, 
when one comparand column is a primary key and the other is either a 
primary key or a foreign key whose values are drawn from the same domain. 
Both of the algorithms VU take advantage of this fact. 

Any additional time-independent relationships that are guaranteed not 
to be many-to-many must be peculiar to a particular database. These rela- 
tionships are often represented by a declaration for column R.B that all of 
the values in R.B are distinct from one another and that there are no missing 
values in R.B. In other words, R.B is a candidate key for relation R. Then, 
for any column S.C that draws its values from the same domain as R.B, a 
one-to-many relationship exists between column R.B and S.C. Only Algo- 
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rithm VU-2 takes advantage of these relationships in making its decision on 
view updatability. 

Consider the view 

T = R [ B = C l S ,  

where B denotes a column of relation R, and C denotes a column of relation 
S. Suppose also that the simple or composite columns B and C whose values 
are being compared are as cited in Cases 1, 2, or 3. 

1. The primary key of R is being compared with the primary key of S; 

2. The primary key of R is being compared with a corresponding foreign 
key of S; 

3. The primary key of S is being compared with a corresponding foreign 
key of R. 

In each of these three cases, one should assume that the keys being 
compared are drawn from the same domain, since this is what is meant by 
the term "corresponding" in the three cases. 

Now for some terminology. In any relational operation that involves 
comparing values between a pair of columns (simple or composite), this pair 
of columns must normally draw its values from a common domain. As 
introduced earlier, columns being compared are called the comparand col- 
umns. Between the values in a pair of comparand columns (say R.B, S.C), 
there may exist a relationship indicated in Row 1 of the table below. The 
join has a corresponding description in row 2" 

Row 1 Relationship One-to-one One-to-many 

Row 2 Join One-to-one join One-to-many join 

Row 1 Relationship Many-to-one Many-to-many 

Row 2 Join Many-to-one join Many-to-many join 

Of interest are relationships such as these that are independent of time, 
not those that happen to exist for a short time because of the data that 
happens to be active in that time interval. Therefore, one can expect to 
encounter phrases such as the time-independent PK-to-FK relationship, where 
PK is an abbreviation for primary key and FK is an abbreviation for foreign 
key. 

In Case 1, it makes little sense to permit R = S, since a relation is 
allowed to have only one primary key. On the other hand, in Cases 2 and 
3 it may happen that R and S are either the same or distinct relations. It is 
assumed, however, that in all three cases the pairs of columns being com- 
pared are defined on the same domain; of course, the DBMS checks whether 
this is the case. 
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Case 1 is the simplest. No ambiguity of origin can arise in the result. 
Hence, any view defined as in Case I is tuple-deletable; if the view is back- 
traceable with respect to its columns, it is tuple-insertible also. 

It is easy to see that what applies to Case 2 must also apply to Case 3, 
with the appropriate interchange of relations R and S in the reasoning. In 
Case 2, if the view is back-traceable with respect to its columns, insertion 
of a new tuple into the view can easily be put into effect by splitting this 
tuple into two parts: 

1. one part (say pl) corresponding in type to relation R; 

2. the other part (say p2) corresponding in type to relation S. 

Let the result of appropriately back-transforming p l and p2 be p l" and 
p2", respectively. If p l"  does not already occur in R, it is inserted into R. 
If p2" does not already occur in S, it is inserted into S. If both p l" and p2" 
already occur in R and S, respectively, the DBMS rejects the insertion as 
an attempt to put a duplicate row into the view, and an error indicator is 
turned on. 

In Case 2, deletion of a tup!e that does not exist in the view is rejected, 
and an error indicator is turned on. Deletion of a tuple that already exists 
in the view can be handled in a fashion rather similar to that for insertion. 

First, split the tuple to be deleted into the two parts p l and p2 as before. 
Then, examine the view to see whether any tuple other than the one being 
deleted has p2" as its type S part. If not, delete p2" from S. Regenerate 
the view and check it to see whether any tuple other than the one being 
deleted has p l"  as its type R part. If not, delete p l" from R. If no deletion 
is indicated in either operand, the original deletion command should be 
rejected as inapplicable, and an error indicator is turned on. 

The term quad means a contribution of several rows to a join arising 
from a specific value that occurs at least twice in each comparand column 
(say m times in the first-cited comparand column and n times in the other 
comparand column). Such a contribution to the equi-join must consist of a 
number of rows that is the product of the two integers m and n. Since each 
integer is at least two, this product cannot be less than four" hence, the 
name "quad." Clearly, a quad contribution cannot consist of 3, 5, 7, 11, or 
any prime number of rows. The integers m, n are the parameters of any 
selected quad. 

Quads are a phenomenon pertinent to the join operators when they are 
applied to operands that have a many-to-many relationship between the 
comparand columns. This phenomenon should not be confused with the 
phenomenon of ambiguity in origins, which is applicable to many relational 
operators. 

Suppose that a view is the equi-join of two given relations. Suppose also 
that the comparand-column relationship is many-to-many, and hence one or 
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more quads can exist in that equi-join. Then, the deletion of exactly one 
row that happens to belong to one of these quads generates a relation that 
can no longer be the equi-join of the given relations. The product m n  reduced 
by one cannot be either m ( n-1 ) or ( m - l )  n, because each of m and n is 
greater than or equal to two. Similarly, the insertion of exactly one row that 
happens to expand one of the quads by one row can no longer be the equi- 
join of the two given relations. Algorithm VU-I does not conduct any 
searching for quads, since that could be effective only at request time. 
Instead, at view-definition time, the algorithm rejects any attempt to delete 
rows from or insert rows into any view that is a many-to-many equi-join 
(that is, an equi-join for which there exists a many-to-many relationship 
between the comparand columns). 

Similar remarks apply to any deletion of several rows from (or insertion 
of several rows into) a many-to-many equi-join that leaves any quad in that 
join with a prime number of rows. 

The methods of handling insertion and deletion in Cases 2 and 3 work 
because a pKoto-FK relationship is a time-independent, one-to-many rela- 
tionship, provided the keys are drawn from a common domain. Therefore, 
quads cannot occur in the corresponding join. Hence, quads and their 
associated problems are not encountered in a view that is a join involving 
P K and FK columns based on a common domain. 

Equi-joins according to columns other than those cited in Cases 1-3 
could have quads since the time-independent relationship between the com- 
parand columns can  be  many-to-many. In Algorithm VU, it is not assumed 
that either the DBA or the DBMS is aware of those cases (if any exist in 
the given database) in which it happens that the time-independent, non-key, 
comparand-column relationship is not many-to-many. Therefore, VU rejects 
as non-updatable all views based on equi-join other than those cited in Cases 
1-3. 

In summary, for every view T based on equi-join, Algorithm VU inspects 
the catalog to see whether Case 1, 2, or 3 applies. If one of these cases is 
applicable, VU declares the view T to be tuple-deletable. VU also examines 
every such view T to see whether it has nothing but back-traceable columns. 
If this additional condition is applicable, VU declares the view to be tuple- 
insertible. Finally, for each component that is back-traceable, VU declares 
that component to be updatable. If none of the Cases 1-3 applies to the 
view T, Algorithm VU declares T to be not tuple-deletable, not tuple- 
insertible, and not component-updatable. 

17.3.7 I n n e r  J o i n s  O t h e r  t h a n  E q u i - j o i n s  

Consider a view that is a join based on the comparator LESS THAN (<). 
Suppose that the relation R is joined with the relation S using column A of 
R and column B of S as comparand columns (A and B may both be simple 
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or both composite). In such a join, each A-value occurrence is likely to be 
associated with many B-values. 

Consider the following example: 

T =  R [ A < B ] S .  

R ( A C )  S ( B • .) T (C A B 

2 cl 1 cl 2 3 
4 c2 3 cl 2 4 
5 c3 4 cl 2 7 
9 c5 7 cl 2 11 

13 c6 11 c2 4 7 

c2 4 11 
c3 5 7 
c3 5 11 
c5 9 11 

. .) 

Note that, in this example, the value 13 in column R.A and the value 
1 in column S.B do not participate in the join based on LESS THAN. 
Moreover, the value 9 in column R.A and the values 3 and 4 in column S.B 
are the only values that occur once in the corresponding columns of the join 
T. Thus, these three values participate in their respective columns and in 
exactly one row each. 

This once-only occurrence permits the DBMS to select a specific row 
of R (in the case of 9 in R.A) and of S (in the case of 3 and 4 in S.B) to 
be deleted when the corresponding row in the join T is deleted. However, 
the DBMS cannot make any sensible deletion in R or in S for any other 
row in the join. Since only a relatively few values at the low end in S.B and 
at the high end in R.A enjoy the once-only occurrence in the join T, it 
seems simplest to reject deletions of rows altogether in any view based on 
a LESS THAN join. This is precisely the action taken by Algorithm VU. 

Similar remarks apply to the inner joins, for which the comparators are 
LESS THAN OR EQUAL TO, GREATER THAN, GREATER THAN 
OR EQUAL TO, and NOT EQUAL TO. However, the four inner joins, 
for which the comparators are limit-imposed (GREATEST LESS THAN, 
GREATEST LESS THAN OR EQUAL TO, LEAST GREATER THAN, 
and LEAST GREATER THAN OR EQUAL TO) deserve special attention. 

Inner joins can be used with or without the ONCE qualifier. With the 
ONCE qualifier, each tuple of each operand can be used only in at most 
one tuple of the result. Only this case is examined here. Treatment of these 
joins is illustrated using the GREATEST LESS THAN comparator and the 
ONCE qualifier, first assuming that the values in R.A are distinct and that 
the values in S.B are also distinct. 

T = R [ A G < B ] S O N C E  
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R ( A C )  S ( B . .) 

2 cl 1 
4 c2 3 

5 c3 4 
9 c5 7 

13 c6 11 

T (C A B 

cl 2 3 
c3 5 7 

c5 9 11 

. .)  

A request to delete the row < c3,5,7 > from the view T can be 
interpreted in one of three ways: 

1. delete the row containing 5 from R; 

2. delete the row containing 7 from S; 

3. delete both rows (5 from R and 7 from S). 

Of these three versions, the third is selected by VU because it is both 
simple and the most symmetric (i.e., lacking in bias). 

Now consider an example that is similar in all respects, except that" 
(1) the values in R.A are not all distinct, and (2) column C in R is explicitly 
illustrated to distinguish between the two rows of R that contain 5 in R.A. 

Note that the result is different from the previous result with respect to 
the comparand columns" 

R ( A  C )  S ( B  

2 cl 1 
4 C2 3 
5 c3 4 
5 C4 7 
9 c5 11 

13 C6 

. .) T (C A B . .) 

cl 2 3 
c3 5 7 
c4 5 11 

The request to delete the row < c3, 5, 7 > from the view T is interpreted 
by VU as a deletion of row < 5, c3 > from R and the row containing 7 
from S. 

Accordingly, algorithm VU declares that, for every view based on one 
of the inner joins other than equi-join, and based on the four limit-imposed 
comparators with the qualifier ONCE attached: 

m that view is tuple-deletable; 

m if that view has nothing but back-traceable columns, it is tuple-insertible; 

• each column that is back-traceable is component-updatable. 

All other views based on inner joins (except natural join and equi-join) 
are not tuple-deletable, not tuple-insertible, and not component-updatable. 
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17.3.8 T h e  N a t u r a l  Jo in  Operator  

Both Algorithm VU-1 and Algorithm VU-2 treat views defined as natural 
joins in a way that is very similar to their treatment of views defined as 
inner equi-joins. Removal of the redundant column from the equi-join does 
not affect the action taken by these algorithms significantly. 

17.3.9 T h e  O u t e r  E q u i - j o i n  Operator  

Algorithm VU handles outer equi-joins in the same way as the inner equi- 
joins, except for the two items that follow. Assume that, in the definition 
of the view T, the first-cited operand is R and the second is S. There are 
some differences in the dynamic handling by the DBMS at request time of 
insertions and deletions because of two facts" 

1. The R-part of a tuple to be inserted into T may happen to have all of 
its component values missing, if the operator is either right or symmetric 
outer join; 

2. The S-part of a tuple to be inserted into T may happen to have all of 
its component values missing, if the operator is either left or symmetric 
outer join. 

17.3.10 The  R e l a t i o n a l  D i v i s i o n  Operator  

Algorithm VU rejects tuple insertions, tuple deletions, and component 
updates applied to any view defined using relational division. Such changes 
have a major effect on the operand relations in terms of which the view is 
defined. In addition, appropriate interpretations of such operations are not 
at all clear. 

17.3.11 The U n i o n  Operator  

Consider a view 

T = R U S ,  

where R and S are relations that are union-compatible. Normally it is 
impossible to deduce from the relation T alone which of its rows came from 
R, which from S, and which from both R and S. 

Deletions of rows from a union-based view are a simple matter and are 
always accepted by VU. At request time, the deletion of a row from T 
causes the DBMS to check whether that row occurs in R, in S, or in both. 
If the row occurs in R, it is deleted from R. If it occurs in S, it is deleted 
from S. 

Algorithm VU-I on Union Suppose that an insertion of just one row is to 
be made into the view T. The question arises as to whether this row should 
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be inserted into R alone, into S alone, or into both. Normally, there is no 
basis for the DBMS to decide which action to take. If T happens to be the 
disjoint union of R and S at all times of integrity, however, the row inserted 
into T should be inserted into either R or S, but not both. Under these 
circumstances, how can the DBMS determine which one? One reasonable 
source for this information is the user-defined integrity constraints in the 
catalog. One of these constraints should clearly state the following: 

that T is the disjoint union of R and S (not just any union); and 

that the values in a particular simple or composite column of R identify 
the corresponding rows as originating from R (not S), while the values 
in the corresponding column of S identify the corresponding rows as 
originating from S (not R). 

When these two catalog-based conditions are satisfied, and every column 
is back-traceable, Algorithm VU-1 accepts insertions into the view T. For 
all other views based on the union operator, it rejects insertions. 

When these two Catalog-based conditions are satisfied, each column that 
is back-traceable is component-updatable. Otherwise, Algorithm VU-1 re- 
jects updating components in such a view. 

Algorithm VU-2 on Union When inserting a row into a view that is a union 
of two relations R, S (not necessarily disjoint), it is possible to use a function 
(normally defined by the DBA) to determine whether the row should actually 
be inserted into R only, into S only, or into both relations. Such a function 
is called a view-interpretation function. 

The DBMS treats this function just like an integrity constraint except 
that it is neither C-timed nor T-timed (see Feature RI-6 in Chapter 13). 
Instead, the DBMS examines it at command-interpretation time (early in the 
execution of an RL command); it is said to be 1-timed. 

At view-definition time, Algorithm VU-2 looks in the catalog to see 
whether a view-interpretation function for this view has been stored there. 
If so, the DBMS records in the catalog that the requested union view is 
tuple-insertible. If no interpretation function is found for this view, the 
DBMS resorts to making this decision according to VU-1. 

Consider again the example of a union view cited at the beginning of 
this chapter. This view (R UNION S) concerned suppliers west of the 
Mississippi River (relation R) and those located east of the Mississippi 
(relation S). Using Algorithm VU-1, this view was found to be not tuple- 
insertible. 

Using VU-2 and a suitable view-interpreting function, the view R union 
S can now be treated as tuple-insertible. All that this function need do is to 
use the city and state components of each row offered to the DBMS for 
insertion into the view R union S. By consulting an extra table stored in the 
database and indicating which states are west of the Mississippi and which 
ones are east (Minnesota and Louisiana excluded), the view-defining algo- 
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rithm, and hence the DBMS, can determine which side of the river the 
supplier was on, and hence whether to enter the row into R or into S. (In 
the case of Minnesota and Louisiana, the function must examine a separate 
table indicating which cities in these states are on which side of the Mississippi 
(New Orleans straddles the river)). 

Pending the development of a clearly superior algorithm, Algorithm 
VU-2 is being held as a candidate for insertion into RM/V3. Note that 
VU-2 does not require the operand relations to be disjoint. 

17.3.12 T h e  O u t e r  U n i o n  Operator  

Insertions of rows into a view based on outer union are treated by Algorithms 
VU-1 and VU-2 just as they treat such insertions in the case of union. Note, 
however, that if the row being inserted belongs in one of the operand 
relations, say R, and if it contains a component value that for R should be 
missing (since R does not include the corresponding column), that value 
will be dropped as the insertion into R is made. A similar constraint also 
applies to S. 

For both operands, the DBMS turns on a warning indicator whenever 
a component value of an inserted row is dropped altogether upon entry into 
the database. Deletions of rows from a view based on outer union are also 
treated just as in union. To execute the outer union correctly, however, the 
DBMS must take note of the type differences between the view T and its 
operands R and S. 

17.3.13 T h e  I n t e r s e c t i o n  O p e r a t o r  

Consider a view 

T = R N S ,  

where R and S are relations that are union-compatible. Then, every row of 
T occurs in both R and S. 

If the user requests deletion of a row from the view T, the DBMS must 
delete it from both R and S. Algorithm VU-1 declares such a view to be 
tuple-deletable. 

An insertion of a new row into T requires the DBMS to insert the back- 
transformed version of that row as follows: 

• into R if it is already present in S; 

• into S if it is already present in R; 

m into both 'R and S if it is present in neither. 

Algorithm VU-1 therefore declares such a view to be tuple-insertible, 
provided every column is back-traceable. Note that, if at request time the 
back-transformed version of the row to be inserted is already present in 
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both R and S, the DBMS treats the request as an attempt to create duplicate 
rows in T, rejects that particular request, and turns on an error indicator. 

For a view based on intersection, each column that is back-traceable is 
component-updatable.  

17 .3 .14  T h e  O u t e r  I n t e r s e c t i o n  O p e r a t o r  

Deletions of rows from a view based on outer intersection are treated just 
as in the case of intersection. In some circumstances, however, the DBMS 
must take into account the type differences between the view T and its 
operands R and S. 

Insertions of rows into a view based on outer intersection are also treated 
just as in intersection. Note, however, that when making corresponding 
insertions into the operands R and S, the DBMS must take into account the 
type differences between the view T and its operands R and S. 

Once again, for every view based on outer intersection, each column 
that is back-traceable is component-updatable.  

17.3 .15  T h e  R e l a t i o n a l  D i f f e r e n c e  O p e r a t o r  

Consider a view 

T = R - S ,  

where R and S are relations that are union-compatible. Then, every row in 
T is required to occur in R, but must not occur in S. 

The DBMS can handle requests for deletions of rows from T by simply 
making those deletions effective on R. The a l ternat ive~introducing the 
given row into S as a new r o w ~ w o u l d  have the same effect on T as deleting 
that row from T because of the definition of the view T. This action, however, 
is deemed inconsistent with user expectations regarding any deletion. Users 
normally expect every request for a deletion to cause information to be 
removed from the database. 

A user's request to insert a new row in T can be correctly handled by 
the DBMS if (1) every column in T is back-traceable and (2) the DBMS 
simply inserts the back-transformed version of that row into R only. As a 
precaution, the DBMS should check first that the back-transformed version 
of the row being inserted into R does not already occur in S. If the system 
finds that the row in question does already exist in S, it should reject the 
insertion and turn on an error indicator. 

Thus, views based on relational difference are treated by VU-1 as follows: 

• as tuple-deletable; 

• as tuple-insertible, provided every column is back-traceable; 

• as component-updatable for each back-traceable column. 
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17.3.16 The Outer Difference Operator 

For all views based on outer difference, the manipulative activities (deletions 
of rows, insertion of new rows, and updating of components) are treated 
just as in the case of relational difference. In some circumstances, however, 
the DBMS must take into account the type differences between the view T 
and the operands R and S. 

17.4 • M o r e  C o m p r e h e n s i v e  R e l a t i o n a l  R e q u e s t s  

Usually a single command in a relational language based on predicate logic 
will require that a sequence of algebraic operators be executed. The com- 
mand is decomposed into such a sequence. Then, this sequence is examined 
by Algorithm VU-1, one operator at a time. 

Let us refer to the properties tuple-insertible, tuple-deletable, and com- 
ponent-updatable by the generic name property P. Only if three conditions 
are satisfied does Algorithm VU-i declare the whole view (defined by the 
pertinent command) to have property P: 

1. every operator in the sequence is found to have property P; 

2. at most one outer operator occurs in the view definition, and it generates 
the final result only; 

3. there is no occurrence of any one of the MAYBE qualifiers. 

One consequence of this approach is that columns such as primary-key 
columns that are crucial to property P in one part of a relational command 
cannot be discarded by projection in another part of that command. For 
example, the comparand columns in an updatable join must be retained in 
the ultimate result. 

In what way does Algorithm VU-2 open up Pandora's box? Unless great 
care is taken in designing the DBMS as a host to view defining functions, 
database administrators will be able to use this facility to re-interpret actions 
on views in extremely irregular ways. For example, an insertion into a view 
could be re-interpreted as a deletion from that view. 

On any column C that the DBA chooses, it is possible for him or her 
to impose two semantic constraints" 

1. that all the values in column C are distinct; 

2. that no values are missing from column C. 

Since these two constraints are applied by the DBMS to all primary 
keys unconditionally, it is senseless for the DBA to attempt to impose or 
drop these constraints on primary keys. Suppose, therefore, that column C 
is not the primary key of the pertinent relation. In supporting views to which 
manipulative actions can be correctly applied (without any guessing by the 
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DBMS), these constraints appear to make column C as good as a primary 
key. 

However, neither Algorithm VU-1 nor Algorithm VU-2 exploits con- 
straints of this type defined by the DBA. The main reason for this "weak- 
ness" in these algorithms is that the DBA is free at any time to drop either 
or both of these constraints--as free as he or she is to introduce them. Such 
a drop could cause certain views to change drastically with regard to their 
updatability. Some or all of the ability to delete tuples, update tuples, and 
insert tuples is likely to be lost when these constraints are dropped. 

17 .5  m F u l l y  a n d  P a r t i a l l y  N o r m a l i z e d  V i e w s  

So far, the question of view updatability has been discussed with little regard 
for the meaning of the insertions, updates, and deletions. The main concern 
has been to identify and avoid situations in which the DBMS would have 
to guess the user's in~ent because of difficulties in back-tracing from views 
to base relations, or because of functions that do not have inverses. Now, 
it is appropriate to bring into focus the fact that an updatable view may not 
be a fully normalized relation. 

I introduced and discussed normalization of relations in 1971 [Codd 
1971b and 1971c]. My main goal was to develop some theory that would be 
applicable to logical database design, and especially to the creation of a 
sound collection of base relations. 

Our main concern here, however, is in the creation of views, not base 
relations. Now, a view, just like a base relation, may be fully normalized 
or not. This property holds even if the view is tuple-insertible, component- 
updatable, and tuple-deletable. If the view is likely to be subjected to many 
insertions, updates, and deletions, the DBA must examine whether it is 
normalized or not. 

17.5.1 N o r m a l i z a t i o n  

Because some readers may not be familiar with the concepts involved in 
normalizing relations, these concepts are briefly discussed here. 

One of the aims of normalizing a collection of relations is to make the 
insertions, updates, and deletions clear in meaning and therefore easily 
understandable. Normalization has little to do with pure retrieval. In fact, 
normalization usually involves breaking relations into relations of smaller 
degree (those with fewer columns); this tends to reduce performance on 
pure retrieval because many more joins must often be executed. 

Every database is intended to model some micro-world. Thus, the 
objects to which reference is made in the following list are those found in 
this micro-world. The basic ideas in normalization are to organize the 
information in a database as follows: 
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Each distinct type of object has a distinct type identifier, which becomes 
the name of a base relation. 

Every distinct object of a given type must have an instance identifier 
that is unique within the object type; this is called its primary-key value. 

Every fact in the database is a fact about the object identified by the 
primary key. 

Each such fact contains nothing other than the single-valued immediate 
properties of the object. 

Such facts are collected together in a single relation, if they are about 
objects of the same type. The result is a collection of facts, all of the 
same type. 

Note that this methodology makes no distinction between abstract ob- 
jects and concrete objects. Furthermore, no distinction is made between 
entities and relationships. 

It is the coupling together of facts of different type that gives rise to 
problems. Such facts are likely to be independent of one another with regard 
to their truth in the micro-world and their existence in the database. Inserting 
a fact of one type does not usually require inserting a fact of another type 
at the same time. Deleting a fact of one type does not normally require 
deleting a fact of another type at the same time. As I discussed in [Codd 
1971b, 1971c], the problem with relations that are not fully normalized is 
that insertions, updates, and deletions can create unpleasant surprises for 
users because of anomalies in their behavior and meaning. 

Consider an example involving suppliers and simple shipments of parts. 
A typical fact about a supplier includes an identifier (the supplier serial 
number), the company name and address, a suitable contact within the 
company, and his or her telephone number. A typical fact about a simple 
shipment includes the supplier serial number, the part serial number, the 
quantity of parts shipped, the date of receipt at the receiving end, the 
amount to be paid, whether this amount has been paid, and the date of 
payment. 

Suppose that the fact f about each supplier is coupled with the facts gl, 
g 2 , . . ,  gn about shipments from that supplier. Because it is then necessary 
to repeat f with every g, the first problem noticed is the serious level of 
redundancy in the relational representation. The adoption of a hierarchic 
structure to remove this redundancy is a backward step, one that introduces 
a whole new set of complexities and problems. These have been thoroughly 
discussed elsewhere (see [Codd 1970]). 

It is now appropriate to comment on insertions, updates, and deletions 
applied to the unduly coupled relation. 

Insertion Anomalies Usually the suppliers from which a company acquires 
its parts constitute a relatively stable collection. On the other hand, fresh 
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orders are continually being placed with each supplier, and for almost every 
order there will be a new shipment. Thus, there is a continual need for 
insertions of new facts concerning new shipments. Every time a new shipment 
is entered into the database using a normal insert command (see Feature 
RB-31 in Chapter 4), it must be accompanied by the fact pertaining to the 
cited supplier, even if that fact already occurs many times in the database. 
This is clearly an unnecessary burden to place on the users. 

When a new supplier is being entered into the database, it is unfortu- 
nately necessary to enter information concerning a shipment from this sup- 
plier. It would help users if there were a concise way of asserting that the 
shipment information is missing from the unduly coupled tuple. 

Update Anomalies Suppose that one of the suppliers moves from one lo- 
cation to another. A change must be made in the supplier's address, and 
perhaps in other properties also. This address, however, may occur in many 
rows of the unduly coupled relation. Unless the user employs a command 
more sophisticated than the update commands described in Chapter 4 (Fea- 
tures RB-30-RB-32), translation of this request into correct commands is a 
tedious task, one in which the user must be aware of the unfortunate 
redundancy cited earlier. 

Archiving and Deletion Anomalies Suppose that a particular supplier has 
five distinct shipments recorded in ~ the database. As just described, each 
recording of a distinct shipment is accompanied by a repetition of the basic 
fact about the supplier that is shipping the parts involved. 

Suppose that when a shipment is paid for, the database fact pertaining 
to this shipment is either archived or deleted.With each archiving or deletion, 
the redundancy level of the fact pertaining to the supplier is reduced by 
one. It may happen that this supplier receives no fresh orders for such a 
long time that the level of redundancy is reduced step by step from five 
down to one, and  finally to zero. In the range from five down to one no 
problem arises because the basic fact concerning the pertinent supplier is 
retained in the database. In the final step, however, when payment is made 
for the last of the five shipments, this fact is removed from the database 
altogether. In this example, as in others, the archiving or deletion proceeds 
in a regular manner until the final step. Then, and only then, is there a 
substantial, and probably unexpected, side effect: the total removal from 
the database of information about the supplier involved. 

17.5.2 R e l a t i n g  V i e w  U p d a t a b i l i t ¥  to  N o r m a l i z a t i o n  

If the definition of a view includes a join of some kind, it will not be unusual 
for the DBMS to make a check to see whether referential integrity has been 
maintained. Such a check can cause any insert, update, or delete request to 
be rejected. 
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The DBMS (and preferably all users) must know which relations are 
the contributors to every view involving a join, allowing insertions, updates, 
and deletions to be intelligently requested. Thus, if a base relation T is the 
outer equi-join of two relations R and S that are more fundamental than T, 
but are not base relations themselves, R and S should nevertheless be 
described in the catalog, and T should be defined in terms of R and S. Such 
relations are then called conceptual relations. 

17.5.3 N e w  Operators  for Part ia l ly  N o r m a l i z e d  V i e w s  
and  Base  R e l a t i o n s  

As an aid in explaining these operators, consider a quite useful example 
based on the outer equi-join. Let T denote the right outer equi-join of relation 
S on B with relation K on C: 

T ~ S [ B  = C \ ] K .  

It is adequate to consider either left or right outer equi-join only since 
the main concern is with T as an updatable view (not a base relation), and 
it has already been established that a view involving many-to-many matching 
of values in the comparand columns is not tuple-insertible, not component 
updatable, and not tuple-deletable. 

In the examples of the use of the four new operators presented in 
Features RZ-41-RZ-44, assume that S denotes suppliers and K denotes 
capabilities of suppliers in supplying parts. If T happens to be a base relation, 
assume that S and K are declared as conceptual relations (not base, not 
view, and not query). 

R Z - 4 1  T h e  S e m i - i n s e r t  O p e r a t o r  

An insertion into T of a fact f represented by a semi-tuple is 
requested. The DBMS examines the pertinent half of T to see 
whether the fact f already occurs there. If f is already in T, the 
DBMS rejects the request. If not, the DBMS associates the fact f 
with either an existing pairing fact that happens to have its other 
half missing or, if no such attaching point is available, creates such 
an attaching point by making a copy of a fact that can successfully 
pair with it. 

Consider as an example the insertion of a capability for supplier s3 and 
part p15. If supplier s3 occurs at all in T with a missing capability, it must 
occur just once, and the DBMS updates this tuple to include the new 
capability. If s3 does not occur at all in T, the DBMS rejects the request. 
If s3 occurs in one or more supplier semi-tuples of T, but always paired 
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with a capability semi-tuple, the DBMS copies one of these supplier semi- 
tuples and pairs it with the new capability. 

R Z - 4 2  The S e m i - u p d a t e  Operator 

An update is requested that is to be applied to a fact that is 
represented by a semi-tuple of T. If the DBMS is able to find at 
least one semi-tuple to which the update pertains, it proceeds to 
update every copy of the pertinent fact that exists in T. If the DBMS 
is unable to find such a semi-tuple, it rejects the request. 

Consider as an example of an update to change the address of a specific 
supplier. Every copy of the supplier semi-tuple that exists in rows of T is 
similarly updated. If no semi-tuple is found for the specified supplier, the 
request is rejected. 

RZ-43,  RZ-44 The Semi-archive  and 
S e m i - d e l e t e  Operators 

The DBMS checks to see whether the fact to be archived or deleted 
occurs in more than one semi,tuple of T. If so, as Step 1, it archives 
or deletes all rows of T (except one row) in which the fact occurs. 
As Step 2, the DBMS marks as missing all components of the one 
remaining semi-tuple of T. if at the start the fact to  be archived or 
deleted occurs only once, Step l is omitted and Step 2 is executed. 
If the fact to be archived or deleted does not Occur at all in T, the 
DBMS rejects the request. 

As an example of an archive or deletion, consider the deletion of the 
capability of supplier s3 to supply part p15. The DBMS checks to see whether 
supplier s3 occurs in just a single row of T. If so, it marks as  missing all 
components of the capability semi-tuple. If s3 occurs in more than one row, 
the DBMS makes a simple deletion of the particular row in which the 
specified capability occurs. If s3 does not occur at all, the DBMS rejects 
the request. 

17.5.4 O u t e r  E q u i - j o i n  v e r s u s  I n n e r  E q u i - j o i n  as Views 

Suppose that a decision has been made that facts of two different types must 
be combined in a single view by making use of either an outer or an inner 
equi-join with the primary key of one relation (containing facts of Type 1, 

] 
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say) matching the foreign key of the second relation (containing facts of 
Type 2, say). The question arises, Which is the better operator to choose? 

Given a fact of Type 1, it is useful to say of a fact of Type 2 that it 
matches the Type 1 fact if the primary-key value in the Type 1 fact equals 
the foreign-key value (drawn from the same domain) in the Type 2 fact. 
The following question is crucial: Is it necessary for one or more Type 1 
facts to exist in the database when there are no matching Type 2 facts, and 
for this to be obvious from the content of the view? 

If this question is answered affirmatively, the choice is clearly outer 
equi-join. Outer equi-join permits the continued existence of Type 1 facts 
even when matching Type 2 facts have not been entered or have become 
obsolete and been archived or deleted. 

17.6 • C o n c l u s i o n  

View updatability is extremely important because application programs and 
end users at terminals should always use views as the means of interacting 
with a relational databasemthe only way now known for application pro- 
grams and end users to be able to cope with many kinds of changes in the 
logical database design without the need for reprogramming and retraining. 
This is known as logical data independence. Algorithms VU-1 and VU-2 are 
the tools by which relational DBMS products can adequately support de- 
termination by the DBMS of view updatability at view-definition time. 

The original version of Rule R6 in the 1985 set was stronger than 
theoretically achievable. In Version 2 of the relational model, Rule R6 has 
become Feature RV-6 (repeated here). 

R V - 6  V i e w  U p d a t i n g  

To evaluate the updatability of views at view definition time, the 
DBMS includes an implementation of Algorithm VU-1 or some 
stronger algorithm. Neither the DBMS nor its principal relational 
language, RL, makes any user-visible manipulative distinctions be- 
tween base relations and views, except that 

1. some views cannot accept row insertions, and/or row deletions, 
and/or updates acting on certain columns because Algorithm 
VU-1 or some stronger algorithm fails to support such action; 

2. some views do not have primary keys (they have weak identifiers 
only) and therefore will not accept those manipulative operators 
that require primary keys to exist in their operands. 

Why dopresent versions of relational DBMS products handle the up- 
dating of views in such an ad hoc, severely limited, and ill-conceived manner? 
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Performance is not the reason. Perhaps one reason is that, for some time, 
very few people have been aware that view updatability is a major factor in 
attaining logical data independence. 

Furthermore, if the columns that constitute the primary key are not 
explicitly declared to be the primary key for at least each base relation, then 
it will be extremely difficult, if not impossible, for the DBMS to determine 
at view-definition time whether or not that view is tuple-insertible or tuple- 
deletable, and which of its tuple-components are updatable (if any). 

The development of algorithms that, when compared with Algorithms 
VU-1 and VU-2, are more efficient or more thorough (or both) can be 
expected. The situation is very similar to that which came about after I 
completed development of the first three normal forms for database organi- 
zation [Codd 1971b]. I named them normal forms 1, 2, and 3 to encourage 
researchers to create additional normal forms~which they did. 

Exercises  

17.1 What are the four assumptions upon which both of the view-updata- 
bility algorithms are founded in RM/V2? What is the fifth assumption 
on which VU-2 only is based? 

17.2 Suppose that a view is defined as a projection on a base relation and 
does not include the primary key of that relation. Discuss whether 
view-updatability Algorithm VU-1 would accept or reject the insertion 
of rows into the view. 

17.3 Are all of the views that are definable by RM/V2 

• Tuple-insertibie by RM/V2? 

a Tuple-deletable by RM/V2? 

• Component updatable by RM/V2? 

If not, why not? Supply one example for each case. 

17.4 Supply a brief description of Algorithm VU-1. What are the main 
improvements in VU-2? 

17.5 Suppose that a view is defined as the equi-join of two base relations, 
and this join does not involve the primary key of either relation as 
one of the comparand columns. Discuss whether view-updatability 
Algorithm VU-1 would accept or reject the insertion of rows into the 
view. 

17.6 As the security chief for a database, you have been asked to make 
available to a user certain columns of a relation, but these do not 
include the primary key of that relation. You have also been asked 
to grant that user the privileges of inserting and deleting rows in the 
pertinent projection. Should you grant all of these privileges? If not, 
what are the problems? 
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17.7 As the DBA of a database, a user has requested you to define a 
union of two base relations as an updatable view. Upon examining 
the pertinent base relations, yo u find that they are union-compatible, 
but that their intersection is either non-empty or not guaranteed to 
remain empty. Can you grant the user's request, assuming your DBMS 
supports view-updating Algorithm VU-i? Explain your answer. Can 
VU-1 be improved to enable the request to be granted? If so, how? 
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A u t h o r i z a t i o n  

To quote from Chapter 13, 

Preserving the accuracy of information in a commercial database is 
extremely important for the organization that is maintaining that 
database. 

A major step cited in Chapter 13 concerned the preservation of integrity. 
In this chapter a second major step is discussed, namely, controlling who 
has access to what parts of the database and for what purposes. 

Because of its ease of use, the relational approach to database manage- 
ment is without doubt opening up databases to many more people than did 
any previous approach. No longer can just a few members of an organization 
with highly specialized skills and knowledge access data. Therefore, far more 
responsibility must be placed on the DBA, and on the DBMS, to protect 
the data from damage by people who lack adequate knowledge of the 
pertinent company operations, procedures, and policies. 

Many of those who are authorized to access the data should be permitted 
by the DBA and DBMS to read the data, but not to modify it. Even when 
restricted to no more than reading data, such users may be authorized to 
read only specified parts of the database. 

Consider the example of a production database (one that is supposed 
to reflect the reality of company operations) and a user who is a member 
of the planning staff. Suppose that this planner must investigate various 
"what-if" types of questions. He or she may want to make some changes 
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in the database that reflect possible future changes, either within the com- 
pany or in its environment, such as changes in the marketplace. Generally, 
such changes cannot be permitted on data in a production database because 
that database would no longer reflect the reality of present company oper- 
ations. A useful approach to this problem is to request the DBMS to deliver 
to planning staff workstations, with some specified regularity (e.g., once a 
week), snapshots or summaries of parts of the production database. 

The responsibility of the DBA with regard to authorization is to enter 
into the catalog a collection of statements that specify who is to access what 
information, for what operational purposes, and under what time constraints. 
Continual and dynamic enforcement is the responsibility of the DBMS itself. 
Because there can be millions of accesses every day, it would not be practical 
to require the DBA to adjudicate every access. Enforcement by software, 
however, is totally misplaced if it is made the responsibility of a software 
package added as an afterthought on top of the DBMS. Such a package can 
easily be bypassed. 

It is quite normal in companies and government institutions for a sig- 
nificant variety of kinds of information to be present in a database. Some 
of this data, perhaps much of it, is not intended to be spread around within 
the organization (e.g., employees' salaries). Generally, the information should 
be available to individuals to the extent required by their job and respon- 
sibilities. This basis for the availability of information is sometimes called 
the need to know. 

Institutions of different kinds often establish quite different procedures 
intended to safeguard the security of their information. The approach to 
security and authorization that is incorporated in the relational model is 
sufficiently flexibile that these institutions can maintain the procedures they 
are accustomed to using, either without any changes, or, at worst, with only 
minor changes. 

Availability of the information must be distinguished from authorization 
to modify the information, whether by (1) insertion of new data, (2) update 
of existing data, (3) archiving of old data, or (4) deletion of obsolete data. 
For any given part of the database, these four distinct kinds of activities 
should be separately authorizable. Normally, even fewer people are author- 
ized to engage in these activities than those who are merely authorized to 
access the information on a read-only basis. 

In present relational DBMS products, there is a strong coupling between 
views and authorization, an idea that probably had its origins in IBM's 
System R prototype [Chamberlin et al. 1981]. One benefit of this approach 

t o  authorization is that it avoids needless complexity in the implementation. 
The consequences of this coupling, however, must be examined. One major 
consequence is examined here. Some minor ones are considered later in this 
chapter. 

If one or more programs or users are authorized to manipulate certain 
rows or columns of a relation, then the scope of this authorization must be 
expressed in terms of a view containing just those rows and columns. Such 
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a view must therefore be defined to put such authorization into effect. One 
consequence is that numerous views are defined for authorization reasons. 
This means that the capability of the DBMS in terms of view updatability 
must be strong. Unfortunately, as noted in the preceding chapter, the DBMS 
products available today are quite weak in this respect. 

18 .1  • S o m e  B a s i c  F e a t u r e s  

R A - I  Aff i rmat ive  Basis 

All authorization is granted on an affirmative basis: this means that 
users are explicitly granted permission to access parts of the database 
and parts of its description instead of explicitly being denied access. 

In non-relational DBMS, the approach to authorization was (and is) 
often negativemthat is, based on explicit denial of access. In a relational 
DBMS, if user A grants authorization to user B, user A specifies what B 
can do, not what B cannot do. As a consequence, the introduction of new 
kinds of data into the database does not require urgent examination of any 
access denials to see how these denials should be extended. Instead, access 
approvals can be introduced quite safely and gradually as they are conceived 
and found to be in line with company policies or government regulations. 

R A - 2  G r a n t i n g  A u t h o r i z a t i o n :  S p a c e - t i m e  S c o p e  

In granting authorization, the full power of RL (including four- 
valued, first-order predicate logic) must be applicable in defining 
(1) the parts of the database and its description accessible for spec- 
ified purposes (retrieving, inserting, or updating database values, 
archiving or deleting, or any combination of these activities), and 
(2) at what time access is permitted (using the date and time func- 
tions of RE). 

If the applicability of the full power of RL in supporting authorization 
is achieved through views (the usual method in relational DBMS products 
today), then Features RV-4 and RV-5, relating to retrieval and manipulating 
power on views (see Chapters 16 and 17), must be fully supported in the 
DBMS in a systematic (not ad hoc) fashion. 

When a DBMS is designed to support Feature RA-2, the usual approach 
taken with regard to allocating parts of the database to each user or program 
is flawed. Access control of this kind is achieved by exploiting views as the 
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sole tool. To exploit views as a tool is fine because it leads to a simple 
design for the authorization mechanism. To exploit views as the sole tool 
for this aspect of authorization, however, leads to serious difficulties. The 
following example illustrates the problem. 

Suppose that one of the base relations is the usual employee relation 
EMP, with employee serial number as the primary key. Suppose also that 
two of the immediate properties of employees included as columns in EMP 
are the present job title and the present salary. One possible requirement 
is that a particular user be allowed access to the entire job title and salary 
columns for the purpose of analyzing the correspondence between these two 
factors. 

Further, in order to keep the salaries of individuals from becoming 
public knowledge, suppose that the DBA denies this user access to the 
primary key by omitting that column from the pertinent view that this user 
is authorized to access. This is the DBA action that is required by the DBMS 
that exploits views as the sole tool for authorizing what parts of the database 
can be accessed by each user. 

In this particular example, the view to be defined must include the job 
title and salary columns, and exclude the primary-key column; in other 
words, the view must be a projection of EMP onto these two columns only. 
Assuming that the DBMS supports true projection and not a corrupted 
version of this operator, duplicate rows do not appear in the result of 
projecting the base relation EMP onto job title and salary only, even though 
there may be duplicates of these pairs of values in the EMP relation. Thus, 
statistical functions applied to the projection are likely to yield answers that 
are different from those that would be obtained from the job title and salary 
columns of the EMP relation itself. Given the intent of the user, the answers 
obtained from the non-key projection are simply wrong. 

Does this mean that the definition of projection should be altered to 
permit duplicate rows to be retained in the result? The answer is definitely 
no, given the seriously adverse consequences of permitting duplicate rows 
(see Chapter 23). 

There is a better solution to the problem. It involves imposing the 
database space-time constraints on the pertinent user partly through a view 
(in this case, a projection that includes the primary key) and partly through 
an additional mechanism that blocks this user from seeing any values in the 
primary key column. 

It is clear that this design of the authorization mechanism is not as 
simple as the one that exploits views as the sole tool but at least it is not 
obviously wrong in its actions. However, if adopting the use of views as the 
sole tool requires permitting duplicate rows, then the overall simplicity of 
the DBMS design is significantly reduced by adding this small complexity 
to the authorization mechanism. Even more important, simplicity for users 
is achieved (see Chapter 23). 
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A reasonable question to ask concerning the example just described is, 
"How does the user distinguish between (1) a view that is a key-based 
projection with the key hidden, and (2) a view that is non-key-based and is 
a corrupted projection (one in which duplicate rows are permitted)?" 

The answer is that there is no difference from tile standpoint of inter- 
rogation and insertion. There could be a difference, however, from the 
standpoint of update and deletion. I am not advocating that  the view- 
updatability Algorithm VU-1 (see Chapter 17) be extended to handle the 
case of hidden keys, The main advantage of using an approach based on 
view 1 rather than view 2 is that no user, not even the DBA, can create a 
relation that contains duplicate rows, along with a l l0f  the headaches that 
result therefrom. 

The next obvious question is, "In requesting authorization from the 
DBA, how does the user distinguish between the need for (1) a view that 
is a key-based projection with the key hidden, and (2) a view that is a true 
projection on the non-key columns (one in which duplicate rows are not 
permitted)?" 

Under this scheme, both of these requests are legitimate, and they are 
quite distinct from one another in meaning. A user who is carrying out 
statistical analysis and who is not allowed to see primary-key values is likely 
to want view 1. The main distinction is whether the primary key participates 
at all in the view. The DBA can already select participation by the primary 
key in a view. What is new here is that the DBA has the additional option 
of hiding or not hiding all of the primary-key values. 

R A - 3  H i d i n g  S e l e c t e d  C o l u m n s  i n  V i e w s  

A suitably authorized user such as the DBA can not only define 
what parts of the database a user is authorized to access by means 
of views, but he or she can also select columns of each view that 
are to be blocked from that user's access. 

Suppose that a user is authorized to access a view V and apply the 
update operator to column A. An update to the A-component of a row w 
in a view can make w non-compliant with the definition of the view, causing 
row w to be removed from the view. 

For example, if a row in the view 

V =  R [ A <  100] 

happens to contain 90 as its value of A, and if a user requests that value be 
incremented by 25, then the DBMS can update the corresponding value of 
A in R to 115. The effect of this update is that the pertinent row is removed 
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from the view V. If the DBA prefers that the request be rejected, he or 
she must place an additional authorization constraint upon the user, namely, 
that no update is allowed to take a row out of the view. This is one more 
reason why authorization should not be based on views only. 

R A - 4  B l o c k i n g  U p d a t e s  That  R e m o v e  R o w s  
From a V i e w  

Suppose that a user is authorized to access a view V and to update 
a column A in V. The DBA has the choice of providing or denying 
this user the additional authorization to apply those updates to values 
in column A that take the corresponding row out of the view. 

A company can become critically dependent on some database. If a 
disgruntled or careless employee is authorized to use the DROP RELATION 
command, he or she could issue numerous commands of this type and cause 
a complete or near-complete loss of the database. The following two features 
are aimed at protecting companies and institutions from this serious problem. 

R A - 5  N - p e r s o n  T u r n - k e y  

In those DBMS installations at which the continued existence and 
integrity of the database are critical to the company or institution, 
the DBMS must support an N-person turn-key in order for certain 
selected activities to be requested by a user successfully ( N > 1 ). 

A simple use of this feature is to require that both the DBA and his or 
her manager approve the following: 

• any execution of the DROP RELATION command; 

• any execution of the DELETE command; 

• any change in the delay period cited in Feature RA-6, following. 

Feature RA-6 delays the execution of drops and large-scale deletions 
(possibly all deletions) by archiving the data for a specified number of days 
or weeks. The DBMS executes these commands in two steps: 

1. archive the data immediately; 

2. delete the data later. 

This delay gives the installation time to react and fully recover from the 
damage, whether intended or not. 
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R A  -6 Delayed D e l e t i o n s  o f  D a t a  and Drops 
B y  Archiving 

Execution of the command DROP RELATION results in the spec- 
ified relation being archived for a period of at least seven days. 
Execution of large-scale deletions (possibly all deletions) is delayed 
by archiving in a similar fashion. Seven days is the default value if 
no longer period is specified. 

Together, Features RA-5 and RA-6 provide the fundamental security 
that a company needs if it depends heavily on the continued existence and 
accuracy of its databases. A possible additional use for the N-person turn- 
key is applicable to the type of updates called exporting updates in distributed 
databases. When executed, these updates cause the DBMS to move one or 
more rows from a relation at one site into a relation at another site. The 
user or application program at the FROM site would have to be authorized 
to update beyond the range permitted at that site. The DBA in control of 
the receiving site might have to authorize reception at that site of the updated 
information as an insertion (see Section 24.6.2). 

A quite different concern in some installations is that the private use of 
storage for preserving the results of queries is escalating at an alarming rate. 
Two approaches to limiting this questionable consumption of resources 
appear useful. 

In the first approach, a feature is introduced into RM/V2 that blocks 
execution of any query for which the result exceeds the quota of storage 
assigned to a user or group of users, either on a per-query basis or with 
respect to a specified total. 

The second approach requires each result of a query that the user 
requests the DBMS to store to be transmitted to his or her personal computer 
or to some storage unit that is specifically assigned to that user. For the 
time being, no feature of RM/V2 is proposed to handle this requirement. 

18 .2  • A u t h o r i z a b l e  Actions 

R A - 7  Authorizable Database-control Activities 

There are at least 13 database-control activities that must be sepa- 
rately authorizable and authorizable in combination. 

The 13 such database-control activities are as follows: 

1. creating and dropping a domain; 

2. creating and dropping a base R-table; 
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10. 

11. 

12. 

13. 

3. creating and dropping a column of an existing base R-table; 

4. creating and dropping a view; 

5. creating and dropping an integrity constraint by type; 

6. creating and dropping a user-defined function; 

7. creating and dropping a performance-oriented access path (such 
as an index); 

8. creating a foreign key in one R-table referencing a primary key 
in another R-table (possibly the same R-table); 

9. requesting that a specific authorization be granted or dis- 
continued; 

requesting a snapshot; 

requesting that an audit log be maintained or discontinued (see 
Feature RI-15 in Chapter 13); 

establishing a condition for archiving with a new label; 

establishing the UP or DOWN mode for "rounding" pseudo- 
dates (e.g., February 30 or March 32). 

R A - 8  A u t h o r i z a b l e  Q u e r y  a n d  M a n i p u l a t i v e  

A c t i v i t i e s  

At least seven database query and manipulation activities must be 
separately authorizable and authorizable in combination. The seven 
such activities are as follows: 

1. retrieving on specific R-tables (base or view); 

2. inserting into specific R-tables (base or view); 

3. updating specific components of rows in specific R-tables (base 
or view); 

4. updating the primary key of a specific R-table; 

5. archiving rows from specific R-tables (base or view); 

6. deleting rows from specific R-tables (base or view); 

7. updating an I-marked value to either an A-marked value or a 
database value, and vice versa (see Chapter 8). 

The granting of any of these operations, except the second one, 
may be not only confined to specific R-tables, but may also be value- 
dependent. 
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RA-9 Authorizable Qualifiers 

Use of all qualifiers must be separately authorizable and authorizable 
in combination (see Chapter 10). The thirteen qualifiers are as 
follows: 

Feature Qualifier 

RQ-1 A-MAYBE 
RQ-2 I-MAYBE 
RQ-3 MAYBE 

RQ-4 AR(x) 
RQ-5 IR(x) 
RQ-6 ESR(x) 
RQ-7 ORDER BY 
RQ-8 ONCE ONLY 
RQ-9 DOMAIN CHECK OVERRIDE 
RQ-10 EXCLUDE SIBLINGS 
RQ-11 DEGREE OF DUPLICATION 
RQ-12 SAVE 
RQ-13 VALUE 

Other activities that should be subject to special authorization are the 
use of various functions recorded in the catalog, as well as the use of the 
date-conversion functions (see Item 14, following Feature RT-4 in Chapter 
3). Although support within a DBMS product for this special kind of 
authorization is optional at this time, such a product should be at least 
designed to accept this extension later. 

R A - I O  G r a n t i n g  a n d  R e v o k i n g  A u t h o r i z a t i o n  

Authorization to access or modify parts of the database may be 
assigned to a user or to an already-declared user group and, at a 
later time, withdrawn from the user or from the group by using 
statements in the relational language RL. Cycles in which user A 
makes a grant directly or indirectly to user B, and user B makes a 
grant directly or indirectly to A, are prohibited. 

When two or more users independently grant another user two or more 
authorizations to access parts of the database (the DBMS certainly supports 
this), these authorizations may overlap each other in space-time scope either 
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partially or completely. Later withdrawal of any one of these leaves the 
others in effect. 

Relational DBMS products on the market in the early 1980s often failed 
to support user groups in their authorization mechanisms. This failure meant- 
that at least one authorization declaration was needed for each individual 
user, a severe burden on those responsible for this task. 

R A - 1 1  P a s s i n g  o n  A u t h o r i t y  t o  G r a n t  

Suppose that a user authorizes another user or user group to access 
part of the database and to execute specified database operations. 
Suppose also that the grantor is authorized to pass on to other users 
the granting option. Then, the grantor has the option of granting to 
or witholding from the recipient permission to make further grants 
of part or all of this authorization. 

This feature is compatible with government-type security, in which a 
few distinct classes of clearance are set up (e.g., top secret, secret, confi- 
dential). Few institutions, however, want to adopt this government-type 
security, which is relatively rigid and forces the DBA or security officer to 
establish a class structure on all users. 

Therefore, the authorization class of features in RM/V2 has been de- 
signed to permit the adoption of many different approaches to database 
security, ranging from strongly centralized to strongly decentralized. 

R A - 1 2  Cascading Revocation 

Consider three distinct users A, B, C. If user A grants specific 
authorization to user B, and if user B passes on part or all of this 
authorization to user C, revocation of the grant from A to B causes 
the DBMS to revoke the corresponding grant from B to C. If user 
U receives identical authorization from two or more sources, then 
U retains the pertinent authorization until every one of the sources 
has revoked the authorization. 

18 .3  i A u t h o r i z a t i o n  S u b j e c t  t o  D a t e ,  T i m e ,  R e s o u r c e  
Consumption,  and Terminal 

R A - 1 3  Date and Time Conditions 

Authorization can be conditioned by day of the month, by day of 
the week, by a time interval during the day, or by a combination 
of these. 
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R A - 1 4  R e s o u r c e  C o n s u m p t i o n  

( A n t i c i p a t e d  or A c t u a l )  

Authorization can be conditioned by either (1) the system's esti- 
mated resource consumption to complete the execution of any re- 
quest submitted by the user (the system must make this estimate in" 
any case as part of the optimization), or (2) limits on the resource 
consumption permitted for any request from the user. In the latter 
case, the request is started unconditionally but is aborted if the 
specified limits are exceeded. 

Of these ~ two options, the first one is preferred, provided the system's 
.estimate of resource consumption is reasonably accurate. Even then, Option 
2 is a good additional safety precaution. 

R A - I $  C h o i c e  o f  T e r m i n a l  

Authorization can be conditioned by the particular terminal or 
workstation from which a user is operating. 

R A - 1 6  A s s i g n i n g  A u t h o r i z a t i o n  

For each user who interacts with a relational database, there must 
be at least one declaration in the catalog that he or she is authorized 
to engage in activities (A) within a specified space-time scope (S). 
Normally very few users would be authorized to pass on to another 
user part or all of the authorization they possess. This process of 
passing on authorization is called granting. 

Occasionally it is necessary nevertheless for someone who does 
not have authorization with space-time scope (S) and activities (A) 
to be able to assign that authorization to another user. This action 
is called assigning authorization. Very few users would be authorized 
to assign authorization. 

Thus, when a user assigns authorization to some other user or 
users, the assignor is granting an authorization whose scope and 
permitted actions are not within the range of what is owned by the 
assignor. It is usually the DBA and some of the DBA's staff that 
need to be able to assign authorization. 

It is the DBA staff that is normally responsible for authorizing users to 
access and, in some cases, modify specified parts of the database. How 
would the DBA or the DBA staff then cope with a company policy that 
requires these people NOT to be able to access data in a relation they 
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created? The answer is that after the DBA or staff create ANY relation, 
the DBMS does not automatically give the creators the right to be able to 
access and modify whatever data is entered into that relation. Instead, the 
DBA can assign user privileges to other users without having those privileges 
himself or herself. 

E x e r c i s e s  

18.1 Is the scope of what a user is allowed to interrogate limited to a DBA- 
specified list of columns in a single relation? If not, what can the scope 
be, and how is it specified? 

18.2 Should the authorization mechanism in a DBMS be designed so that 
the power of the relational language in limiting the space-time scope 
that is authorized for each user is totally and exclusively dependent on 
applying that power to defining views? Explain your position. 

18.3 What are the N-person turn-key and seven-day archiving features? 
Why should both of these features be supported within a relational 
DBMS? 

18.4 List the seven "create and drop" capabilities that should be separately 
authorizable and authorizable in combination. 

18.5 Why should user groups as well as individual users be supported in 
regard to authorization? 

18.6 Cycles are prohibited in the granting of authorization. Describe the 
kind of cycles that are prohibited. Explain how cascaded revocation is 
related to this prohibition. 

18.7 What authorization features of RM/V2 enable a DBA to permit a 
certain amount of ad hoc query to accompany a significant load of 
production-oriented transactions? 
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F u n c t i o n s  

A query expressed as a relational command indicates what types of items 
are to be retrieved by listing a sequence of pairs of names. Each pair consists 
of a relation name followed by a column name; this is called the target list. 
A relational command of the query type also indicates the condition to be 
satisfied by the particular items that are to be extracted; this is called the 
condition. The condition is expressed in four-valued, first-order predicate 
logic. 

Suppose that a database contains information about shipments within a 
relation named SHIP. Suppose further that for each shipment this infor- 
mation includes the supplier serial number s#, the part serial number p#,  
and the date of the shipment. An example of a query is as follows: Obtain 
all of the part serial numbers and dates of shipment for parts shipped after 
January 31, 1988. A simple relational command for this request is as follows: 

get SHIP.p#, SHIP.ship_date where ship__date > 88-1-31. 

The target list in this command is SHIP.p#, SHIP.shipdate. The condition 
is that part of the query that follows the word "where," namely, "shipdate 
> 88-1-31." 

Functions are needed in database management for two purposes. The 
first purpose is to transform target database values within a query or view 
definition. The function is then part of the expression for the target list. 

Consider as an example the database just cited. Suppose that the primary 
key of SHIP is the combination of supplier serial number s# and part serial 
number p#. Suppose that both shipdate and quantity of parts shipped are 
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immediate properties included as columns in the relation SHIP. Someone 
must know the number of shipments of part p2 after January 31, 1988. 
Suppose also that the DBMS supports the COUNT function. Then, an 
appropriate query is as follows: 

get COUNT(SHIP.s#, SHIP.p#) where ship_date > 88-1-31. 

Note that the function COUNT occurs in the target list. 
The second purpose of including functions in database management is 

to determine the condition to be satisfied by the target database values in 
retrieval and in data manipulation. The function is then part of the expression 
for the condition. 

Consider as an example the same database, but a different query: Find 
the serial numbers of only those parts for which the number of shipments 
recorded in the database exceeds 10. An appropriate query is as follows: 

get SHIP.p# where COUNT ( SHIP.s#, SHIP.p# ) > 10. 

Note that the function COUNT occurs in the condition. Note also that this 
query could not be expressed as simply in SQL. 

19.1 m S c a l a r  a n d  A g g r e g a t e  F u n c t i o n s  

The two types of functions discussed in this chapter are scalar functions and 
aggregate functions. Each type of function can be used in both of the ways 
just described. 

A scalar function transforms a scalar into a scalar. An example of such 
a function is a currency-exchange function, which transforms an amount of 
money expressed in one currency into a corresponding amount expressed in 
some other currency. 

An aggregate function transforms a set of scalars or a set of tuples into 
a scalar. An example of such a function is the COUNT function just 
mentioned. Another example is the SUM function, which scans a collection 
of numbers in a column of some relation (such as amounts that are all 
expressed in some common currency) and computes their sum. 

RF-1 B u i l t - i n  A g g r e g a t e  F u n c t i o n s  

The DBMS provides at least the five aggregate functions--COUNT, 
SUM, AVERAGE, MAXIMUM, MINIMUMmas built-in func- 
tions for use either in transforming target database values within a 
query or view-defining command, or in d~Iermining the condition 
to be satisfied by the target database values in retrieval and in data 
manipulation. 
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Note that an aggregate function in this context normally transforms 
many scalar values into a single scalar value. The usual source of the many 
scalar values is a simple or composite column. When an aggregate function 
is applied to a column that happens to contain duplicate values, all occur- 
rences of those values participate in the action. 

For example, if the SUM function is applied to a currency column C in 
relation R, the result obtained is the sum of every value occurrence in C, 
which is normally not the same as the sum of every distinct value in C. 

Consider the example of a relation EMP that identifies employees and 
records their immediate properties. The SALARY and BONUS components 
of each row have as their values the year-to-date salary and commission 
earned by the employee described in that row: 

EMP (EMP# ENAME DEPT# SALARY BONUS) 

E 10 Rook D 12 12,000 15,800 
E91 Knight D12 10,000 6,700 
E 23 K n i g h t D05 13,000 13,000 
E57 Pawn D02 7,000 3,100 

The following queries illustrate the built-in functions: 

How many employees 
are there? 

What is the total 
bonus earned? 

What is the average 
bonus earned? 

What is the maximum 
salary earned? 

What is the minimum 
bonus earned? 

get COUNT ( EMP ) 

get SUM ( EMP.BONUS ) 

get A V E R A G E  ( EMP.BONUS ) 

get MAXIMUM ( EMP.SALARY ) 

get MINIMUM ( EMP.BONUS ) 

There is a simple way to obtain the sum or the count of the distinct 
values in a simple or composite column C, if that is what is needed: take 
the projection (uncorrupted, of course) of the relation R onto column C, 
and then apply the SUM or COUNT function to the result. This method 
takes advantage of the fact that true projection eliminates duplicate rows 
from the result. 

The following query is based on the same EMP relation: What is the 
number of distinct salaries? get COUNT ( EMP [ SALARY ] ) 

A good measure of the degree of duplication of values in column C is 
obtained by taking the count of rows in the relation containing C and dividing 
that count by the count of distinct values in C. In a relation that provides 
the immediate properties of employees, it is likely that the degree of dupli- 
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cation in the gender column (which has only two values, male and female) 
would be very high, while the degree of duplication in the last-name column 
would be very low. 

The abbreviation DOD stands for DEGREE OF DUPLICATION. 
Suppose that the values in a simple or composite column C are the intended 
arguments of a statistical function f. Then, for each row containing the DOD 
component n, the contribution of the C-component of that row is n times 
the value of that C-component. 

R1--2 T h e  D O D  V e r s i o n s  o f  B u i l t - i n  
Stat i s t i ca l  F u n c t i o n s  

For each statistical function built into the DBMS (including SUM 
and AVERAGE as required by Feature RF-1), there is also a DOD 
version built into the DBMS. (See Feature RQ-11 in Chapter 10 for 
details concerning the DOD qualifier.) 

RF-3 B u i l t - i n  Scalar F u n c t i o n s  

The DBMS supports at least the following arithmetic scalar functions 
as built-in functions and expressions in RL: addition, subtraction, 
multiplication, division, and exponentiation. The DBMS also sup- 
ports at least the following string scalar functions as built-in functions 
and expressions in RE: concatenation, substring directly specified, 
and substring by pattern-directed search. 

These functions are for use either in transforming target database values 
within a query or view-defining command, or in determining the condition 
to be satisfied by the target database values in retrieval and in data 
manipulation. 

Note that a scalar function in this context has a fixed number of argu- 
ments (usually one or two, seldom more), that each argument is a scalar, 
and that the function transforms each of its arguments into a scalar result. 

19.2 • U s e r - d e f i n e d  F u n c t i o n s  

Clearly, the number of functions supplied by the DBMS vendor as part of 
the DBMS is small, and therefore is not likely to satisfy all DBMS users. 
There must be a means by which users can add functions suited to their 
own businesses or institutional activities. Feature RF-4 provides the means. 
Subsequent features provide additional support or constraints. 
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RF-4  User-de f ined  Functions:  Their Use 

Users can define their own functions. The DBMS can then record 
such functions (scalar, aggregate, or other types) in the catalog 
together with their names and types. The system then supports use 
of such functions in access targeting, in access conditioning, or in 
both. Use is more generally determined by the orthogonality feature, 
Feature RL-7 (see Chapter 22). If the function that is required 
happens to be statistical in nature, users can define a non-DOD 
version, a DOD version, or both. 

Note that the non-DOD version ignores the degree-of-duplication col- 
umn, if one occurs in the operand relation. On the other hand, the DOD 
version causes each row that has n as its DOD component to provide a 
contribution to f that is equal to that from n occurrences of the value in the 
contributing column. 

RF..5 Inverse  Funct ion  Required,  If It Exists 

Together with each user-defined function recorded in the catalog, a 
symbol is entered that indicates whether this function has an inverse. 
If so, the name of this inverse, together with the code for the inverse, 
is also recorded in the catalog. 

Rarely is it the case that an aggregate function has an inverse. 
Some functions are expected to be used in defining some columns of 

views. If such a function happens to have an inverse, there is a chance that 
the pertinent column of the view will be updatable, since in such a case the 
DBMS can compute from any new value in that column of the view the 
corresponding value (simple or composite) that it should enter into appro- 
priate column(s) of the base R-tables. 

RF-6 User-de f ined  Funct ions:  
C o m p i l e d  Form Required  

The DBMS requires that each user-defined function and its inverse 
(if any) be written in one of the host languages, and compiled before 
the function is stored in the catalog. 
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Note that, when a user programs a user-defined function and incorpo- 
rates it into a DBMS, he or she need not know anything about the internal 
coding or internal structure of the DBMS. The term "host language" is used 
to identify any one of the so-called general-purpose programming languages 
such as FORTRAN, COBOL, and PL/1. The relational model supports at least 
these three as languages with which the principal relational language can 
communicate. 

R F - 7  U s e r - d e f i n e d  Funct ions  Can Access  
the  Database  

The DBMS is capable of handling user-defined functions that make 
use of data extracted from the database at the time of execution of 
these functions. 

An example of the need for this feature is found in transactions that 
involve currency exchange between various currencies. It is then quite likely 
that the databases will contain a relation (say EX) that reflects the exchange 
rates currently in effect. Four of the columns of EX would be as follows: 
(1) identification of the FROM currency (primary key); (2) identification of 
the TO currency (primary key); (3) an amount of the FROM currency 
expressed in that currency; and (4) the corresponding amount expressed in 
the TO currency. An exchange function would have to access this relation 
EX with three arguments: 

1. the type of currency from which the exchange is to be made; 

2. the type of currency to which the exchange is to be made; 

3. the number of units of the FROM currency to be exchanged. 

19.3 • S a f e t y  a n d  I n t e r f a c e  F e a t u r e s  

RF-8  N o n - g e n e r a t i o n  o f  Marked Values 
b y  F u n c t i o n s  

The application of a scalar function to unmarked arguments and of 
an aggregate function to a set of unmarked database values (even 
if the set is empty) never yields a marked result. 

In IBM's DB2, the application of the AVERAGE function to an empty 
set yields the NULL of SQL~a mistake because this is a case of the result 
being undefined, and not a case of a value missing from the database. The 
mistake probably resulted from a confusion about two kinds of facts: 
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1. The fact that a database value might be missing (represented by the 
NULL of SOL). 

2. The fact that, for some arguments, a function may not have a defined 
result. '~ 

In this example, the average of zero elements is normally taken to be 
undefined. Whenever an empty set is encountered as an argument to the 
A V E R A G E  function, the relational model supports the options of (1) 
signaling this undefined state, and (2) executing user-defined action if needed 
(see Feature RQ-6 in Chapter 10). 

Note that the outer operators (see Chapter 5) almost always generate 
marked values, even if the arguments contain no marked values. The ad- 
dition of a new column to a base R-table also generates marks within that 
column. Thus, it is not intended that these operators be perceived as func- 
tions when interpreting Feature RF-8. 

The power and usefulness of a relational database is increased if the 
following three steps are taken: 

1. Columns are permitted to contain names of invokable functions, as well 
as the usual kinds of value-oriented data. 

2. Columns are permitted to contain names of arguments, as well as the 
usual kinds of value-oriented data. 

3. Both the relational language and the host language have the capability 
of invoking a function for which the name and the values of its arguments 
can all be obtained, either directly from the database, by use of argument 
names in the database, or partly from the database and partly from the 
host-language program and its data. 

The following two features make it less likely that the user will feel that 
he or s he,-is becoming more and more isolated from the outside world as 
interrogation of the database proceeds. 

RF-9 D o m a i n s  a n d  C o l u m n s  C o n t a i n i n g  N a m e s  

o f  F u n c t i o n s  

One of the domains (extended data types) that is built into the 
DBMS is that of function names. Such names can be stored in a 
column (possibly in several columns) of a relation by declaring that 
the column(s) draw their values from the domain of function names. 
Both R E  and the host programming language support the assemblage 
of the arguments together with the function name, followed by the 
invocation of that function to transform the assembled arguments. 
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R F - I O  D o m a i n s  a n d  C o l u m n s  C o n t a i n i n g  N a m e s  

o f  A r g u m e n t s  

One of the domains (extended data types) that is built into the 
DBMS is that of argument names. Such names can be stored in a 
column (possibly in several columns) of a relation by declaring that 
the column(s) draw their values from the domain of argument names. 
These arguments have values that can be retrieved either from the 
database or from storage associated with a program expressed in 
the HL. 

Features RF-9 and RF-10 are very likely to be useful in making exten- 
sions to the relational model that involve user-defined functions. Therefore, 
more is said about them in Chapter 28. 

E x e r c i s e s  

19.1 

19.2 

19.3 

19.4 

19.5 

In the relational model, each value in a column of a relation is required 
to be atomic with respect to the DBMS. Under what circumstances, 
if any, are such values not atomic? Give examples that illustrate the 
use of database values in a non-atomic role. 

What are scalar and aggregate functions? List the five aggregate 
functions that should be built into the DBMS. 

For each user-defined function, which of the following is required to 
be stored in the catalog? 

• The source code. 

• The compiled code. 

• Both the source and compiled code. 

Identify those items that are also stored in the catalog for each user- 
defined function, and that facilitate the updating of certain kinds of 
views. Explain the items you selected and why you chose them. 

In certain kinds of manufacturing, the production of most products 
involves the use of several machines, each of which has an associated 
minimum interval of use and a distinct cost-of-use function. Describe 
a feature of RM/V2 that is essential if the computation of total cost 
is to be incorporated in the retrieval of data from the database. 
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P r o t e c t i o n  of  I n v e s t m e n t  

When a company or institution acquires a database management system, 
the immediate investment consists of the cost of the hardware and software. 
However, there is a longer-term investment, that may be even larger than 
the initial one" the investment in the development of application programs 
and in the training of users, both programmers and end users. The total 
investment is quite heavy, and the purchaser of a DBMS needs some 
assurance that the risk is slight. 

This chapter deals with features of the relational model designed to 
protect the user's total investment. In particular, these features enable 
application programs to continue to run correctly when a variety of changes 
are made in the database, including changes in the physical representation 
of data, the logical representation, the integrity constraints, and the distri- 
bution of data between a given collection of sites. 

20 .1  • P h y s i c a l  P r o t e c t i o n  

R P - I  P h y s i c a l  D a t a  I n d e p e n d e n c e  

The DBMS permits a suitably authorized user to make changes in 
storage representation, in access method, or in bothmfor example, 
for performance reasons. Application programs and terminal activ- 
ities remain logically unimpaired whenever any such changes are 
made. (This feature is Rule 8 in the 1985 set.) 

345 
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To handle physical data independence, the DBMS must support a clear, 
sharp boundary between the logical and semantic aspects, on the one hand, 
and the physical and performance aspects of the base R-tables, on the other; 
application programs and terminal users must deal with the logical and 
semantic aspects only. Relational DBMS can and should support this feature 
totally. Non-relational DBMS rarely provide complete support for this fea- 
ture (in fact, I know of none that do). 

20.2 • L o g i c a l  P r o t e c t i o n  

R P - 2  L o g i c a l  D a t a  I n d e p e n d e n c e  

Application programs and terminal activities remain logically un- 
impaired when information-preserving changes are made to the base 
R-tables, provided these changes are of the kind that permit un- 
impairment, either according to Algorithm VU-1 or according to a 
strictly stronger algorithm. (This feature is Rule 9 in the 1985 set.) 

0 

Three examples of information-preserving changes are listed below. 

Partitioning an R-table into two or more tables by rows using row 
content. 

2. Splitting an R-table into two tables by columns using column names, 
provided the original primary key is preserved in each result. 

3. Combining two R-tables into one by means of a non-loss join. (Note 
that many authors now call non-loss joins "lossless.") 

To provide this service whenever possible, the DBMS must be capable 
of handling insertions, updates, and deletions on all views that are updatable 
in accordance with Algorithm VU-1 (see Feature RV-5 in Chapter 16, as 
well as Chapter 17). Features RP-1 and RP-2 permit logical database design 
to be tackled with a high degree of independence from physical database 
design. Feature RP-2 also permits the logical design to be dynamically 
changed if necessary for any reason, without damaging the user's investment 
in application programs. 

The physical and logical data-independence features permit database 
designers for relational DBMS to make mistakes in their designs without 
the heavy penalties levied by non-relational DBMS. In turn, this means that 
it is much easier to get started with a relational DBMS, because not nearly 
as much performance-oriented planning is needed before putting the data- 
base into operation. 
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20.3 m Integr i ty  P r o t e c t i o n  

R P - J  Integr i ty  I n d e p e n d e n c e  

Integrity constraints specific to a particular relational database must 
be definable in the relational data sublanguage RL, and storable in 
the catalog. Application programs and terminal activities remain 
logically unimpaired when changes are made in these integrity con- 
straints, provided such changes theoretically permit unimpairment 
(where "theoretically" means at a level of abstraction for which all 
DBMS implementation details are set aside). (This feature is Rule 
10 in the i985 set.) 

Safe control of database integrity cannot be guaranteed if these constraints 
are included in the application programs only. 

In addition to the two general integrity constraints~entity integrity and 
referential integrity~which apply to each and every relational database, 
there is a clear need to be able to specify additional integrity constraints of 
the domain type, column type, and the user-defined type. Such constraints 
usually reflect business policies, and/or government regulations, and/or the 
principal types of well-understood semantic dependencies (functional, multi- 
valued, join, and inclusion). 

If, as sometimes happens, either business policies or government regu- 
lations change, it is probably necessary to change the user-defined integrity 
constraints. Normally, this can be accomplished in a fully relational DBMS 
by changing one or more integrity statements stored in the catalog. The 
DBMS is designed not to require any changes in the application programs 
or in the terminal activities, unless such changes are unavoidable. Non- 
relational DBMS rarely support this feature as part of the DBMS (where it 
belongs). Instead, they depend on a dictionary package or application gen- 
erator (which may or may not be present, and can readily be bypassed). 

20.4 • R e - d i s t r i b u t i o n  P r o t e c t i o n  

R P - 4  D i s t r i b u t i o n  I n d e p e n d e n c e  

A relational DBMS has a data sublanguage RL, which enables 
application programs and terminal activities to remain logically un- 
impaired under two circumstances" 
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• When data distribution is first introduced (this may occur be- 
cause the DBMS originally installed manages non-distributed 
data only); 

• When data is redistributed (if the DBMS manages distributed 
da ta)~the  redistribution may involve an entirely different de- 
composition of the totality of data. 

(This feature is Rule 11 in the 1985 set.) 

The DBMS property defined in Feature RP-4 is called distribution 
independence, This definition is carefully worded so that both a distributed 
and a non-distributed DBMS can fully support Feature RP-4. Whether a 
DBMS product provides such support is primarily resolved by examining 
the data sublanguage(s) that the product supports. Is at least one of these 
languages at a sufficiently high level to support both of the situations just 
stated, and has this been demonstrated (e.g., by a prototype)? I believe that 
the relational level is essential. Certainly, no non-relational approach has 
beenpublished that has proved its success in supporting Feature RP-4. 

Some examples of DBMS products in the marketplace that fully support 
Feature RP-4 are SQL/DS and DB2 of IBM, INGRES of Relational Tech- 
nology, and NonStop SQL of Tandem (in their current releases). Other 
vendors are rapidly entering the distributed database management market. 
Except for distribution independence and decomposition and recomposition 
(see Feature RP-5), the features that appear necessary for a DBMS to excel 
in distributed-database management are discussed separately (see Chapters 
24 and 25). 

Support of Feature RP-4 by the IBM systems has been demonstrated 
as follows: SQL programs written to operate on non-distributed data, using 
System R, run correctly on distributed versions of that data using System 
R*, the IBM San Jose Research prototype of a distributed database man- 
agement system [Williams et al. 1981]. The distributed INGRES project has 
shown a similar capability for the QUEL language of INGRES [Stonebraker 
1986]. 

Distribution independence is a more serious requirement than mere 
location independence. The former concept permits not only all the data at 
any one site to be moved to another, but also a completely different 
decomposition of the totality of data at all sites into fragments to be deployed 
at the various sites. 

It is important to distinguish among (1) distributed processing, (2) 
networking, and (3) distributed data. In the first case, application programs 
are transmitted to the data. In the second case, messages can be sent from 
a processing unit at any site to a processing unit at another. In the third 
case, data is derived from possibly multiple sites (the derivation being 
executed at whatever sites the optimizer selects for efficiency) and directed 
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to the requesting program or terminal. Many non-relational DBMS support 
distributed processing, but not the management of distributed databases. 
Support for distributed database management~in which all the data, whether 
stored locally or remotely, appears to be local~has been demonstrated by 
relational DBMS prototypes. Whether it can be supported by any other kind 
of DBMS remains to be seen. 

In the case of distributed relational DBMS, a single transaction may 
straddle several remote sites. Such straddling is managed entirely under the 
covers--the system may have to execute recovery at multiple sites. Each 
program or terminal activity treats the totality of data as if it were all local 
to the site where the application program or terminal activity is being 
executed. 

A fully relational DBMS that does not support distributed databases has 
the capability of being extended to provide that support, while leaving 
application programs and terminal activities logically unimpaired, both at 
the time of initial distribution and whenever later re-distribution is made. 
There are four important reasons why relational DBMS enjoy this advantage. 

1. Decomposition flexibility in deciding how to deploy the data. 

2. Recomposition power of the relational operators when combining the 
results of sub-transactions executed at different sites. 

3. Economy of transmission resulting from the fact that the DBMS has 
multiple-record-at-a-time capability. Thus, there need not be a request 
message sent for each record to be retrieved from any remote site, or 
a reply message for each result record to be transmitted back. 

4. Analyzability of intent (due to the very high level of relational languages) 
for vastly improved automatic optimization of execution~and, when 
necessary, automatic re-optimization. 

R P - 5  D i s t r i b u t e d  D a t a b a s e  M a n a g e m e n t :  

D e c o m p o s i t i o n  a n d  R e c o m p o s i t i o n  

If the DBMS supports distributed database management, it uses the 
full power of RL (including four-valued, first-order predicate logic) 
to decompose each RE statement into simpler RE statements, each 
of which is capable of being executed at a single site. Such a DBMS 
also uses this full power to recombine the results from the subre- 
quests to yield a coherent and correct response to the whole request. 

Note that Feature RP-5 is not applicable if the DBMS is not claimed to 
support distributed database management. 
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20 .5  m S u m m a r y  o f  t h e  P r a c t i c a l  R e a s o n s  f o r  F e a t u r e s  
RP-  1 - R P - 5  

Features RP-1-RP-4 represent four different types of independence aimed at 
protecting users' investment in application programs, terminal activities, and 
training. Features RP-1 and RP-2~physical and logical data independence~ 
have been widely discussed for many years. Nevertheless, today there still 
exist DBMS products that fail to support these features. Features RP-2, RP- 
3, and RP-4~logical data independence, integrity independence, and dis- 
tribution independence~have received inadequate attention to date, but 
are likely to become as important as Feature RP-1. There is no claim that 
these four types of independence are easily implemented in a DBMS. Feature 
RP-5 may help the reader understand (1) the complexity of the problem, 
and (2) the fact that the relational model has the capability of solving it. 

E x e r c i s e s  

20.1 

20.2 

20.3 

20.4 

20.5 

What are the four main types of investment protection that are ob- 
tainable from a fully relational DBMS? 

If at its inception a database is properly designed logically and phys- 
ically, why should it ever be necessary to change that design (1) 
logically and/or (2) physically? 

Why should it ever be necessary to change integrity constraints? 

If integrity constraints are changed, why be concerned about having 
to change a few application programs, especially if the programs are 
written in a "fourth generation language"? 

Someone asserts that determining how data should be distributed to 
various sites is a design problem that occurs just once (at installation 
time), and concludes that distribution independence is a feature of no 
value. Is there any merit in this argument? 
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Principles of DBMS 

Design 

The relational model is based on the fundamental laws discussed in Chapter 
29. It is intended that implementations of the model are to be based on the 
design principles described in this chapter. The main motivation for for- 
mulating these principles in explicit terms was the numerous blunders that 
have been made in various DBMS implementations. 

In the next chapter, design principles for relational languages are dis- 
cussed. I recommend to DBMS vendors that they use the principles in both 
chapters to get the designers of their DBMS products back on track. 

R D - 1  N o n - v i o l a t i o n  of  any F u n d a m e n t a l  Law 
of  M a t h e m a t i c s  

The DBMS and its relational language(s) do not violate any of the 
fundamental laws of mathematics. 

At first glance, this appears to be a completely unnecessary feature. In 
examining a database management system in 1969, however, I discovered 
that, under certain conditions, it failed to support the commutativity of 
logical AND. More specifically, suppose that X and Y are correctly for- 
mulated truth-valued expressions, and that Q1, Q2 are two identical queries 
except that Q1 has the condition X AND Y, while Q2 has the condition Y 
AND X. Under the special conditions, Q1 and Q2 failed to yield the same 
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result on identical databases. This fact was not disclosed in the manuals 
supplied to users. Fortunately, this DBMS product failed in the marketplace. 

The reader may imagine that such a blunder could have happened only 
in the 1960s. Unfortunately, a recent release of a well-known relational 
DBMS product, marketed by a vendor with an excellent reputation, fails 
under certain conditions to yield x from the expression x + y - y when x 
happens to be a date and y happens to be a date interval, even though x 
and y are correctly formulated. The error in the result can be as much as 
three days. 

In my opinion, both examples illustrate the appalling lack of real concern 
for the quality of their products by the workers and managers in software, 
and an astonishing lack of concern for the very large number of institutions 
that are likely to be adversely affected by such sloppy work. The examples 
also illustrate an apparent lack of understanding of basic user requirements 
and basic mathematics. 

R D - 2  U n d e r - t h e - c o v e r s  R e p r e s e n t a t i o n  

a n d  A c c e s s  

The DBMS may employ any storage representations and any access 
methods for data, provided these are implemented "under the cov- 
e r s "~ tha t  is, they must not be exposed to users (with the possible 
exception of giving the DBA a few types of commands to create 
and drop performance-oriented structures and access methods). Once 
these structures are created, the responsibility for maintaining them 
during insertion, update, and deletion activities belongs to the DBMS, 
not to users and not to the DBA. 

R D - 3  S h a r p  B o u n d a r y  

The DBMS makes a sharp separation between two aspects: (1) 
performance-oriented features (such as indexes), and (2) semantic 
and logical features (such as the uniqueness of values in a column 
or combination of columns, the exclusion of missing values, the 
primary-key property, and the foreign-key property). 

In general, most users should be protected from having to deal with the 
first item altogether. In particular, if the DBA drops an index (for example), 
there should be no loss of semantic features, such as those cited in the 
second item. Some existing DBMS products fail in this respect because they 
require an index to exist on any column whose values must all be distinct 
from one another. Distinctness of values is a semantic feature, while an 
index is a performance-oriented feature. 
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Should application programmers or end users be burdened by concern 
for the logical aspects of concurrency control? This question deserves special 
consideration. 

Two types of concurrency must be supported by a relational DBMS" 

1. intra-cornmand concurrency consists of treating various portions of a 
single relational command as independent tasks, and executing these 
tasks concurrently; 

2. inter-command concurrency consists of executing two or more relational 
commands concurrently. 

RD-4 Concurrency Independence 

Application programs and activities by end users at terminals must 
be logically independent of whether the DBMS supports intra- 
command concurrency, inter-command concurrency, neither, or both. 
Application programs and activities must also be independent of the 
controls (Usually locking) that protect any one action A from inter- 
fering with or damaging any other action that happens to be con- 
current with A. 

A relational DBMS never requires the user or application program to 
make an explicit request for some kind • of lock. Such a n action would be 
oriented too heavily to a particular implementation. An interrogative o r  
manipulative request, however, may represent an implicit request for some 
kind of lock. 

Some requests cause the DBMS to impose long-term locking. An ex- 
ample is the updating of several primary-key values, each of which triggers 
corresponding updating of foreign-key values scattered in various parts of 
the database. 

Occasionally, a terminal user makes a request that requires the DBMS 
to lock a large quantity of data. Then the user may leave the terminal, 
absent-mindedly signing off before completing whatever action would release 
the locks. The DBMS must protect other users and programs from unau- 
thorized long-term locking. 

R D - 5  Protection Against Unauthorized 
Long-term Locking 

The DBA can specify a time block T permitted on every locking 
action caused by any request from a terminal user or application 
program. For each user and program, the DBA can also specify a 
locking quota expressed in multiples of T. Whenever one block is 
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consumed, the DBMS checks the authorization data to see whether 
the quota, for which the user or application program is authorized, 
has been consumed. If the quota has been consumed, the DBMS 
aborts the request. If not, the DBMS reduces the quota by one, and 
proceeds with the transaction. 

Whenever a terminal user is involved, each time a time block is con- 
sumed, the DBMS should check that the user is still at his or her terminal. 
This can easily be done by requesting the user to press a certain key if he 
or she wants the action to continue and wants the locks held for one more 
time block. 

R D - 6  O r t h o g o n a l i t y  i n  D B M S  D e s i g n  

Any coupling of one feature with another in the design of a DBMS 
must be justified by some clearly stated, unemotional, logically 
defensible reason. 

Feature RD-6 should not be confused with Feature RL-7 (see Chapter 
22). Two examples of unjustified coupling of features in a very prominent 
relational DBMS may clarify the intent behind Feature RD-6. Both examples 
involve indexes, and it should be understood that, from the standpoint of 
the relational model, an index is purely a performance-oriented concept, 
one that should be kept hidden from all users except possibly the few who 
are authorized to create and drop indexes. 

In  the first example, the relational DBMS requires that any column in 
which the values are constrained to be distinct from one another (a frequently 
encountered semantic constraint) must be indexed. Unfortunately, this means 
that such an index cannot be dropped purely for performance reasons. 

In the second example, the relational DBMS maintains statistics for use 
by the optimizer to deliver improved performance. This is a good perform- 
ance-oriented feature that should be independent of whatever columns hap- 
pen to be indexed at any time. The statistics consist chiefly of the number 
of distinct values in each column. The relational DBMS, however, maintains 
these statistics only for those columns that are indexednthe  simplest task 
for the implementors. As a result, it is easy to construct examples of SQL 
commands for which the relational DBMS will give unnecessarily poor 
performance. Perhaps the designers failed to realize that statistics normally 
do not change rapidly, and therefore need not be (and should not be) 
updated every time any part of the database content is changed. 

In each of these examples, there is an unjustified coupling of two 
independent featuresuin the first case, a semantic feature coupled with a 
performance-oriented feature; in the second case, one performance-oriented 
feature with another quite distinct and independent one. 
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R D - 7  Domain-based  Index 

For those DBMS that are based primarily on software, the DBMS 
supports the creation and dropping of domain-based indexes by 
suitably authorized users. This may also provide advantages in per- 
formance for hardware-based DBMS. 

A domain-based index is a single index on the combination of columns 
defined on the specified domain (normally all of those columns are involved, 
but a suitably authorized user may select only those columns that will prove 
advantageous). Such an index will usually be a multi-table index. It facilitates 
the efficient execution of referential integrity (if the domain is a primary 
domain) and other occurrences of inclusion dependence. So far, the only 
relational DBMS I have encountered with a domain-based index is one 
developed at the University of Nice. 

R D - 8  Database Statistics 

In the catalog, the DBMS stores statistics of the data (see Feature 
RC-11 in Chapter 15). This information is used by the optimizer to 
select the most efficient method of handling each retrieval and 
manipulative command. The DBMS updates these statistics only 
occasionally--certainly not upon every insert, delete, or update. 
The updating of statistics is executed by the DBMS with a frequency 
and at times requested by the DBA or any suitably authorized user. 

The DBMS fails to provide full support for this feature if it either 
(1) supports no database statistics at all or (2) supports statistics for only 
those columns that happen to be indexed or happen to have some other 
performance-oriented property. 

R D - 9  Interrogation. of Statistics 

The DBMS statistics cited in RD-3 may be interrogated by use of 
RE by the DBA or by any suitably authorized user. 

R D - I O  Changing Storage Representat ion  and 
Access Options  

Commands must be available to the DBA for dynamically changing 
the storage representation and access method in use for any base 



356 • Principles of DBMS Design 

relation without causing logical impairment of any transaction in source 
code form (whether already compiled or not), or any noticeable 
delays in the execution of the transactions in progress or of trans- 
actions waiting to be processed. 

If transactions are normally compiled before their first execution, and 
if the change in storage representation or access method necessitates re- 
compilation, then this feature requires that the re-compilation must be 
automatically called int0action by the DBMS without manual intervention 
by the DBA or by any user. 

R D - 1 1  A u t o m a t i c  P r o t e c t i o n  in  Case  
o f  M a l f u n c t i o n  

In case of a malfunction that causes one or more transactions to fail 
to complete, the DBMS must protect the database from the effects 
of the failed transactions. 

R D - 1 2  A u t o m a t i c  R e c o v e r y  in Case 
o f  M a l f u n c t i o n  

In case of a malfunction that causes one or more transactions to fail 
to complete, the DBMS must be able--without user intervention-- 
to recover immediately after the cause of the malfunction has been 
repaired. Recovery can be deemed effective when the aborted and 
delayed transactions have been successfully re-executed using the 
state of the database effective at re-execution time. 

The DBMS maintains a recovery log for this purpose. This feature is included 
because it is considered an essential requirement of any DBMS, whether 
relational or not. 

R D - 1 3  A t o m i c  E x e c u t i o n  of  
R e l a t i o n a l  C o m m a n d s  

Each relational command is executed in its entirety without breaks 
or stoppages because of restrictions on the size of operands or the 
size of results imposed by the DBMS implementation, or any other 
reason except malfunction. 
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A few DBMS products discontinue the processing of an RL command 
after processing a fixed number of rows (50,000 in one case) from any one 
R-table; the number is a DBMS implementation constraint. This could be 
an unpleasant surprise for the many users who must process much larger 
tables, involving in some cases millions of rows. 

Sometimes programmers using a relational DBMS must apply an update 
across a relation that has a million rows. It is good practice to avoid tackling 
such an update on a global, single-commit basis, because of the possibility 
of a massive rollback if anything goes wrong in the later stages. The other 
extreme consists of processing the updates on a row-by-row basis (single- 
record-at-a-time); this is likely to detract from performance. An efficient 
solution involves tackling the update in batches of several thousand rows 
each at a time. E v e r y t i m e  such a batch is successfully completed, the 
corresponding updates are committed to the database. Support for this 
progressive, batch-by-batch activity is needed in relational languages, and 
can be expected in RM/V3. 

R D - 1 4  A u t o m a t i c  A r c h i v i n g  

The DBMS supports the automatic archiving of data when it reaches 
an age specified by the DBA. The frequency of archiving is also 
specified by the DBA (e.g., once every quarter of a year). It must 
be possible to re-activate any relational snapshot that has been 
archived. 

R D - 1 5  A v o i d i n g  C a r t e s i a n  P r o d u c t  

During the execution of any single RL command, the DBMS avoids 
generating the Cartesian product of two R-tables as an intermediate 
result, and never generates the Cartesian product as the final result 
of an RE command, except possibly in the case of a join being 
requested without any join condition. In this case, the DBMS issues 
a warning message. 

The Cartesian product is wasteful in terms of memory space, channel 
time, and processing-unit cycles. Thus, if it is requested as a final result, 
the user should be aware that it is expensive and contains no more infor- 
mation than its factors. 
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R D - 1 6  R e s p o n s i b i l i t y  f o r  E n c r y p t i o n  

a n d  D e c r y p t i o n  

It is the sole responsibility of the DBMS to invoke programs for 
encrypting data immediately before storing it in the database, and 
for decrypting data upon retrieval. 

The DBA must enforce this feature until an acceptable way is found for 
the DBMS to enforce it. Clearly, if programmers are allowed to include 
encrypting and decrypting functions in their own programs, the DBMS and 
the DBA have abandoned the maintenance of integrity in at least the 
encrypted data, and possibly in closely related data also. 

The design principles introduced in this chapter are aimed at cleanliness 
of design and ease of use by the whole community of users. They are n o t  

aimed at reducing either the creative originality of individual implementors 
or the degree of competition among their respective companies. 

• RD-1 

• RD-2 

• RD-3 

• RD-4 

• RD-5 

• RD-6 

• RD-7 

• RD-8 

• RD-9 

• RD-10 

• RD-11 

• RD-12 

• RD-13 

• RD-14 

• RD-15 

• RD-16 

Non-violation of any fundamental law of mathematics 

Under-the-covers representation and access 

Sharp boundary between performance-oriented features 

Concurrency independence 

Protection against unauthorized locking 

Orthogonality in DBMS design 

Domain-based index 

Database statistics 

Interrogation of statistics 

Changing storage representation and access options 

Automatic protection in case of malfunction 

Automatic recovery in case of malfunction 

Atomic execution of relational commands 

Automatic archiving 

Avoiding cartesian product 

DBMS responsible for all encryption and decryption of data 

E x e r c i s e s  

21.1 A designer who helped design a DBMS product says, "Who cares 
about any violations of mathematics? Mathematics is a subject strictly 
for mathematicians, whereas our DBMS is concerned with the real 
world." Decide whether this is a defensible position or an untenable 
position. Explain. 
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21.2 

21.3 

21.4 

21.5 

21.6 

21.7 

21.8 

21.9 

Is it required that the relations of the relational model be represented 
as tables in storage? If not, what are the only constraints on this 
representation? 

A DBMS designer says, "In the old days, we never bothered about 
separating storage representation and access methods, on the one 
hand, from the logical representation, on the other hand. I fail to see 
why such sharp separation is necessary." Try to provide this designer 
with some insight regarding the need for this separation. 

Supply the names and definitions of the two types of concurrency in 
database management. Which of these would be more advantageous 
if your workload involved: 
1. many complex requests? 
2. many simple requests? 

What is a domain-based index, and what is it good for? 

Can skilled application programmers develop code that runs more 
efficiently on a pre-relational single-record-at-a-time DBMS than on 
a relational DBMS that has a well-designed optimizer? Give reasons 
for your position. (See Chapter 26.) 

Will the code described in Exercise 21.6 continue to run more effi- 
ciently (if it does) in spite of changes in the business and hence in the 
traffic on the database? How readily can this code be adapted to the 
new traffic? Explain. 

A fully relational DBMS provides the following: 

m protection from hardware malfunction; 

m continuation of those processes that have not been damaged by 
the hardware malfunction; 

• recovery without loss of information or commands after the hard- 
ware malfunction has been repaired. 

State which of these services are supported by RM/V2. 

Why should Cartesian product be avoided in: 
1. designing a relational DBMS product? 
2. in using a relational DBMS that happens to support this operator? 
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Principles of Design for 
Relational Languages 

The question has often been asked, "Why not extend a relational language 
to become a general-purpose programming language?" More recently, often 
the following is asked: "What are you going to do about image data and 
the large numeric arrays that are common in science and engineering?" 

Early in my work on database management, I decided not to try to 
modify any of the well-established programming languages, such as FOR- 
TRAN, COBOL, and PL/1, to inclUde the kind of statements needed in 
database management. Experience in dealing with the standards committees 
for these languages had convinced me that the members were not very 
interested in technical issues of any depth. Thus, I concentrated on database- 
oriented sublanguages, languages intended for every aspec t of database 
management only. The term "sublanguage" clearly indicates that the lan- 
guage is specialized, and is not intended to support the computation of all 
computable functions. 

This direction has proved to be sound. It was subsequently pursued with 
great success by the developers of text editing on micro-computers. After 
all, how many secretaries would now be using text editors if they had to 
learn COBOL or PL/1 first? 

Programming languages such as PL/1 and ADA have reached a total 
complexity that is staggering. Therefore, it seems reasonable to predict that 
there will be continued growth in specialized sublanguages, each capable of 
being used interactively alone, and of communicating with programming 
languages of a more general nature in order to participate in application 
programs. 
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The processing of image data and large numeric arrays, especially mat- 
rices, involves many specialized operators and functions. Two examples of 
specialized operators are the inversion and transposition of matrices, while 
the computation of their determinants involves a specialized function. 

As a user option, it should be possible to embed the corresponding 
retrieval expressions and functions in the target part or the condition part 
of a request in a relational language. It should not be necessary, however, 
for a commercial or industrial user to learn about these separable concepts 
unless he or she needs them on the job. Thus, a relational language should 
be designed to accommodate a wide variety of specialized operators and 
functions, not all of which can be anticipated at the time the language is 
designed. 

In Features RL-1-RL-17, following, the abbreviation RL continues to 
denote whatever relational language is the principal one supported by a 
relational DBMS. 

R L - I  Data Sublanguage: Variety of Users 

RL is a data sublanguage intended to support users of all types, 
including both programmers and non-programmers, in all logical 
aspects of managing databases. RE contains no commands for 
branching, looping, manipulating pointers, or manipulating indexes. 

The reasoning behind this feature is that the introduction of commands 
of this type would convert RL into an overly complicated language usable 
by programmers, but by hardly anyone else. 

R L - 2  Compiling and Re-compiling 

RL commands must be compilable separately from the host-language 
context in which they may appear. The DBMS must support the 
compilation of RE commands, even if it also supports interpreting 
them. Moreover, the DBMS must support automatic re-compilation 
of RL commands whenever any change in access paths, access meth- 
ods, or indexing invalidates the code developed by a previous 
compilation. 1 

R L - 3  Intermixability of Relational- and 
Host-language Statements 

In application programs, statements in RL can be freely intermixed 
with statements in the host language. 

~This feature of RM/V2 is based on work done by Raymond Lorie while he was a member of 
the System R team in IBM Research, San Jose. 
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R L - 4  P r i n c i p a l  R e l a t i o n a l  L a n g u a g e  Is 

D y n a m i c a l l y  E x e c u t a b l e  

Any request expressed as an RL command can be pieced together 
as a character string using RL and/or HE. This character string can 
then be compiled and executed either immediately or later (user's 
choice) as if it were a command that has  been entered from a 
terminal. 

R L - 5  RL B o t h  a S o u r c e  a n d  
a T a r g e t  L a n g u a g e  

RL is designed for two modes of use, as a source language and as a 
target language. In the first mode, statements must be easy for 
human beings to conceive correctly. In the second mode, statements 
must be easy for a computer-based system to generate. 

Frequently, a language is designed as a source language only. However, 
almost every source language in the computing field becomes a target 
language for software packages on top. This is particularly true for relational 
languages because many services must make use of the information in 
relational databases. 

R L - 6  S i m p l e  R u l e  for  S c o p e  W i t h i n  a n  

RL C o m m a n d  

The scope of operators, comparators, functions, logical connectives, 
qualifiers, and indicators within any single RL expression or com- 
mand must conform to a simple and readily comprehensible rule. 

R L - 7  E x p l i c i t  B E G I N  a n d  E N D  for 
M u l t i - c o m m a n d  B l o c k s  

The scope of multi-command blocks such as the transaction block 
and the catalog block (see Feature RM-7 in Chapter 12) must be 
explicitly stated by a BEGIN type command and an END type 
commanduexcept  where the intended extent of the block is a single 
command, in which case both the BEGIN and the END are omitted. 
Each of the commands BEGIN and END includes some identifi- 
cation of the type of block. 
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The SQL of prototype System R [Chamberlin et al. 1981] had both an 
explicit BEGIN and an explicit END for transactions. The IBM product 
DB2 fails to support the BEGIN command; this means that it is difficult to 
pin down the scope of a transaction block. 

R L - 8  Orthogonality in Language Design 

The features of RL are expressed orthogonally. When a semantic 
feature is supported in one context, it should be supported in every 
RE context in which it can be interpreted sensibly and unambigu- 
ously, No single semantic feature is expressed in two or more distinct 
ways with the choice of expression being context-dependent.  Wher- 
ever a constant can appear, an expression can replace it, provided 
it yields a value that is type-compatible with the type needed in the 
given context. 

This feature means that there is no unnecessary coupling of one feature 
with another. Moreover,  to take an example violated by SQL, the mode of 
expressing the removal of duplicate rows from the result of an operation 
should not be dependent upon whether the operation is projection or union. 
In the case of projection, SQL requires the presence of the qualifier DIS- 
TINCT. In the case of union, SOL requires the omission of the qualifier 
ALL. Of course, duplicate rows should not have been supported as an 
option in the first place. 

R L - 9  Predicate Logic versus Relational Algebra 

RE is more closely related to the relational calculus of the language 
ALPHA [Codd 197la] than to the relational algebra. The purpose is 
to encourage users to express their requests in as few RL commands 
as possible, and hence improve the optimizability of these RE com- 
mands taken one at a time. 

To support this feature, RL must include join terms as in ALPHA [Codd 
1971a]. RE must also include a simple way of expressing the universal 
quantifier. This avoids the kind of circumlocutions and circumconceptions 
that require the user to translate 

FOR__ALL x Px 

into 

NOT T H E R E ~ E X I S T S  x NOT Px. 
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Such a translation must be made by users of the SQL Of IBM's current release 
of DB2, which lacks a simple way to express relational division. 

R L - I O  S e t - o r i e n t e d  O p e r a t o r s  a n d  C o m p a r a t o r s  

RL includes certain set-oriented operators such as set union, set 
intersection, and set difference. These operators are subject, of course, 
to the usual constraints of the relational model that the operands 
and the results must be relations that are type-compatible with one 
another. RE also includes set comparators such as SET INCLUSION. 
These set operators and set comparators must be defined, at least 
in technical papers available to the public, in terms of the predicate 
logic supported in RE. 

The requirement for definitions in terms of the predicate logic within 
RL is based on the following reasons: 

• to simplify the interface between the DBMS and inferential systems 
designed to operate on top of the DBMS; 

• to simplify the DBMS optimizer by making it easy, as a first step, to 
convert any query or integrity constraint into a canonical form. 

The second reason is important in attaining good performance no matter 
how the user chooses to express his or her needs. In this way, the burden 
of gaining good performance is transferred from the user to the DBMS, 
where it belongs. 

R L - I I  S e t  C o n s t a n t s  a n d  N e s t i n g  of  Q u e r i e s  
W i t h i n  Q u e r i e s  

RL includes certain relation or set constants, such as the empty set. 
It may also include, but is not required to include, the nesting of 
subqueries within queries, as in SQL. However, unlike the present 
SQL of either ANSI or IBM, if nesting is supported, it must be 
defined in terms of simple basic expressions of predicate logic, and 
it must be an optional way of expressing the request, not a required 
way under any circumstance. 

The last two sentences in Feature RL-11 are vital to ensure effective 
optimization that gives the best performance regardless of the way any 
condition is expressed. They also simplify the task of software vendors 
developing software based on the DBMS as a platform. For example, such 
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vendors may want to develop inferential packages, such as expert systems, 
that must interface with the DBMS using RL. 

The introduction of set-oriented operators and comparators, plus set 
constants and nesting, frequently makes complex logical conditions easier 
to express, and therefore supports user productivity. On the other hand, 
one of the penalties of this introduction is that a given condition can now 
be expressed by the user in several different ways. In this case, it is extremely 
undesirable to burden users or software (on top of the DBMS) with the task 
of selecting a specific one of these ways so as to obtain the best performance 
with respect to the database traffic, storage representations, access paths, 
and access methods currently in effect. 

R L - 1 2  C a n o n i c a l  F o r m  f o r  E v e r y  R e q u e s t  

There must be a single canonical form for every request expressed 
in RE, whether interrogative or manipulative. Thus, no matter how 
a user chooses to express a query or manipulative action, the first 
step taken by the DBMS is to convert the source request into this 
canonical form. 

This is another feature intended to enable the DBMS to assume the 
whole burden of finding the most efficient way to handle the request. The 
programmer or interactive user is then left with the sole task of determining 
how to express his or her logical and semantic needs. 

R L - 1 3  G l o b a l  O p t i m i z a t i o n  

RL statements are compiled or interpreted into target machine lan- 
guage. The optimization is carried out entirely within the DBMS. 
It is not split into a sequence of local suboptimizations such that the 
total sequence is less optimal than a corresponding single global 
optimization. 

This global optimization includes at least the following: 

• determining the alternative sequences in which the relational 
operations can be correctly executed; 

• for each such sequence, selecting access paths that yield the 
least possible use of resources for that sequence, given the access 
paths currently in effect; 

• finally, selecting that combination of a sequence of operations 
and pertinent access p a t h s ~ a  combination that yields overall 
the least possible use of resources. 
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In some products, optimization is implemented partly in the DBMS and 
partly in separate, additional software packages. As a consequence, perfor- 
mance suffers. Usually, a sequence of two or more local optimizations is 
not as good as a single global optimization. 

R L - 1 4  U n i f o r m  O p t i m i z a t i o n  

For any query or data manipulation, whenever RE permits that 
activity to be expressed in two or more alternative (but logically 
equivalent) RE statements, the optimizer converts them to a can- 
onical form, thereby ensuring that these alternatives yield target 
codings that are either identical or equally efficient. 

This feature is intended to relieve users of the burden of selecting 
detailed source coding in RL for performance reasons. If not removed, such 
a burden would significantly reduce the adaptability of the relational ap- 
proach to changes in storage representation and access paths resulting from 
changes in the total database traffic or from changes in the statistics of data 
in the database. 

This feature also applies to distributed database management (see Chap- 
ters 24 and 25). 

R L - 1 5  C o n s t a n t s ,  Var iables ,  a n d  F u n c t i o n s  
I n t e r c h a n g e a b l e  

Wherever a constant can occur in an RL command, it can be replaced 
by an RE or host-language variable of a type suited to the context. 
Wherever an RL or host-language variable can occur, it can be 
replaced by an expression invoking a function (either built-in or 
user-defined), provided that function yields a result of a type suited 
to the context. In both cases, the substitution must yield a clearly 
meaningful and unambiguous command. 

Regarding user-defined functions, see Chapter 19. 

R L - 1 6  E x p r e s s i n g  T i m e - o r i e n t e d  C o n d i t i o n s  

Time-oriented conditions can be included in any condition specified 
in an RL command, along with any other conditions that may be 
specified and oriented toward database content. 
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For example, RL would handle the requirement that a particular au- 
thorization be in effect for some specified interval of the day by attaching 
a time-oriented condition to the authorization command. See Feature RA- 
13 in Chapter 18, "Authorization." 

R L - I  7 F l e x i b l e  R o l e  f o r  O p e r a t o r s  

In a relational command, any one of the basic operators can yield 
either an intermediate or a final result. More specifically, no basic 
operator is excluded from use in either of the following roles: 
(1) subordinate within an RE command to any other basic operator, 
or (2) superordinate within an RL command to any other basic 
operator. 

SQL does not conform to this requirement because union cannot be used 
in a subordinate role to a join, although join can be subordinate to union. 
In other words, within a single SQL command the union of two or more 
joins can be requested. The join of two or more unions cannot be requested. 
This kind of complexity places an unnecessary load on the user's memory 
and makes SQL a frustrating tool to use. 

In the design of a relational language, it is clearly desirable to make as 
few distinctions as possible between the interactive use of that language at 
a terminal and its use as a language for application programming. An 
example of a departure from this principle is the asterisk of SOL which is 
trouble-free when used interactively, but not trouble-free when used in 
application programs. 

In SQL an asterisk can be used to denote all columns of a specified 
relation. This asterisk is intended to alleviate the burden of naming every 
column whenever the need arises for all columns to be involved in a query 
or manipulative command. 

Interactive use of this feature of SQL at a terminal appears to present 
no special problem. Incorporation of an SOL asterisk in an application 
program is, however, another matter entirely. The asterisk damages the 
immunity of the program to such changes as the addition of new columns 
to the relation and the dropping of columns that already participate in that 
relation. This difficulty stems largely from the need to interface relational 
DBMS to old, single-record-at-a-time, host languages such as FORTRAN, 
COBOL, and PL/1. These languages deal with record structure in a rather 
inflexible way. 

The 17 design principles introduced in this chapter are aimed at clean- 
liness of design and ease of use by the whole community of users. They are 
not aimed at reducing either the creative originality of individual implemen- 
tots or the degree of competition among their respective companies. 
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• RL-1 

• RL-2 

• RL-3 

• RL-4 

• RL-5 

• RL-6 

• RL-7 

• RL-8 

a RL-9 

m RL-10 

• RL-11 

• RL-12 

• RL-13 

• RL-14 

[] RL-15 

• RL-16 

• RL-17 

Data sublanguage' variety of users 

Compiling and re-compiling 

Intermixability of RE and host-language statements 

Principal relational language is dynamically executable 

RE is a source language and a target language 

Simple rule for scope within an RE command 

Explicit BEGIN and END for multi-command blocks 

Orthogonality in language design 

Predicate logic versus relational algebra 

Set-oriented operators and comparators 

Set constants and nesting of queries within queries 

Canonical form 

Global optimization 

Uniform optimization 

Constants, variables, and functions are interchangeable 

Expressing time-oriented conditions 

Intermediate result from any basic operator 

Exercises  

22.1 Why does the relational model treat the language aspect of database 
management as a separate sublanguage, instead of promoting 
the advancement of programming languages to include database 
management? 

22.2 What does it mean for a sublanguage to be able to communicate well 
with a host language? 

22.3 The features in a we!l-designed language are orthogonal with respect 
to each other. Give three examples, each illustrating a distinct and 
serious lack of orthogonality in SQL. 

22.4 What are multi-command blocks, and how are their boundaries made 
explicit? 

22.5 Which is preferable, a data sublanguage based on the relational al- 
gebra, or one based on predicate logic? Why? 

22.6 Of two sublanguages based on predicate logic, which is preferable, 
one that uses tuple variables; or one that uses domain variables? 
Why? 
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Serious Flaws in SQL 

Most of the database management systems now being introduced as products 
on the world market are based on the relational model. Each of these 
products supports the Structured Query Language (SOL) [IBM], or, more 
accurately, some version of this language. Very few of these versions, and 
possibly no two of them, are identical. In the early 1980s, the American 
National Standards Institute (ANSI) rapidly adopted their own version of 
SOL as a standard. 

It appears that all present versions share the following three flaws: 

1. they permit duplicate rows to exist in relations; 

2. they fail to separate psychological features from logical features; 

3. they fail to provide adequate support for the use of either three-valued 
or four-valued logic (i.e., logics with truth-values in addition to TRUE 
and FALSE). 

The devastating consequences of these three properties are explained in 
this chapter. The following kinds of steps are suggested: 

• steps that vendors should take to remedy the problems; 

• precautionary steps that users can take to avoid severe difficulties before 
vendors take action; and 

• steps to avoid compatibility problems when vendors make the necessary 
changes in SOL. 

371 
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These remarks have no effect on the relational model, since SOL is not part 
of that model. Nevertheless, a discussion of SOL's major flaws may help the 
reader acquire an improved understanding of the relational model. 

23 .1  l I n t r o d u c t i o n  t o  t h e  F l a w s  

The criticisms of SQL in this chapter are certainly not intended to be inter- 
preted as criticisms of the relational approach to database management. SQL 

departs significantly from the relational model, and where it does, it is 
clearly SQL that falls short. Neither are the criticisms intended to be inter- 
preted as wholesale criticism of IBM's relational DBMS products DB2 and 
SQL/DS. Although both of these products support SOL, they are good 
products when compared with other products on the market today. The 
flaws are serious enough to justify immediate action by vendors to remove 
them, and by users to avoid the consequences of the flaws as far as possible. 

What, then, are the flaws in SQL that have such grave consequences? 
We shall describe just three: 

1. SQL permits duplicate rows in relations; 

2. it supports an inadequately defined kind of nesting of a query within a 
query; 

3. it does not adequately support three-valued logic, let alone four-valued 
logic. 

My position on these three "features" is as follows: 

1. duplicate rows within relations ought to be prohibited; 

2. even though I am not totally opposed to nesting, it requires precise 
definition and extensive investigation before being included in a relational 
language, so that a canonical form can be established for all requests; 

3. four-valued logic should be fully supported within the DBMS and its 
language. 

Criticisms of SQL have been plentiful; many are cited in this book. See, 
for example, [Date 1987]+ in which 20 or more serious errors are listed. 
Date's article, however, does not deal with the three most serious flaws, 
which are the main focus of this chapter. 

23.2 m The First Flaw: Dupl icate  Rows  and Corrupted 
Relat ions  

When the idea was introduced that relations could be perceived as flat files 
or tables; the converse notion was adopted by numerous people as a true 
statement~namely,  that any fiat file or table can be perceived as a relation. 
This converse is totally incorrect. The flat files and tables of the past were 
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highly undisciplined structures. Frequently, not all of the rows (or records) 
were required to have the same type, and duplicate rows were permitted. 
Design of relations became corrupted by this false idea. 

Relations in the relational model and in mathematics do not have 
duplicate rows. There may, of course, be duplicate values within a column. 
I shall refer to relations in which duplicate rows are permitted as corrupted 
relations. 

At first glance, permitting relations to have duplicate rows appears to 
be a disarmingly simple and harmless extension. When this extension was 
conceived, I indicated that, before any such extension was made, it would 
be necessary to investigate the effect of duplicate rows on the definitions of 
each and every relational operator, as well as on the mutual interaction of 
these operators. It is worth noting that I originally defined the relational 
operators and their mutual interaction assuming that relations had no du- 
plicate rows (as in mathematics). In all of my subsequent technical papers 
on database management, I have continued to take this position. 

Research into the effects of duplicate rows was simply not done by any 
prototype- or product-development group. Moreover, the problem was not 
addressed by the ANSI committee X3H2. It is now clear that the conse- 
quences are devastating. 

2 3 . 2 . 1  T h e  S e m a n t i c  P r o b l e m  

The first and perhaps most important concern is a semantic one: the fact 
that, when hundreds (possibly thousands) of users are sharing a common 
database, it is essential that they share a common meaning for all of the 
data therein that they are authorized to access. There does not exist a precise, 
accepted, context-independent interpretation of  duplicate rows in a relation. 

The contention that the DBMS must permit duplicate rows if its statis- 
tical functions (such as SUM and AVERAGE)  are to deliver correct answers 
is quite incorrect. Clearly, duplicate values must be permitted within col- 
umns. For example, it is impossible to rule out the following possibilities: 

• two values of currency happen to be the same (for example, the cost of 
two distinct investments); 

• two employees happen to have the same birthdate; 

• two employees happen to have the same gender (male or female); 

• the inventory levels for two distinct kinds of parts happen to be identical. 

Consider two or more rows in some corrupted relation that happen to 
be duplicates of each other. One may well ask what the meaning of each 
occurrence of these duplicate rows is. If they represent distinct objects 
(abstract or concrete), why is their distinctiveness not represented by distinct 
values in at least one component of the row (the primary key component) 
as required by the relational model? 
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If they do not represent distinct objects, what purpose do they serve? 
A fact is a fact, and in a computer its truth is adequately claimed by one 
assertion" the claim of its truth is not enhanced by repeated assertions. In 
database management, repetition of a fact merely adds complexity, and, in 
the case of duplicate rows within a relation, uncontrolled redundancy. 

Consider how data in a database should be interpreted by users. The 
main reason for establishing any database is that it is an organized (and 
hopefully systematic) way of sharing data amongst many users (perhaps 
hundreds, perhaps thousands). To make such sharing successful, it is nec- 
essary for all users to understand exactly one common meaning of all of the 
data they are authorized to access. " C o m m o n "  in this context means com- 
mon to all users, and shared by all of them. Now, if an operand or a result 
contains duplicate rows, there is no standard conception of what the duplicate 
rows mean. There may be some private (unshared) conception, but that is 
just not good enough for the successful management of shared data. 

23.2.2 Application of Statistical Functions 

A second concern is the correct application of statistical functions. It is often 
claimed that projection should not eliminate duplicate rows. To support this 
claim, an example may be cited in which information about employees is 
stored in a relation called EMP, and this relation has a SALARY column 
that contains the present salary of each employee. To provide an analyst 
with details of present salaries, but not the items that identify employees, 
the projection of EMP onto SALARY is claimed to be necessary as the first 
step. It is also claimed that, in this projection, duplicate salaries must not 
be eliminated, since then the analyst is likely to deduce wrong answers to 
those queries of a statistical nature. 

Statistical functions in relational DBMS can and should operate in the 
context of relations that do not have duplicate rows. This means that the 
relation name as well as the column name are arguments for a statistical 
function applied to that column. 

Each of the statistical functions built into the DBMS should have two 
flavors: one that treats each row as it occurs (just once) ignoring any degree- 
of-duplication component (if such exists); the other that treats each row as 
if it occurred n times, where n is the degree-of-duplication component of 
that row (see Section 23.2.4 and Chapter 19). 

23.2.3 O r d e r i n g  o f  t h e  R e l a t i o n a l  Operators 

A third concern is the interchangeability in ordering of the relational oper- 
ators. When manipulating non-corrupted relations (duplicate rows not per- 
mitted) using the relational operators of the relational model, there is a high 
degree of immunity to the specific ordering chosen for executing these 
operators. To illustrate, let us consider the operators projection and equi- 
join. Suppose that the projection does not discard any of the columns whose 
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values are compared in the join. Then, provided no duplicate rows are 
allowed, the same result is generated whether the projection is executed first 
and then the join, or the join is executed first and then the projection. 

Note that, if as usual the projection cites the columns to be saved 
(instead of those to be dropped), there must be a change of this list of 
columns depending on whether the projection preceded or followed the join. 
If, however, the projection cites the columns to be discarded, there need be 
no change in the list of these columns. Both forms of projection are useful. 

This degree of immunity to the sequence of operators is lost when 
duplicate rows are permitted within relations. Consider an example involving 
join and projection. Suppose that duplicate rows are allowed in the result 
of projection, but not in the result of join. In SQL this means that the qualifier 
DISTINCT is used in the join command only. 

R (A B C )  S (D E) 

al 1 cl d l  1 
a2 1 cl  d2 1 
a3 1 c2 d3 2 
a4 2 c2 
a5 2 cl 

Taking the projection R [ B,C ] first and retaining duplicate rows, we 
obtain the following result. Then let us take the equiojoin of this relation, 
with S comparing column B with column E, permitting duplicate rows in 
the operands, but not in the result. 

R [ B , C ]  (B C ) R [ B , C ] [ B  = E ] S  (B C D E) 

1 cl 1 cl d l  1 
1 c l  1 cl d2 1 
1 c2 1 c2 dl  1 
2 c2 1 c2 d2 1 
2 cl 2 c2 d3 2 

2 cl d3 2 

The final result has just six rows and no duplicate rows. 
Now let us reverse the sequence of operators, executing the equi-join 

first to generate relation T, and then executing the projection of T onto 
B , C , D , E .  

R [ B  = E I S  (A B C D E) T (B C D E) 

al 1 cl d l  1 1 cl d l  1 
a2 1 cl d l  1 1 cl d l  1 
a3 1 c2 dl  1 1 c2 d l  1 
al 1 cl d2 1 1 cl d2 1 
a2 1 cl  d2 1 1 cl d2 1 
a3 1 c2 d2 1 1 c2 d2 1 

a4 2 c2 d3 2 2 c2 d3 2 
a5 2 cl d3 2 2 cl d3 2 
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The final result has eight rows, including two cases of duplicate rows. 
Clearly, when duplicate rows are permitted, the result obtained by executing 
the projection first and then the join is different from that obtained by 
executing the join first and then the projection. If duplicate rows had not 
been permitted, the results would have been identical, whichever sequence 
of relational operations was adopted. (The reader may wish to check this 
himself or herself.) What this example shows is that changing the sequence 
in which relational operations are executed can yield different results if the 
DBMS permits duplicate rows within a relation. 

It is useless for an advocate of duplicate rows to dismiss the difference 
between these results as nothing more than two rows being dupl ica ted~ 
that suggests that duplicate rows are meaningless to the DBMS and to users. 
If duplicate rows have no meaning (Case 1), they should certainly be 
prohibited by the DBMS. If they have a meaning (Case 2), then this is 
surely a private (unshared) meaning, applicable only in some special context. 
There is no general meaning for duplicate rows that is accepted. Thus, once 
again, duplicate rows should be prohibited by the DBMS. 

Another possible argument from the advocates of duplicate rows is, 
"Why not express the projection and join combined into a single SQL com- 
mand? Then it will be impossible to use the qualifier DISTINCT on one of 
the operators without it becoming effective on the other." 

A first reply to this is that one operator may define a view and the 
other a query on that view, and two users may have defined these items 
independently of one another. When executing such a query, it is the DBMS 
(and not a user) that combines the view definition with the query definition 
to make the query effective on base relations. A second reply is that the 
DBMS undoubtedly does not prevent a programmer from expressing these 
operators in separate SQL statements, whether one of the statements is a 
view definition or not. 

It is worth noting here that, if the DBMS permits duplicate rows in 
results, it must also permit duplicate rows in operands because of the 
operational closure feature of relational database management systems: "The 
principal relational language is mathematically closed with respect to the 
operators it supports" (see Feature RM-5 in Chapter 12). This means that, 
in the principal relational language, the results of manipulative operations 
must always be legal as operands. If corrupted relations are permitted as 
results, then they must also be permitted as operands. This closure feature 
is intended to make it possible for users to make investigative inquiries in 
which it is occasionally necessary to use as operands the results of previous 
queries. 

In case the reader thinks this is just an isolated example, let us look at 
a quite different one (communicated to me by Nathan Goodman) involving 
three simple relations, each concerned with employees~first  their names, 
second their qualifications, and third their ages: 

E i ( E # E N A M E )  E 2 ( E # Q U A L )  E3 ( E # A O E ) .  
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As usual, E #  stands for employee serial number. Using SQL, we can 
find the names of employees who have the degree Ph.D. or whose age is at 
least 50 (or who satisfy both conditions). One of the distinct ways in which 
this query can be expressed in SQL involves using logical OR. Another way 
involves using union on the serial numbers for employees that satisfy each 
of the conditions. These two approaches should always yield the same resultm 
but do they? 

The answer is that, if SQL is used, it depends on when and in what 
context the user requests that duplicate rows be retained or eliminated. If 
union ALL is used in this context, the result contains the names of employees 
duplicated whenever each employee satisfies both conditions (that is, he or 
she has the Ph.D. degree and is at least 50 years old). 

The reduction in interchangeability of the sequence in which relational 
operations are executed can adversely affect both the DBMS and users of 
the DBMS. As we shall see, it damages the production by the DBMS of 
efficient target code (this process is usually called optimization) and sub- 
stantially increases the user's burden in determining the sequence of rela- 
tional commands, when the user chooses to make this sequence explicit. 

Application programmers tell me they find it a confusing phenomenon 
that some joins yield duplicate rows, while others do not. They also tell me 
that for their applications it is both necessary and difficult to eliminate 
duplicate rows efficiently. 

Optimization by the DBMS A relational command usually consists of a 
collection of basic relational operators. Part of the optimizer's job is to 
examine the various alternative sequences in which these basic operations 
can be executed. For each such sequence it determines the most efficient 
way of exploiting the existing access paths. Finally, it determines which of 
the alternative sequences consumes the least resources. Clearly, then, any 
reduction in the interchangeability of ordering of the basic relational oper- 
ations will reduce the alternatives which can be explored by the DBMS, and 
this in turn can be expected to reduce the overall performance and efficiency 
attainable by the DBMS. 

User's Burden in Choosing an Ordering of Commands Occasionally, the 
user may (for various reasons) express in two or more relational commands 
what could have been expressed in just one. For example, he may decide 
to express a projection in one command and a join in another command. 
Because the sequence of these commands can affect the ultimate result when 
duplicate rows are permitted, the user must give the matter much more 
careful thought than would have been necessary if duplicate rows had not 
been permitted. One consequence will be a proliferation of unnecessary 
bugs in programs and terminal activities. 

The extra thinking and the extra bugs will undoubtedly cause an unnec- 
essary reduction in the productivity of users. A far more serious consequence 
is that undiscovered bugs may lead to poor business decisions. 
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Violation of the Fundamental Law #1 As discussed in Chapter 29, the 
relational model is based on at least twenty fundamental laws. One of them 
is as follows: each object about which information is stored in the database 
must be uniquely identified, and thereby distinguished from every other 
object. This fundamental law is violated if duplicate rows are permitted in 
base relations. This is an important part of the job of maintaining the 
database in a state of integrity. The DBMS must help the DBA in this 
responsibility. 

23.2.4 The Al l eged  Security  P r o b l e m  

It has been alleged that duplicate rows are needed to support correct 
statistical analysis of data in a relation that has a sensitive primary k e y ~  
that is, a key that cannot be made available to the analyst. There are two 
ways in which this alleged need for duplicate rows can be avoided. 

The first approach is by use of the degree-of-duplication (DOD) quali- 
fier, which the DBMS should support. This qualifier enables the DBA to 
grant a user access to enough information from the database and enough 
computed information (appended to each row, a count of the number of 
occurrences of precisely similar rows) to enable him or her to make correct 
statistical analysis without access to some primary keys that happen to be 
sensitive. See Feature RQ-11 in Chapter 10 for more detail. 

Each of the statistical functions built into the DBMS should have two 
flavors: one that treats each row as it occurs (just once), ignoring any DOD 
component (if such exists), the other that treats each row as if it occurred 
n times, where n is the DOD component of that row (see Chapter 19, 
"Functions"). 

In the second approach, the DBMS vendor changes the authorization 
mechanism in the database management system. Suppose that a view is 
defined as a suitable projection that includes the primary-key column(s). 
The user is authorized to access all of the columns in this view, except the 
primary-key column(s) that are blocked by the DBMS. See Chapter 18 for 
further information on this topic, and on the approach the DBA and DBMS 
can take, if this feature is supported. 

23.2.5 The S u p e r m a r k e t  C h e c k - o u t  P r o b l e m  

In 1988 I published my contention [Codd 1988b] that duplicate rows should 
be avoided altogether in a relational database management system. Shortly 
thereafter, attempted rebuttals began to appear. In one of these attempts 
[Beech 1989], the example of checking out a customer at a cash register in 
a supermarket was described. In this example, the customer had picked up 
five cans of cat food, and the cashier registered each one separately and not 
consecutively, a common occurrence in supermarkets. 

In this supermarket all the cash registers were connected to a computer 
with a database management system, so that all purchases were recorded in 
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the database. The rebuttal claimed that the purchase of the five cans of cat 
food would have to be stored as five separate rows in the database, and that 
these five rows would be duplicates of one another. 

What Beech and others seem to have overlooked is that part of the 
design of databases and rules concerning their use depends quite heavily on 
what the business managers consider worth recording. In particular, some 
semantic distinctions are beneficial to the business, while others are not. In 
the supermarket example, the manager of the supermarket is not likely to 
be interested in distinguishing one can of cat food from another if they are 
of the same brand. That same manager is, however, likely to be interested 
in determining the average number of cans of a particular brand purchased 
by individual customers, because he or she can then determine how much 
shelf space to allot to each brand. For this distinction it is necessary to 
distinguish each customer check-out from every other customer check-out. 

Does this distinction require that the customer present a unique iden- 
tification (such as a Social Security number) to the cashier? Certainly not. 
Does it require that each can be distinctly labelled even if it is of the same 
brand? Certainly not. The distinction can be made if each brand is distinctly 
labelled, and if each customer transaction (the purchase of all items by a 
particular customer) is somehow distinguished from every other customer 
transaction. This distinctiveness is easily achieved for transactions by means 
of the following steps: 

. 

3. 

The cash register must send its identifier automatically into the computer 
at the beginning of each transaction. 

At this point, the computer must append the date and time. 

When each item is entered by the cashier, the system must examine 
whether an identically identified item has been entered at some time 
before within the current t ransact ion~if  it has, the count of items of 
that brand is increased by one in the row pertaining to that brand; if it 
has not, a new row is recorded in the appropriate relation. 

It is useful to refer to this kind of analysis as the analysis of semantic 
distinctiveness. This is an aspect of the meaning of the data that is strongly 
supported by the relational model. I have yet to encounter any other 
approach to database management that supports this aspect adequately. 

Considering all the adverse consequences and incorrect allegations just 
cited, I still find that duplicate rows in any relation are unacceptable. 

2 3 . 3  m The S e c o n d  Flaw: T h e  P s y c h o l o g i c a l  M i x - u p  

23.3.1 The Problem 

As used here, the term "psychological" refers to what is often called the 
human-factors aspects of a language. The term "logical" refers to the logical 
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power of a language, especially the power achievable without resorting to 
the usual programming tricks, such as iterative loops. 

Normally, if proper relations are employed, a manipulative command 
Or query expressed in terms of nesting and using the term IN can be re- 
expressed in terms of an equi-join. Let us look, however, at an example 
involving corrupted relations. Suppose we are given the relations EMP and 
WAREHOUSE:  

EMP (E# ECITY) WAREHOUSE (WNAME 

E1 A W1 A 
E2 B W1 A, 
E3 C W2 D 

W3 C 
W4 E 

WClTY) 

In this example, EMP is intended to list all the employees by employee 
serial number and city in which the employee lives; W A R E H O U S E  is 
intended to list all warehouses by serial number and city where located. 
Suppose we wish to find each employee name and the city in which he or 
she lives whenever that city is one in which the company has a warehouse. 
One might reasonably expect that this query could be handled equally well 
either by an equiojoin or by a nesting that uses the IN term as follows" 

Equi-join Nesting 

SELECT E#, ECITY SELECT E#, ECITY 
FROM EMP, WAREHOUSE FROM EMP 
WHERE ECITY -- WCITY WHERE ECITY IN 

(SELECT WCITY 
FROM WAREHOUSE) 

The results, however, are not identical: 

Equi-join Result Nesting Result 

E# ECITY E# ECITY 
E1 A E1 A 
E1 A E3 C 
E3 C 

Once again, we have a problem that arises in part from permitting 
duplicate rows. This case, however, is somewhat more complicated than the 
ones considered earlier. Whenever the DBMS encounters a query in nested 
form, it must transform such a query into a non-nested form in order to 
simplify the task of the optimizer. Some excellent work on this transfor- 
mation has been done [Kim 1982, Ganski and Wong 1987]. 

There appear, however, to be two major omissions from the works just 
cited and from other related work. First, the question of duplicate rows is 
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not discussed. Second, even if duplicate rows were prohibited, the remaining 
question is whether the coverage in the work is complete with respect to all 
nested versions permitted in SOL. 

My position on the nesting of SOL is that, when conceived in the early 
1970s, it was an attractive idea, but one that needed careful scrutiny and 
investigation. This nesting was advocated by its proponents as: (1) a replace- 
ment for predicate logic in the relational world, and (2) a more user-friendly 
language than the preceding relational database sublanguage A L P H A  [Codd 
1971a]. 

The first-cited reason is simply not true. As time has elapsed, it has 
been found necessary to incorporate bits of predicate logic in the language, 
although errors have been made in this activity. The second-cited reason 
has some credibility, but would turn SOL into a curious mixture of the logical 
and the psychological aspects of a relational language. There are two reasons 
why these two kinds of aspects should be kept separate from one another: 

1. a relational language must be effective both as a source language and 
as a target language because of the myriad of subsystems expected on 
top (e.g., application development systems, database design systems, 
expert systems and natural-language subsystems); 

2. the relational approach is intended to serve a great variety of users, and 
therefore different users may have entirely different education, training, 
and backgroundmthis means that just one approach to psychological 
support is very unlikely to be adequate. 

Accordingly, all of the statements in each of the several distinct lan- 
guages providing psychological support should be translatable into the single 
language providing logical support. Until that translatability is demonstrated 
for SOL by means of a rigorous proof, serious problems in using that language 
will continue to arise. 

Even when the translatability problem is solved, published, and imple- 
mented, there is the danger that a feature will be added to the nested queries 
that will introduce non-translatability. Theoretical investigation is sorely 
needed in this aspect of language definition. 

While on the subject of nesting queries within queries, there are two 
features of IBM's SQL that I feel drastically reduce both the comprehensi- 
bility and the usability of that language. Let us illustrate these features by 
making small modifications to the examples concerning employees and ware- 
houses (introduced earlier in this section). 

Some city names occur several times in the United States, but only once 
in any selected state. For example, Portland occurs both in Maine and in 
Oregon. Suppose that to each relation, EMP and WAREHOUSE,  we add 
a column pertaining to the state in which the city is located. Then let us try 
the following query: 
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SELECT E# ,  ECITY, ESTATE 
FROM EMP 
WHERE (ECITY, ESTATE) IN 

(SELECT (WCITY, WSTATE) FROM WAREHOUSE)  

The DBMS refuses to handle this query, even though it is just like the 
original, except that in this case the IN clause involves a combination of 
columns instead of a single column. To a user, this seems totally inappro- 
priate behavior for a DBMS. The ability of DB2 to concatenate the name 
of a city with the name of a state can be used to alter this query into one 
that can be executed. However, this is neither a general nor a natural 
solution to the problem. 

Returning to the original relations, suppose that the query is altered to 
elicit more columns of data: 

SELECT E# ,  ECITY, WNAME, WCITY 
FROM EMP, WAREHOUSE 
WHERE ECITY IN 

(SELECT WCITY FROM WAREHOUSE)  

This time, the DBMS yields the Cartesian product of EMP with WARE- 
HOUSE, except that rows that contain the cities that fail to qualify are 
excluded. This result is clearly not what was requested. Like the previous 
example, this kind of surprise is the hallmark of a poorly designed language. 

23.3 .2  A d v e r s e  C o n s e q u e n c e s  

Optimization by the DBMS When the prototype System R [Chamberlin et 
al. 1981] was passed from IBM Research to the product developers, the 
question of whether SOL could be translated from a nested query to a non- 
nested version had not been investigated. Subsequently, when the IBM 
products DB2 and SQL/DS were built, the problem was found too difficult 
to handle in the optimizer. As a result, the first three releases of DB2 
perform poorly on nested queries compared with non-nested queries. This 
is truly ironic, because SQL had been sold to IBM's management on the 
basis of its alleged ease of use and power due to the nesting feature. 

User's Burden in Choosing Nested versus Non-nested The difference in per- 
formance between nested and non-nested versions of the same query puts 
an unnecessary performance-oriented burden on users, one that will not 
disappear until nesting is prohibited, or the translatability problem is com- 
pletely solved and incorporated into DBMS optimizers. In nested as in non- 
nested queries, duplicate rows must be prohibited to avoid the additional 
burden of unexpected discrepancies in the results. 
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2 3 . 4  • T h e  T h i r d  F l a w :  Inadequate Support for Three- 
and Four-Valued Logic 

DB2 is one of the few relational DBMS products that represents missing 
information independently of the type of the data that is missing--a re- 
quirement of the relational model and a requirement for ease of use. DB2 
uses an extra byte for any column in which missing values are permitted, 
and one bit of this byte tells the system whether the associated value should 
be taken seriously or whether that value is actually missing. 

DB2, however, completely fails to meet one more requirement of the 
relational model--namely, that missing information should be handled in a 
manner that is independent of the type of the information that is missing, 
and that the user should be relieved of the burden of devising three-valued 
logic. Representation of missing information is one thing, but handling it is 
quite another [Codd 1986a and 1987c]. Actually, three-valued logic is built 
into DB2, but is used only to pass over values for which the condition 
evaluates to MAYBE (neither true nor false). Thus, only one of the many 
uses of the fact that a value is missing is supported by DB2. This is mainly 
due to the weak treatment of missing values in SQL. 

23.4.1 T h e  P r o b l e m  

How to Support Three-Valued Logic Usually the occurrence of cases of 
missing information in a practical database is unavoidable~it  is a fact of 
life. I believe that, when interrogating a database for information, users 
prefer the DBMS as its normal behavior to take a conservative position and 
to avoid guessing the correct answer. Whenever the system does not know 
some requested fact or condition, it should admit a lack of knowledge. 

The DBMS should also support, as exceptional behavior explicitly re- 
quested, the extraction of all the items that could satisfy a request if unknown 
values were replaced by information that yielded as many values as possible 
in the target list of the query. 

A database retrieval may, of course, include several conditions like 

DATE > 66-12-31, 

where the DATE column has values of extended data type DATE, and 

AMOUNT < 20,000, 

where the AMOUNT column has values of extended data type U.S. CUR- 
RENCY. The conditions may be combined in many different logical com- 
binations (including the logical connectives AND, OR, and NOT and the 
quantifiers UNIVERSAL and EXISTENTIAL). Suppose, as an example, 
that both expressions just noted participate in some condition. Also suppose 
that both columns are allowed to have missing database values. How does 
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the DBMS deal with a query involving the following combination of 
conditions, 

(DATE > 66-12-31) OR (AMOUNT < 20,000), 

where the date condition, the amount condition, or both may evaluate to 
MAYBE? Clearly, the DBMS must know the truth-value of such combi- 
nations as MAYBE OR TRUE, TRUE OR MAYBE, and MAYBE OR 
MAYBE. This means that the DBMS must support at least three-valued 
logic. If not, then the user must do the following: 

1. request the primary-key values of those orders for which the DATE > 
66-12-31 is TRUE; 

2. request the primary-key values of those orders for which the AMOUNT 
< 20,000 is TRUE; and 

3. request the u n i o n  of the two sets generated by Steps 1 and 2. 

In the case of AND instead of OR, the user would have to request in 
Step 3 the intersection of the two sets of primary keys. Users are liable to 
make numerous mistakes if they are forced to support three-valued logic 
mentally because the DBMS provides inadequate support. Who knows what 
crucial business decisions might be made incorrectly as a consequence? 

From this, it can be seen that, in any systematic treatment by the D B M S  
of  missing values, there is a clear need to extend the underlying two-valued 
predicate logic to at least a three-valued predicate logic. 

In the following truth tables for the three-valued logic [Codd 1979] of 
the relational model RM/V1, the symbols P and Q denote propositions, 
each of which may have any one of the following truth values: t for TRUE 
or m for MAYBE or f for FALSE. 
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vn 

f 

N O T  P P OR Q 

f t 
m P m 
t f 

Q 

t In f P A N D  Q 

t t t t 
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m lm f 
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In the relational model, the universal and existential quantifiers are 
applied over finite sets only. Thus, the universal quantifier behaves like the 
logic operator AND, and the existential quantifier behaves like OR, both 
operators being extended to apply the specified condition to each and every 
member of the pertinent set. 

When an entire condition based on three-valued, first-order predicate 
logic is evaluated, the result can be any one of the three truth-values TRUE, 
MAYBE, or FALSE. If such a condition is part of a query that does not 
include the MAYBE qualifier, the result consists of all the cases in which 
the complete condition evaluates to TRUE, and no other cases. 
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If to the entire condition part of this query we add the keyword MAYBE,  
then the result consists of all the cases in which this condition evaluates to 
MAYBE,  and no other cases. The MAYBE qualifier is used only for 
exploring possibilities. Special authorization would be necessary if a user is 
to incorporate it in a program or a terminal interaction. 

Actually, the relational model calls for the DBMS to support the at- 
tachment of the MAYBE qualifier to any truth-valued expression, since a 
view is normally defined not Using this qualifier, while a query on the view 
may involve it. The normal action of the DBMS is to combine the view 
condition with the query condition using logical AND. This action, of course, 
would give rise to a more comprehensive condition involving the MAYBE 
qualifier attached to just one truth-valued expression within that condition. 

One problem of which DBMS designers and users should be aware is 
that, in rare instances, the condition part of a query may be a tautology. In 
other words, it may have the value T R U E  no matter what data is in the 
pertinent columns and no matter what data is missing. An example would 
be the following condition pertaining to employees (where B denotes a 
DATE):  

( B < 66-12-31 ) OR ( B = 66-12-31 ) OR ( B > 66-12-31 ). 

If the DBMS were to apply three-valued logic to each term and it 
encountered a marked value (i.e., a value marked as missing) in the date 
column, each of the terms in this query condition would receive the truth 
value MAYBE.  However, MAYBE OR MAYBE yields the truth-value 
MAYBE.  Thus, the condition as a whole evaluates to MAYBE,  which is 
incorrect, but not traumatically incorrect. 

To avoid this type of error, there are two options: 

1. warn users not to use tautologies as conditions in their relational lan- 
guage statements (tautologies are a waste of the computer's resources); 

2. develop a DBMS that examines all conditions not in excess of some 
clearly specified complexity, and determines whether each condition is 
a tautology or not. 

Naturally, in the latter case, it would be neCessary to place some limitation 
on the complexity of each and every query, because with predicate logic the 
general problem is unsolvable. It is my opinion that Option 1 is good enough 
for now, because this is not a burning issue. 

Treatment of Missing Values in SQL The only concession in SQL commands 
to the existence of missing values is the clause IS NULL, which enables the 
user to pick up from any column those cases in which there are missing 
values. Flexible use of three-valued logic (let alone four-valued) is not 
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supported. An example of inflexibility is the action of DB2 when the 
condition part of a query is evaluated as unknown. It simply does not retrieve 
the corresponding instances of the target data. Although in practice this is 
one of the options that users need, they also need others. One such option 
is the temporary replacement of missing values by user-specified values, 
where "temporary" means just for the execution of the pertinent command. 

Other DBMS products that fail to go beyond present SQL, whether it 
be the IBM or the ANSI version, are unable to provide adequate support 
of three-valued logic. As a result, we can expect users to make many errors, 
some of which are bound to go undetected. 

A somewhat separate problem is the effect of missing values on aggre- 
gate functions. The relational model supports the following options: request 
the missing items to be ignored, or temporarily replace each missing item 
by a specified value, where "temporarily" again means just for the execution 
of the pertinent command. SQL appears to support only one of these options: 
it always ignores the missing items. 

23.4.2 A d v e r s e  C o n s e q u e n c e s  

Overall, the SQL approach to handling missing values is quite disorganized 
and weak. This will lead to disorganized thinking on the part of users, an 
increased burden for them to bear, and many unnecessary errors. Errors 
that are not discovered can lead to incorrect business decisions based on 
incorrectly extracted data. 

The SQL approach also causes some users to wish for the old approaches 
like "default values" that were at least familiar, even if more disorganized. 
Of course, the old approaches are completely out of place in any DBMS 
based on the relational model. 

In some cases of inadequate handling of missing information, the prob- 
lem is incorrectly perceived to be a problem of the relational model. In fact, 
the problem stems from the inadequacies of SQL and its non-conformance 
to the relational model. 

23 .5  • Corrective Steps f o r  D B M S  V e n d o r s  

Let us discuss the three problems in turn. First, consider the problem of 
duplicate rows. 

23.5.1 C o r r e c t i v e  S t e p s  fo r  D u p l i c a t e  R o w s  

This correction should be handled in three stages" 

1. warn users that support for duplicate rows is going to be phased out in 
about two years' time; 

2. within the first year, install in some new release a "two-position switch" 
(i.e., a DBA-controlled bit) that permits the DBMS to operate in two 
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. 

modes with respect to duplicate rows: (1) accepting them and (2) re- 
jecting them; 

drop the support for duplicate rows within a relation altogether, and 
improve the optimizer accordingly. 

With regard to loss of integrity from databases, it is well-known that 
prevention is much better than cure. For this reason, the DBMS should 
check that duplicate rows are not being generated whenever an operator is 
executed that could generate duplicate rows. Three of the operators that 
are defined to remove duplicate rows are projection, union, and appending 
rows to a relation, including initial loading. Most DBMS products today fail 
to conform to the definitions of these operators. 

To provide assistance in the loading of data into relations from tables 
that may contain duplicate rows, the command CONTROL DUPLICATE 
ROWS was introduced as Feature RE-20 in Chapter 7. Using this command, 
the duplicate rows are removed without loss of information. 

23.5.2 Corrective Steps for the Psychological Mix-up 

The most recent version of IBM's SQL (even if the duplicate row concept 
has been removed) should be treated as a language that stands or falls on 
its psychological or ease-of-use properties. A new relational language should 
be created with features that are highly orthogonal to one another. The 
language should be readily extensible, include all of the logical properties 
necessary to manage a relational database, be readily compilable, and be 
convenient to use as a target language by all the software packages that 
interface on top of the DBMS. 

23.5.3 Corrective Steps in Supporting Multi-Valued Logic 

DBMS vendors should start the work required to introduce support for four- 
valued logic [Codd 1986a and 1987c]. The three-valued logic just cited is a 
sublogic of the four-valued logic. Implementing the four-valued logic is not 
noticeably more difficult or time-consuming than implementing the three- 
valued. The four-valued logic treats information that is missing for a second 
reason--namely, that a particular property happens to be inapplicable to 
certain objects represented in the pertinent relation. With adequate support 
for three or four-valued logic, the IS NULL clause in SOL becomes redundant 
and should be phased out. 

2 3 . 6  m P r e c a u t i o n a r y  Steps  for Users  

While these three flaws are being corrected by the DBMS vendors, there 
are several steps users can take to protect their databases and hence their 
business. The first step is to avoid duplicate rows within relations at all times 



388 • Serious Flaws in SQL 

by insisting on continued adherence to the programming and interactive 
discipline" 

B exactly one primary key must be specified for each base relation; 

• the DISTINCT qualifier must immediately follow the keyword SELECT 
in every SQL command that includes SELECT; 

• the ALL qualifier must never accompany any union. 

The second step is to avoid nested versions of SQL statements whenever 
there exists a non-nested version. The third step is to take extra care in 
manipulating relations that have columns that may contain missing values, 
and as fa r  as possible separate the handling of missing information into 
easily identifiable pieces of code that can be readily replaced later. 

23.7 m C o n c l u d i n g  R e m a r k s  

Is it too extreme to call these SQL blunders serious flaws? I do not think so, 
in view of the fact that more and more business and government institutions 
are becoming dependent on relational DBMS products for the continued 
success of their operations. In my view, the three flaws described in this 
chapter must be repaired, even though the repair may cause some users to 
have to change some SQL portions of their programs. 

DBMS vendors should immediately begin putting the corrective steps 
outlined in Section 23.5 into effect. Such action could easily give them a 
substantial competitive advantage in the eyes of their prospective customers. 

The proposed changes in SQL described in this chapter also represent a 
great opportunity for ANSI to take the lead. 

Users are strongly advised to take the precautionary steps outlined in 
Section 23.6. Then,~the changes in subsequent releases of their DBMS will 
prove to be far less traumatic. 

How did SQL reach the undesirable state described in this chapter? I 
believe that the reason can be traced to inadequate theoretical investigation. 

Exercises  

23.1 At first glance, SQL offers an attractive feature' the capability of 
nesting a query within a query. What are the problems arising from 
this feature of SQL. q 

23.2 Most, but not all, relational DBMS products violate the very basic 
property of the relational model that a relation, whether base or 
derived, must not have duplicate rows. Why, and in what ways, does 
this violation give rise to serious problems? 

23.3 Consider the language SQL. It contains a feature called GROUP BY. 
Treat SQL, with this feature dropped as SQLX. Are there any queries 
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23.4 

expressible in SQL that are n o t  expressible in SQLX? If your answer is 
yes, supply two examples. If your answer is no, supply a proof. 

SQL has a nesting feature that permits a query to be nested within 
another query. Treat SOL with this feature dropped as SQLz. Are there 
any queries expressible in SQL that are n o t  expressible in SQLz? If 
your answer is yes, supply two examples. If your answer is no, supply 
a proof. 





• C H A P T E R  2 4  • 

Distributed Database 

Management  

24.1 • R e q u i r e m e n t s  

For many reasons, it is necessary to understand distributed database man- 
agement clearly. Very few database management systems will survive in the 
21st century if they are not capable of managing distributed databases with 
the extensive capabilities described in this chapter and the next. 

The first necessity is to be able to distinguish clearly distributed database 
management from distributed processing. Some vendors claim support for 
distributed database management, when their products actually support 
nothing more than distributed processing. The relational model addresses 
many of the problems associated with the management of distributed data- 
bases, but offers very little help in distributed processing. 

A simple, but superficial, way of distinguishing these two services is as 
follows. Distributed database management is the coordinated management 
of data distributed in various separate but interconnected computer systems. 
Distributed processing, which is based on a collection of programs that are 
distributed in various separate but interconnected computer systems, permits 
a program at any site to invoke a program at any other site in the network 
as if it were a locally resident subprogram. 

There is no claim that it is a simple task to implement the level of 
support for distributed database management in RM/V2. Such implemen- 
tation, although quite a challenge, closely represents what users need. A 
distributed database satisfies at least the following four conditions: 

1. The database consists of data dispersed at two or more sites; 

391 
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2. the sites are linked by a communications network that may be as modest 
as a local area network, as impressive as a satellite-based network, or 
anything in between; 

3. at any site X, the users and programs can treat the totality of the data 
as if it were a single global database residing at X; 

4. all of the data residing at any site X and participating in the global 
database can be treated by the users at site X in exactly the same way 
as if it were a local database isolated from the rest of the network. 

Normally, these sites are geographically dispersed, and the communi- 
cations network includes the telephone lines of at least one telephone 
company. For convenience, the term network will often be applied to the 
total collection of sites in a distributed database. In a widely dispersed 
situation, the databases are located in different countries, possibly on dif- 
ferent continents. At the other extreme, the database sites may all happen 
to be located within a single city or even within a single building. It is 
worthwhile to observe here that more and more companies are becoming 
trans-nationals (the United Nations term for multi-nationals). 

Condition 4 in the preceding list is required because some vendors have 
DBMS products that support Condition 3 but violate Condition 4. To 
understand this, suppose that R is one of the relations in the global database, 
that F is a fragment of R, and that F is allocated to one of the sites, while 
the remaining parts of R are stored at other sites. In the products that 
violate Condition 4, but not Condition 3, fragment F is permitted to be a 
non-relation, even though it is a table. More specifically, F consists of some 
of the columns of R, but does not include the primary key of R, and, as a 
result of the corrupted version of projection being used, F can contain 
duplicate rows. The corrupted version of projection fails to eliminate dupli- 
cate rows. The penalties for permitting duplicate rows were described in 
Chapter 23. 

It is reasonable to consider the chief responsibilities of the systems that 
manage a distributed database. Perhaps the single most important respon- 
sibility of such systems is support for distribution independence [Codd 1985]. 
This term means that a program developed to handle data that is distributed 
in one way should continue to operate correctly without change when the 
data is re-distributed. In an extreme case covered by this definition, a 
program is developed to run successfully on data that is initially located 
completely at one site (i.e., not distributed at all). Such a program must 
continue to operate correctly without change when the data is dispersed to 
multiple sites. This is an important step in protecting the investment by 
DBMS customers in the development of application programs. 

To support distribution independence, a necessary but not sufficient 
condition is that it must be possible to retrieve data without referring to any 
location or locations in which it may reside. This is sometimes called location 
independence and sometimes location transparency, although I much prefer 
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the former phrase.This subject is dealt with in more detail in Sections 24.4 
through 24.8. 

For performance, fault tolerance, or other reasons, some of the data 
may be duplicated at different sites. If so, end users and programs must be 
insulated from this redundancy. This is sometimes called replication inde- 
pendence. This topic is discussed in more detail in Section 24.4.5. 

A third requirement for adequate support of distribution independence 
is that it must be possible for a single relational command to operate on data 
located at two or more sites. This falls naturally within the scope of relational 
DBMS, since the optimizer breaks down each command into basic relational 
operators even if the data is not distributed. Note that this requirement is 
more stringent than merely supporting any single transaction operating upon 
data located at two or more sites. 

R X - I  M u l t i - s i t e  A c t i o n  f r o m  a S i n g l e  R e l a t i o n a l  

C o m m a n d  

In a distributed database, a single relational command, whether 
query or manipulative, can operate on data located at two or more 
sites. 

Some of the older pre-relational DBMS products that were claimed by 
their vendors to support the management of distributed databases could 
transmit a transaction to a remotely located site, but the whole transaction 
had to be executable at that site on data located entirely at that site. This 
capability is called transaction routing, and is, of course, far less than what 
is needed for supporting distribution independence. In fact, the present 
situation is that the only prototypes and products that have been able to 
demonstrate the capability of supporting distribution independence are re- 
lational DBMS. 

2 4 . 2  m T h e  O p t i m i z e r  i n  a D i s t r i b u t e d  D B M S  

As we have seen, within a relational DBMS there is a component called the 
optimizer. This component is responsible for ' translating the high-level re- 
lational commands into the most efficient target code. NOW, an optimizer 
may be adequate for managing local databases, but, if that is its only 
capability, it is likely to be quite inadequate for managing distributed 
databases. 

Nevertheless, it is a simple task to extend a local-only optimizer to 
handle the distributed case. Whether a database is totally local or distributed, 
managing it efficiently entails finding an ordering of the basic operators 
within whatever relational command is to be executed (an ordering that may 
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include concurrent execution of these operators), together with access paths 
for each operator, so as to develop efficient target code. 

In managing local databases only, the goal is minimal use of processing 
power, on the one hand, and of input-output devices, on the other hand. 
In managing distributed databases, the consumption of inter-site communi- 
cation power is a third factor that must be considered, because it may be 
quite significant. In fact, when the sites are far apart, this third factor is 
likely to be dominant. 

There is likely to be a wide variation between the requirements of any 
two companies or institutions using a distributed DBMS. For this reason, 
the usual approach in DBMS products is to request the DBA at each site 
to insert three coefficients: one for the local processing load, one for the 
local input'output load, and one for the inter-site communication load. The 
optimizer can then calculate a single rating for each ' combination of a 
sequencing of operations and access paths. 

2 4 . 3  • A D B M S  a t  E a c h  S i t e  

One of the goals in managing distributed data is to promote local autonomy 
to the extent that is compatible with distribution independence and with the 
necessary inter-site integrity constraints. When one or more sites are expe- 
riencing malfunction of the hardware or software, the other sites must be 
able to continue to execute all of their workloads, except those portions 
that involve the sites that are temporarily out of action. 

Why is the adjective "necessary" used to qualify the phrase "inter-site 
integrity constraints" in the preceding paragraph? One reason is that, even 
if the initial deployment of data across sites does not require such constraints, 
the deployment will undoubtedly evolve and require a growing number of 
such constraints as it evolves. A second reason is that the options in re- 
deployment would be severely restricted if all integrity constraints had to 
affect local data Only. 

R X - 2  L o c a l  Autonomy 

In distributed database management, whenever the DBMS at any 
site goes down, each site X that is still functioning must be capable 
of continuing to operate successfully and in a relational mode on 
data at each and every site that is still functioning, including X, 
provided X is still in communication with that site. 

One clear consequence of Feature RX-2 is that there is no reliance on 
a single site in a distributed relational DBMS, whether that site be labeled 
"central" or not. 
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One aspect of this feature is that the system must support continued 
access to all of the data at site A by users at site A, even if the inter-site 
communications network is either completely or partially out of action. A 
more precise phrase for this subgoal is local management of local data. 

To attain local management of local data by means of a relational DBMS, 
the first requirement is that, at every site, all of the data stored at that site 
must be perceived by end users and application programmers as a relational 
databasewthat is, a collection of proper relations of assorted degrees. As 
indicated in Chapter 1, a proper relation is one that has no duplicate rows. 
This requirement corresponds to Condition 4 cited earlier. 

The second requirement is that there be a relational database manage- 
ment system at each and every site. During most of this chapter, the ho- 
mogeneous case is assumed for simplicitymthat is, at each site there is the 
same hardware and software, including the DBMS software. At the end of 
this chapter, a few remarks are made about the difficulties encountered in 
the heterogeneous case. The optimizing capability in a distributed DBMS 
should itself be distributed. Every site must be capable of controlling every 
request entered at that site, so that there is no reliance on a central coor- 
dinator. Every site has to be capable of (1) global planning and optimization; 
and (2) local planning and optimization. 

An important factor in organizing the distribution of data over several 
sites is that the communication channels between sites be sufficiently redun- 
dant that the failure of one or two channels does not reduce all sites to 
managing locally resident data only. When the channel organization avoids 
this catastrophic behavior, it is called fault-tolerant. A channel organization, 
of course, can exhibit a high degree of fault tolerance, a modest degree, or 
none at all. 

For example, if there were eight sites and the communication channels 
were unidirectional only, then the channel organization shown in Figure 
24.1(a) would not be fault-tolerant at all. On the other hand, if the channels 
were bidirectional, this organization would be fault tolerant to a small 
degree. The organization shown in Figure 24.1(b) is fault-tolerant to a much 
higher degree, assuming that the channels continue to be bidirectional. 

. .  

2 4 . 4  • T h e  R e l a t i o n a l  A p p r o a c h  t o  D i s t r i b u t i n g  D a t a  

There are several widespread but false notions concerning the initial planning 
of how to distribute data. One false notion is that a collection of relational 
databases that already exist in diverse locations can simply be inter-connected 
by means of communications lines, and that the result is a distributed 
database. Unfortunately, there is more to this problem than meets the eye. 
An example of a potentially serious problem that is quite likely to arise is 
the case in which two columns, one from one relation, and one from a 
second, are homographs having a different meaning. See Section 6.2 for 
more detail. 
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Figure 24.1 (a) S imple  N e t w o r k  w i t h  Eight  Sites. (b) More 
Stable N e t w o r k  w i t h  Eight  Sites 

A B A B / / 
C D C D 

E F E F 

/ / 
G H G H 

(a) (b) 

Another false notion is that, once the initial plan is put in place, re- 
distribution of the data will never be necessary. 

When deciding how to distribute data between various sites, it is con- 
venient to think of the totality of data initially--and, as a matter of fact, at 
all later times also--as a single collection Z of relations. This totality is 
called the global database. It is the importance of this concept that strongly 
suggests employing a global database administrator (GDBA), who is re- 
sponsible for the global database, as well as a local database administrator 
(LDBA) for each site. 

Since the global database is really a virtual database (an abstract con- 
cept), it could be said that the GDBA has a "virtual job," but I doubt 
whether he or she would appreciate such a comment because of the multiple 
meanings attached to the English word "virtual." Nevertheless, this job 
might well be one of the most important positions in any company or 
institution. The title "chief information officer" seems quite appropriate. 

In any distributed relational network, the GDBA needs as a tool for 
his or her job a description of the entire global database. Such a description 
is contained in what I call the global catalog. This catalog is, of course, 
distinct from the on-line catalogs at each site, and more comprehensive, 
since the local on-line catalogs tend to concentrate on local data only. One 
of the reasons for having a global catalog is that it is a vital tool in conceiving 
and declaring integrity constraints, views, and authorization that straddle 
sites. 

R X - 3  Global D a t a b a s e  and  Global  Catalog 

Associated with each distributed database is the concept of a global 
database that covers all the data stored at each site. Associated with 
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the global database is the global catalog. This catalog contains three 
parts: 

GC1 The declarations for every domain, every base relation, every 
column, every view, every integrity constraint, every author- 
ization constraint, and every function in the global database 
as it is actually distributed, including the sites at which they 
are stored. 

GC2 

GC3 

A concise description of this totality of information as if it 
were a single, non-distributed database cast in fifth normal 
form with minimal partitioning. 

Expressions for each relation located at each site defining 
how that relation is defined in terms of the relations declared 
in GC2. 

It is more useful to call GC1 the composite global catalog and GC2 the 
normalized global catalog. 

The source code of application programs can contain local names, but 
these are converted by the DBMS at bind time into global names as found 
in GC2. It is this globalized source code that is retained in the system and 
remains unaffected by redeployment of the data, partly because it contains 
no local names. 

R X - 4  N C o p i e s  o f  G l o b a l  C a t a l o g  ( N  > 1) 

The network contains N copies (N > 1) of the global catalog, in the 
form of N small databases at N distinct sites to avoid too much 
reliance on whichever site is normally used by the global database 
administrator. These N sites can also be N of the sites in the network 
for regular data and the corresponding local catalogs. At these sites 
(at least two of them), the power supply should be mutually in- 
dependent; that is, failure of electric power at one site does not 
normally mean failure at the other. 

In a distributed relational database and, in particular, in its global 
database Z, it is necessary to have names for domains, relations, columns, 
views, integrity constraints, and functions that (1) conform to the standard 
naming rules for relational databases (see Chapter 6), and (2) apply to the 
totality of data in the network as if it were a single database. These names 
are called global names to distinguish them from any names in use locally 
at each of the sites. Names that are continued in local use are called local 
names. 
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R X - 5  S y n o n y m  R e l a t i o n  in  E a c h  Loca l  C a t a l o g  

To support the continued use at each site of names local to that 
site, each local catalog should include a synonym relation containing 
each local name, the type of object named by it, and the corre- 
spondence between the local name and the global database (see 
RX-7). 

The job of interpreting global names used in relational commands is not 
the sole responsibility of the N global catalogs, because they would then 
become major bottlenecks. That job is dispersed throughout the network 
by means of the birth-site concept, which is discussed here and also in 
Section 24.8. This concept is due to Bruce Lindsay [1981] of the System R* 
team of IBM Research [Williams et al. 1981]. One of the advantages of the 
birth-site concept is that it does not require a centralized dispenser of names 
that are unique within the network. However, this concept is not a complete 
solution to the problem of decentralizing all resolution of names. Frequently, 
redeployment is not confined to simple movement of entire relations from 
one site to another. Redeployment can include decomposing some relations 
and recombining others. Then, the name of a relation on which a program 
operates may have to be transformed into a relation-valued expression. 

Each DBMS in the network has the responsibility of keeping its portion 
of the global catalog consistent with the global catalog itself. The many 
DBA sites, each of which contains a copy of the global catalog, must send 
a message to whatever sites are affected whenever the GDBA makes a 
change in the global catalog. These messages are requests to the sites to 
bring their catalogs up-to-date and consistent with the global catalog. The 
sending of these messages can be, and should be, automatically triggered 
by the DBMS at the GDBA site. 

Ideally, of course, any changes made by the GDBA in the global catalog 
should be wholeheartedly supported by the local database administrators. 
Similarly, any changes made by a LDBA should be wholeheartedly approved 
by the GDBA. 

Therefore, the DBMS must support changes in a database at a specific 
site that are initiated by the DBA at that site, assuming he or she has been 
granted that privilege. Such changes cause the local DBMS to send a message 
immediately to the global catalog to make it consistent with these changes, 
along with a confirming message to the GDBA. 

24.4.1 N a m i n g  Rules  

Although there is every reason to believe that the naming rules introduced 
here actually work and would satisfy most users' needs, a distributed data- 
base management system can support alternative features, provided it can 
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be shown that these features are at least as powerful, flexible, and compre- 
hensible. The first and most obvious feature follows. 

R X - 6  U n i q u e  N a m e s  for  S i t e s  

Whenever an object is c r e a t e d ~ w h e t h e r  it be a domain, base 
relation, view, integrity constraint, or func t ion~i t  is asigned a five- 
part name: 

1. the name or identification of the user creating that object; 

2. the name of the object as if it was a local object; 

3. the name of the site at which the object was created (called 
its birth site); 

4. the formula or command that translates from the global da- 
tabase to the local object; 

5. the inverse formula or command (see RX-8). 

The next feature is explained partly below and partly in Section 24.8, 
which deals with the distributed catalog. 

R X - 7  N a m i n g  O b j e c t s  in  a D i s t r i b u t e d  D a t a b a s e  

Whenever an object is c rea tedmwhether  it be a domain, base 
relation, view, or funct ionmit  is assigned a three-part name: (1) the 
name or identification of the user creating that object, (2) the name 
of the object as if it were a local object, and (3) the name of the 
site at which the object was created, called the object's birth site. 

If the object is a domain, considerable care should be taken to determine 
whether that domain already exists somewhere in the network. Even if 
exactly the same domain does not exist elsewhere, it may be possible, and 
is probably preferable, to expand the range of some existing domain to 
cover the one now needed, and introduce some column constraints that will 
keep the old definition applicable to those columns already existing. 

Of course, an object created at a site X may at some later time be 
moved to site Y. Later still, it may be moved again to site Z. Therefore,  
there is one more name associated with each objec t - -namely ,  the name of 
the site at which that object is residing at present. The association of this 
sixth name component with the first five is maintained by the DBMS at the 
birth site, and by the N copies of the global catalog at the G D B A  sites. The 
goal is to protect users, programmers,  and application programs from having 
to know this sixth name component.  
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In establishing a distributed database, the starting point may be several 
databases that have been operated independently up to that time. Then, the 
first step is to take a copy of the description of each database from its 
catalog, and examine the consequences of putting all these descriptions 
together as the description of one global database. This examination should 
include the complete naming scheme, about which the following questions 
should be asked: 

• Is it devoid of the kind of duplication of names that would give rise to 
ambiguity? (For example, is the name CAP at one site given to a relation 
that represents the capabilities of suppliers in supplying parts, while at 
another site that same name is used for a relation with an entirely 
different meaning~say,  for actual shipments made by suppliers?) 

• Are there any instances of an object, such as a domain or a relation, 
common to two or more sites, and having two or more distinct names? 
(For example, is a relation that describes shipments at one site given a 
different name at another site, even though the two relations have the 
same meaning and are union-compatible?) 

The DBMS provides considerable help in resolving these naming prob- 
lems by supporting in the catalog at each site (as noted earlier) a synonym 
relation that contains global names or relation-valued expressions as syn- 
onyms for all the local names. This facility must be applicable to at least 
the names of domains, base relations, columns, views, integrity constraints, 
and functions. 

After naming problems are resolved, the following question arises: are 
the databases that are being coalesced into a single global database inter- 
related? This problem was discussed in Section 3.1, but not in the context 
of distributed database. However, the approach was based on the use of 
domains by relations, and this is clearly applicable without change to the 
global database Z. If any one of the databases being coalesced is not inter- 
related by domains to any of the other databases, one may reasonably 
question the reason for coalescing~perhaps there is a plan to add new 
relations to one or more sites in order to inter-relate the databases at these 
sites, where previously they were not. 

The information in the global database Z is to be distributed in some 
way to a collection of sites, with a collection of relations at each site. Thus, 
at first glance, it appears necessary to consider as candidate relations all of 
the relations derivable from the given collection using the relational operators. 

The class of all derivable relations, however, is quite large; for a large 
commercial database, it may run into the millions. Thus, it is necessary to 
find some sensible means of reducing the options. Fortunately, there are 
two important concerns that quickly narrow down the options to be considered. 

Perhaps the most obvious concern is that data should be distributed 
according to the frequency of its use. To express it another way, data should 
be local with respect to the users who need to access it most frequently and 
with the shortest response time. 
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For example, consider a bank that has branches in several cities, and 
customers who execute most of their transactions with the bank at a partic- 
ular branch selected by each customer. When establishing a distributed 
DBMS, the usual decision by the bank is to require the data stored in each 
major city to be precisely that which reflects the customer accounts estab- 
lished in the branches of the bank in that city. 

A second concern is reversibility of the transformations applied to the 
global database Z (the totality of data at all sites) in determining which of 
these relations (or, alternatively, which of the relations derivable from them 
by means of the relational operators only) are stored at which sites. This 
reversibility is in many ways similar to that used in deciding the ways in 
which a view can be updated (see Chapter 17). As shown in the discussion 
of decomposition in Section 24.4.3, this second requirement can also narroW 
down the options significantly. 

As far as users are concerned, reversibility is needed primarily to facil- 
itate re-distribution of data at some later time. DBMS vendors are advised 
to make this a requi.rement in distributing data because it simplifies the 
design of the optimizer. Even then, however, there is no claim that designing 
the optimizer is easy. 

R X - 8  R e v e r s i b i l i t y  a n d  R e d i s t r i b u t i o n  

In assigning part of the global database Z to a particular site, each 
relation assigned to that site must be derivable from the relations 
in Z by a combination of relational operators that has an inverse. 
In other words, each relation at each site is reversibly derivable 
from Z. 

It is quite common for managers of data processing and information 
system to claim that, if the job is done correctly when first introducing a 
distributed DBMS, there will be no need to redistribute the data. This can 
be true only if the business or institution remains unchanged forever! How- 
ever, there is one thing in life that is inevitable for everyone, and that is 
change. 

24.4.2 A s s i g n m e n t  o f  R e l a t i o n s  f r o m  t h e  G l o b a l  D a t a b a s e  Z 

The most elementary distribution is to assign some of the relations in Z 
without any transformation to site A, to assign other relations in Z without 
any transformation to site B, and so on until all the relations have been 
assigned to sites. In some cases of database distribution, this simple approach 
may be adequate, but in other cases it will not be adequate. In the next two 
sections, other options in distributing data are considered. 
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24.4 .3  D e c o m p o s i t i o n  o f  R e l a t i o n s  f r o m  t h e  G l o b a l  
D a t a b a s e  Z 

Notice that, in the simple distribution just discussed, no relation in Z is 
decomposed into two or more pieces, and the pieces then scattered to two 
or more distinct sites. It is this step of decomposition that now must be 
discussed. 

When a relation is decomposed into pieces for distribution of the pieces 
to various sites, the term fragmentation is often applied. I shall not use this 
term, however, because it is often used and interpreted as the breaking up 
of a table by rows and columns, without concern as to whether the objects 
resulting from this break-up are proper or corrupted relations. At least two 
distinct distributed DBMS prototypes--IBM's R* and Relational Technol- 
ogy's INGRES STAR--and  one distributed DBMS product--Tandem's  
NonStop SQL--support vertical fragmentation of any kind, without concern 
regarding whether each fragment is a proper relation or not. To paraphrase 
Woody Allen, this bug is as big as a Buick! 

In applying relational technology to the management of a distributed 
database, it is essential that only the relational operators be used to decom- 
pose relations in the global database into relations for the various sites. One 
important reason is the goal of preserving the correctness of programs when 
the data is re-distributed. 

Consider the example of a relation R with columns A1, A2, A3, A4. 
Suppose that the primary key of R is A1. The fragmentation approach would 
permit R to be split into two tables S and T, where S has the columns A1 
and A2 of R, and T has the columns A3 and A4 of R. It is assumed here 
that, from the standpoint of the values found in R, the columns are preserved 
intact. Notice that the primary key of R (i.e., A1) is now a column in S, 
and that this very column is now the primary key of S. Therefore, the rows 
of S are all distinct and S is a proper relation. The same cannot be said of 
T. Because the primary key of R has not been preserved in T, there is no 
guarantee that the rows of T are all distinct. Thus, T may be a corrupted 
relation. The difficulties stemming from this kind of table are described in 
Chapter 23. 

What kind of column-oriented decomposition is considered correct ac- 
cording to the relational model? The relational operator to apply is project. 
Each projection to be stored at some site, possibly remote, must include 
the primary key of the relation from which the projection is made. Then, 
each and every projection is a proper relation with no duplicate rows, and 
it will be managed at the pertinent site by the DBMS at that site. Thus, the 
relation R just examined could be split into two or three projections, each 
of which includes column A1. The three-fold split would be as follows" 

S ( A 1 A 2 )  T ( A 1 A 3 )  U ( A 1 A 4 )  
at site B at site C at site D 
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Note that, at any time, the original relation R can be recovered from 
relations S, T, and U by using equi-join with respect to the primary keys of 
the relations being joined. For each relation in this example, the primary 
key is A1. This recovery capability permits the relation R to be re-distributed 
in an entirely different way at some later time, without causing any appli- 
cation program to be damaged logically. 

There are bound to be complaints about the duplication of keys across 
sites that stems from the preservation of the primary key at each site that 
receives a projection. This duplication is a small price to pay for the power 
from retaining keys (e.g., non-traumatic re-distribution of the data when 
needed). The power is especially cheap because primary keys are seldom 
updated. 

R X - 9  D e c o m p o s i t i o n  b y  C o l u m n s  

f o r  D i s t r i b u t i n g  D a t a  

When some columns of a relation R in the global database Z are 
assigned to one site, and some to one or more other sites, the 
pertinent operator is project (as defined in Section 4.2), and the 
primary key of R must be included in each and every projection. 

An alternative or additional decomposition is by rows. Here again, 
however, the selection of rows cannot be arbitrarymsuch as, store the first 
50 at site B, the next 50 at site C, and so on. Relational DBMS are 
intentionally not aware of the meaning of "the first 50" and "the next 50." 
These concepts are leftovers from the days of file-management systems and 
early pre-relational DBMS products, in which the user's perception of the 
data was very close to the way the data happened to be stored. 

A selection of rows must be made using the select operator. For example, 
one may store at site B those rows of relation R whose numeric values in 
column A3 range from 557722 to 999999. Another, quite distinct, example 
is the selection of those rows of R whose alphanumeric values in column 
A4 range from HHH12JJ to N N N l l K K  as a relation to be stored at site C. 
It may be worth noting that alphanumeric ordering must be based on either 
a declared or a standard collating sequence such as ASCII or EBCDIC. 

When a relation R is partitioned by rows into several subrelations, each 
to be stored at distinct sites, it is possible to recover the original relation R 
by means of the operator union. The union ALL of SOL is not usable in this 
context because it is a non-relational operator, one that generates a result 
that may contain duplicate rows. 

If, as is usually the case and as is recommended, relation R is partitioned 
into several disjoint subrelations (i.e., no pair of subre|ations has any rows 
in common), then it will not be necessary to update the mutually redundant 
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rows at two or more sites (because there will be no such rows) whenever 
an update is requested on one row. 

R X - I O  D e c o m p o s i t i o n  b y  R o w s  

for  D i s t r i b u t i n g  D a t a  

When some rows of a relation R in the global database Z are 
assigned to one ~site, and other rows to other sites, the pertinent 
operator is select (see Section 4.2), using ranges of values applied 
to a simple or composite column of R. The ranges should not 
overlap, which means that no row is assigned to more than one site. 

Why is the capability of recovering the original relation important? This 
recovery is needed if at some later time a decision is made to re-distribute 
the data in a different way, possibly using different decompositions and/or 
different combinations. For example, the initial distribution of the sample 
relation might be by rows based on values in column A3. Later a re- 
distribution might be necessary; it might be by rows, but based on values 
in column A4. Still later, it might be by columns instead of by rows. 

24.4.4 C o m b i n a t i o n  o f  R e l a t i o n s  f r o m  t h e  G l o b a l  D a t a b a s e  Z 

While the project and select operators can be used to split a single relation 
from Z into several relations, the join, union, relational intersection, rela- 
tional difference, and relational divide operators can be used to combine 
several relations from Z into one relation, Clearly, if the transformations 
performed On relations from Z are to be reversible, these operators must 
be applied With considerable care. For example, just as every projection of 
relation R must include the primary key of R, so every join should involve 
the following in the comparand columns: 

• the primary key on domain D (say) of one relation; and 

• either a primary key on domain D of the other relation, or a foreign 
key on domain D of the other relation, 

R X - I 1  G e n e r a l  T r a n s f o r m a t i o n  

for  D i s t r i b u t i n g  D a t a  

Any combination of relational operators (whether of the decom- 
posing or the combining type) is applicable to determining how the 
data should be distributed, provided that the total transformation is 
reversible. 
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24.4.5 Repl icas  and  S n a p s h o t s  

Sometimes, two or more sites need frequent access to common information 
in certain relations in the global database, and the GDBA may be tempted 
to assign copies of these relations to these sites. The type of copy that is 
kept up-to-date by the distributed DBMS whenever any modification (in- 
sertion, update, or deletion) is executed on one of the copies is called a 
replica. The type of copy that is not kept in such a high state of accuracy, 
but is merely refreshed from time to time (either by a specific DBA request 
or by a DBA request to refresh at specified time intervals), is called a 
snapshot. An example of a DBA command for this purpose is 

CREATE SNAPSHOT R REFRESH EVERY 7 DAYS 

where R denotes an expression that evaluates to a relation (including the 
simple special case that it is the name of a base relation). 

The GDBA should decide whether a copy is to be held as a replica or 
a snapshot. This decision should be made with great care because replicas 
are significantly more expensive than snapshots in terms of performance. If 
only two sites are involved in the decision, and one is oriented toward 
production and the other is oriented toward planning, the choice is clear: 
accurate on-line data for the production site and snapshots for the planning 
site; no replicas are needed. Then, the GDBA must decide how frequently 
these snapshots must be refreshed. 

R X - 1 2  R e p l i c a s  a n d  S n a p s h o t s  

The DBMS must support all declared replicas by dynamically main- 
taining them in an up-to-date state. End users and application pro- 
grams can operate independently of whether these replicas exist and 
how many there are. The DBMS also supports snapshots that are 
updated to conform to the distributed database with a frequency 
declared by the DBA. 

Why are replicas significantly more expensive in performance than snap- 
shots? The root of the performance problem with replicas is that application 
programs must be protected from the burden of explicitly modifying all 
replicas of a given relation. This protection is necessary in order to achieve 
replication independence. In other words, these application programs must 
continue to be logically correct when a new replica of an old relation is 
introduced or when an old replica is discontinued. The programs must 
therefore modify just one copy, and the DBMS must assume responsibility 
for modifying the remaining copies of the pertinent relation in exactly the 
same way. 

i 

: ~ ! :  : E 
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24 .5  • D i s t r i b u t e d  I n t e g r i t y  C o n s t r a i n t s  

One more reason to perceive the totality of distributed data as a single 
global database is to establish all the integrity constraints that happen to be 
appropriate. Since certain types of integrity constraints are subject to change 
over the years (especially those that are DBA-defined), there must be a 
G D B A m a  database administrator who maintains the global perspective and 
is responsible for the global database. 

Some of the integrity constraints in a distributed database can be en- 
forced completely at just one site, but many will straddle the data at multiple 
sites. These straddlers require inter-site cooperation of two kinds: 

1. between DBAs to establish appropriate declarations; 

2. between DBMS at the various sites for their enforcement. 

R X - 1 3  I n t e g r i t y  C o n s t r a i n t s  t h a t  S t r a d d l e  T w o  

or  M o r e  S i t e s  

The DBMS must support both referential integrity and user-defined 
integrity constraints when they happen to straddle two or more sites. 
Inter-site cooperation for enforcement must not involve any special 
action by users, but rather must be built into the DBMS at each 
site. The support for integrity constraints that straddle sites must 
protect users from having to be aware of the straddling in any way, 
even after one or more redeployments of the d a t a .  

24 .6  • D i s t r i b u t e d  V i e w s  

One more reason to perceive the totality of distributed data as a single 
global database is to establish all of the views needed by application pro- 
grammers and terminal users. Views are still defined in terms of the base 
relations and other views, but some of these relations may be located at 
distinct sites. In addition, the actual views that are needed may change over 
the years. Thus, once again a database administrator (the GDBA) who 
maintains the global perspective, and who is responsible for the global 
database, is needed. 

All view definitions applicable to the entire database are stored in each 
of the global databases for use by the DBA. However, this collection of 
definitions is not used by the DBMS at individual sites to handle each 
relational request successfully. 

To avoid the global databases becoming a traffic bottleneck, view def- 
initions are scattered around the sites with whatever degree of duplication 
is necessary to provide good performance. One possibility is to store at each 
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site X only those views that refer to one or more relations stored at X. Such 
definitions can, of course, refer to relations at sites other than site X also. 

Full support of views that straddle the data at multiple sites requires 
inter-site cooperation of two kinds: 

1. between people to establish appropriate declarations; 

2. between DBMS at the various sites. 

The second kind of inter-site cooperation is required due to the fact that it 
is not normally true that the view definitions for the entire distributed 
database are stored in each and every catalog. 

R X - 1 4  V i e w s  t h a t  S t r a d d l e  T w o  or  M o r e  S i t e s  

The DBMS must support views when they happen to straddle two 
or more sites. Inter-site cooperation for this support must not involve 
any special action by users. It must be built into the DBMS at each 
site. The support for views that straddle sites must protect users 
from having to be aware of the straddling in any way, even after 
one or more redeployments of the data. 

Support of inter-site views is essential to full support of distribution 
independence. 

2 4 . 7  • D i s t r i b u t e d  A u t h o r i z a t i o n  

One more reason to perceive the totality of distributed data as a single 
global database is to establish all of the authorization needed by application 
programmers and terminal users. Authorization is still defined in terms of 
the base relations and views, but some of these relations may be located at 
different sites. In addition, the authorization that is needed may change over 
the years. Thus, once again there needs to be a database administrator (the 
GDBA) who maintains the global perspective, and who is responsible for 
the global database. 

All declarations of authorization for the entire database are stored in 
each of the global databases for use by the global DBA. However, this 
collection of definitions is not used by the DBMS at individual sites to handle 
each relational request successfully. 

To avoid the global databases becoming a traffic bottleneck, declarations 
of authorization are scattered around the sites with whatever degree of 
duplication is necessary to provide good performance. One possibility is to 
store at each site X only those declarations that refer to one or more relations 
stored at site X. 
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Full support of declarations of authorization that straddle the data at 
multiple sites requires inter-site cooperation of two kinds: 

1. between people to establish appropriate declarations; 

2. between DBMS at the various sites. 

The second kind of inter-site cooperation is required due to the fact that it 

is no t  true that  every declaration of authorization for the entire distributed 
database is stored in each and every catalog. 

R X - 1 5  A u t h o r i z a t i o n  t h a t  S t r a d d l e s  T w o  

o r  M o r e  S i t e s  

The DBMS must support declarations of authorization when they 
happen to straddle two or more sites. Inter-site cooperation for this 
support must not involve any special action by users. It must be 
built into the DBMS at each site. The support for authorization 
constraints that straddle sites must protect users from having to be 
aware of the straddling in any way, even after one or more rede- 
ployments of the data. 

Support of authorization that straddles two or more sites is essential to full 
support of distribution independence. 

2 4 . 8  • T h e  D i s t r i b u t e d  C a t a l o g  

Every site has its own relational DBMS. Therefore, every site has its own 
catalog. What does this catalog contain in the case of a distributed database? 

At each site, there must be a catalog that includes at least the description 
of all of the data stored at that site. If nothing more is done, then, when 
any DBMS at one site attempts to find data located at other sites, this 
may entail searching the catalog at each and every site. This task is unne- 
cessarily burdensome for both the particular DBMS, which does the search- 
ing, and for the network, which must support a heavy amount of inter-site 
communication. 

One solution that is unacceptable is to store the complete description 
of the global database Z at just one central site, and use this description to 
determine which sites are involved for every reference to data in the network. 
If this solution were adopted and the central site goes down, then the entire 
distributed database network would become inoperable. Further, the catalog 
at this central site would be a continual bottleneck in all database activities. 
Thus, there can be no dynamic dependence upon a single site that happens 
to have a catalog that describes the global database Z and indicates at which 
site each part of Z is stored. 
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At the other extreme, however, the catalog at each and every site would 
contain the description of the entire global database Z. In this case, there 
is a very high degree of redundancy between the catalogs. Any change in 
the database at just one site would involve making changes in the catalog 
at each and every site. These changes would have to be coordinated so that 
all the catalogs remained at all times consistent with one another and with 
respect to each transaction. This consistency would probably entail locking 
up all catalogs until any requested catalog change had been received by each 
and every site, and completed by each and every DBMS. This, in turn, 
means that virtually all the other traffic on the network would have to be 
stopped for however long would be required to get these catalogs into 
synchronism with the global catalog. 

A compromise between the two extremes was invented by the R* team, 
then located at the IBM research laboratory in San Jose (most team members 
are  now located a t  the IBM Almaden Research Center). Suppose that a 
relation is created at site X. Then, site X is called its birth site. From the 
user's perspective, the name of the relation has only two parts: the local 
name at the time of creation, and the name of the birth site. Although the 
local name alone is temporarily adequate for any interactive user who 
happens to be at the site where the relation is stored, one fact of life must 
be faced: the pertinent relation might at some future time be moved from 
its birth site to some other site; then, the local name is inadequate. 

In contrast, there is a significant advantage to combining the local name 
with the name of the birth site to form the global name; this combined name 
permanently identifies the relation uniquely, no matter at what site the 
relation happens to be stored. Consequently, to develop application pro- 
grams that need not be changed whenever a relation is moved from one site 
to another, it is necessary to use the global name for each relation. 

R X - 1 6  N a m e  R e s o l u t i o n  

w i t h  a D i s t r i b u t e d  C a t a l o g  

Each base relation stored at each site has a global name that is a 
combination of its local name at that site, together with the name 
of its birth site. The catalog at its birth site includes the name of 
the site at which it may now be found. 

An inexpensive tool for gaining improved performance is a global-name 
cache at each site. This cache can be conceived as an extension of the 
synonym relation described in Section 24.4. For items in the global database 
that are not stored at site X, but are frequently accessed from site X, the 
synonym relation at site X is extended to include the global name of each 
such item, along with the identification of the site where the corresponding 
object is now located. 
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24 .8 .1  I n t e r - s i t e  M o v e  o f  a R e l a t i o n  

When a relation is moved from one site to another, the user making such 
a request must be appropriately authorized. Such a user is likely to be the 
global DBA or someone on his or her staff. Four sites are involved in such 
a move: the F R O M  site, the TO site, the BIRTH site, and the G D B A  site. 
Of course, either the F R O M  site or the TO site (but not both) may be 
identical to the BIRTH site, and the G D B A  site may be identical with any 
one of the other three sites. 

Thus, when an inter-site move of a relation is requested, four sites are 
normally involved, each of which makes changes to its catalog contents. 
These changes reflect not only the fact that one or more relations have been 
moved, but also the changes in local and inter-site integrity constraints that 
result from that move. Normally, in the case of the global catalog, there 
are no resulting changes in integrity constraints. 

The DBMS at the birth site of the pertinent relation (say R) is respon- 
sible for ensuring that its catalog contains identification of the present site 
of R along with its birth site. Thus, using the global name of the relation R 
enables any DBMS in the network that happens to be the source of a request 
on R to ask of its birth site where that relation is now located. The DBMS 
at any site can find every relation in the network by querying the catalog at 
exactly one or two sites: one site only if the relation happens to have 
remained at its birth site; otherwise, two sites. 

R X - 1  7 I n t e r - s i t e  M o v e  o f  a R e l a t i o n  

A user who moves a relation from one site to another must be 
authorized to do so, or else the authorization mechanism will not 
permit the move to be executed. In the MOVE command, the user 
must specify the global name. By this means the DBMS at the birth 
site can and does update its catalog to record the new site for this 
relation. 

24.8 .2  I n t e r - s i t e  M o v e  o f  O n e  or M o r e  R o w s  o f  a R e l a t i o n  

As indicated in Section 24.8.1, a relation in the global database can be 
dispersed to several sites by rows using the range of values in a simple or 
composite column. As an example, consider a relation R that has a column 
drawing its values from the currency domain. Suppose that the rows of R 
are distributed by assigning to sites A, B, C those rows that have values in 
this currency column within the following ranges: 

Site A" 0 to 999 
Site B: 1,000 to 9,999 
Site C: 10,000 to 99,999 
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Suppose that a suitably authorized user at some site requests an update 
on a row of R that happens to be located at site A, because it happens to 
have a currency value in the range 0 to 999. Suppose also that this update 
is an increment that takes the currency value into the range for site B (i.e., 
1,000 to 9,999). Then, this row is automatically moved from site A to site 
B, and the initiative for this action is taken by the DBMS at site A. 

R X - 1 8  I n t e r - s i t e  M o v e s  o f  R o w s  o f  a R e l a t i o n  

Suppose that rows of a relation R are distributed according to the 
range of values in some simple or composite column of R, and that 
an update is applied to this column of a row at site X1. Suppose 
also that this update takes the value out of the range of values 
pertaining to site X1, and into the range pertaining to site X2. Then, 
if a n  indicator in the catalog signals that moving a row can be 
triggered by such an update, the DBMS automatically moves the 
row from site X1 to site X2. A single updating relational command 
may result in zero, one, two or more inter-site moves of rows of a 
relation. 

In one sense, inter-site moves of rows are simpler for the DBMS to 
handle than inter-site moves of relations. No changes are necessary in any 
catalog. Authorization for inter-site moves triggered by updates can be 
handled by means of the N-person turn-key Feature RA-5 (see the remarks 
following Feature RA-6 in Chapter 18). 

24.8.3  M o r e  C o m p l i c a t e d  R e - d i s t r i b u t i o n  

Now, it is reasonable to ask, "What if a re-distribution of data is more 
complicated than the move of an entire relation from one site to another? 
What if a relation in the global database Z is decomposed or combined with 
some other relation in a new way--by using different operators, by using 
different columns as comparand columns, or by both means?" 

Clearly, the one object that remains constant in such a change i~ the 
global database Z. Therefore, to protect application programs from damage 
under these circumstances, they should be developed to operate upon data 
in the global database or upon views that are defined on that database, 
making use of the information in the global catalog. The burden of using 
global names can be assumed to a large degree by the DBMS if it supports 
globalization of the source code as defined shortly after Feature RX-3. Local 
names can be used by end users when interacting at terminals with a local 
database. In all other cases, however, local names should not be used. 
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24.8.4 Dropping Relations and Creating New Relations 

What if the global database changes because some kinds of data in the 
network have been dropped entirely? This type of change is similar to the 
dropping of information from a non-distributed database. Those application 
programs that make use of the dropped information are very likely to become 
inoperable unless some changes in them are made. The other application 
programs will remain unaffected. The global catalog must be contracted so 
that it no longer includes any mention of the kinds of items that have been 
removed. Those local catalogs that are affected by the drop must also be 
changed to be consistent with the global catalog. 

R X - 1 9  D r o p p i n g  a R e l a t i o n  f r o m  a Si te  

When a suitably authorized user drops a relation R stored at site 
X, the following catalogs are adjusted to reflect the loss of infor- 
mation from the entire distributed database" (1) the local catalog at 
site X, (2) all copies of the global catalog, and (3) the birth-site 
catalog. The only application programs adversely affected are those 
that use the data in R. 

Now, suppose that instead of dropping certain kinds of data, new kinds 
of data are added to one or more sites in the network. The description of 
the global database must be enlarged to cover the new domains, new 
relations, new columns, new views, new integrity constraints, new authori- 
zation constraints, and any new functions. All the application programs 
developed before these new additions should be capable of operating cor- 
rectly without any changes whatsoever. Once again, those local catalogs that 
are affected by the new items introduced must also be changed to be 
consistent with the global catalog. 

R X - 2 0  Creat ing a N e w  R e l a t i o n  

When a suitably aUthorized user creates a new relation R at site X, 
the following catalogs are adjusted to reflect the new information 
in the network: (1) the local catalog (X is declared to be the birth 
site), and (2) all copies of the global catalog. 

2 4 . 9  • A b a n d o n i n g  an Old S i t e  

Occasionally, because of business or institutional conditions, one of the sites 
managed by a distributed database system must be either abandoned, or 
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detached from the network. Two cases must be considered. In the simpler 
case, all of the data at that site is to be abandoned or detached also. In the 
more complicated one, some or all of the data at that site is to be retained 
in the network, but moved to other sites in that network. 

24.9 .1  A b a n d o n i n g  t h e  D a t a  as  W e l l  as a n  O l d  S i t e  

Suppose that site X is being abandoned, along with all the data stored there 
now. In this case, the G D B A  must remove from the N copies of the global 
catalog all references to the relations at site X, except references to X as 
the birth site of any relation that happens to be located now at some site 
other than X. These references must remain viable if application programs 
are to remain as logically correct as possible. 

A site other than X m o n e  that is surviving in the ne tworkmmust  be 
chosen by the G D B A  to act as if it were the birth site X. This places a 
responsibility on the chosen site to behave as if it were (1) the birth site of 
relations created at that site, and (2) the birth site of relations actually 
created at site X. Each DBMS at each site in the network must have the 
capability of assuming this kind of additional responsibility. 

24.9 .2  R e t a i n i n g  t h e  D a t a  a t  S u r v i v i n g  S i t e s  

Together with the local database administrators, the G D B A  must determine 
how the data now stored at site X (the site being abandoned) is to be re- 
distributed. In the simplest case of re-distribution, each relation currently 
stored at X is moved in its entirety to some new site. Several sites may be 
involved as recipients. The more complicated case of re-distribution involves 
the following: 

• decomposition of relations presently stored at X; or 

• combination of these relations with others in the network; or 

• both decomposition and combination. 

This task is similar to that of establishing the distributed database in the 
first place. When this is done, the G D B A  must select one of the surviving 
sites to act as the virtual birth site X for all of the relations created at X 
that are still in the network. (This process was discussed in more detail in 
the previous section.) 

R X - 2 1  A b a n d o n i n g  a n  O l d  S i t e  a n d  P e r h a p s  

I t s  D a t a  

A suitably authorized user (usually the global database administra- 
tor) may detach a site X completely from the network, and also 
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abandon the data stored at that site. Some other site must be 
designated to carry on the duties of X in keeping track of the present 
whereabouts of relations created at X (birth site = X), but already 
moved from X to some other sites. If some or all of the data is to 
be retained at other sites, then the GDBA should be involved, and 
the N copies of the global catalog and the local catalogs at receiving 
sites must be adjusted to reflect the re-distribution of the data 
formerly at site X. 

In both the cases discussed in Section 24.9 and this section, application 
programs remain logically correct, except if they refer to data that has been 
abandoned or detached altogether from the network. 

2 4 . 1 0  • I n t r o d u c i n g  a N e w  S i t e  

It must be possible to introduce a new site without adversely affecting the 
logical correctness of any of the application programs. The tasks for the 
GDBA and the local DBA for the newly introduced site are similar to those 
involved in establishing the distributed database in the first place. 

Suppose that the new site is site X. If there is no DBMS at site X, one 
must be selected and installed. Care must be taken in selecting it to ensure 
that it is compatible with the rest of the network. Today's advertisements 
by DBMS vendors contain many false claims concerning compatibility. 

If there is no database at site X, it will be necessary to create some 
domains and relations there; data may be re-distributed from other sites. 
As these domains and relations are created, the local catalog at site X is 
kept up-to-date by the DBMS at that site. Changes will also be necessary 
in all N copies of the global catalog and these changes are made by DBMS. 

R X - 2 2  I n t r o d u c i n g  a N e w  S i t e  

A suitably authorized user, usually the GDBA,  can attach a new 
site X, to the network. The GDBA must decide whether data that 
is already in the network is now to be moved to X, or what new 
data is to be stored at X. The N copies of the global catalog, together 
with the local catalog at site X and possibly the local catalogs at 
other sites also, must be adjusted to reflect these decisions. Intro- 
duction of a new site does not adversely affect any existing appli- 
cation programs. 

Occasionally, local DBAs and the global DBA may have to make a 
combination of changes in their catalogs. This is facilitated by the following 
feature. 
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R X - 2 3  D e a c t i v a t i n g  a n d  R e a c t i v a t i n g  I t e m s  

i n  t h e  C a t a l o g  

A suitably authorized user can deactivate any selected items in the 
catalog under his or her control. Later, and possibly within the same 
CAT block, this user can reactivate the deactivated items. 

For details concerning the CAT block, see Feature RM-7 in Chapter 12. 

Exercises  

24.1 What is the optimizer supposed to do in a non-distributed DBMS? 
State three stages. What additional action is expected if the DBMS 
is claimed to manage distributed databases? (See Chapter 25.) 

24.2 A distributed database has been in operation for a while. Assume 
that the data is distributed according to RM/V2. Because of changes 
in the business, it is now necessary to discontinue some sites, introduce 
others, and generally redistribute the data in a non-loss way. Will it 
be necessary to change the application programs in order to ensure 
that these programs operate correctly on the redistributed data? Pro- 
vide reasons for your answer. 

24.3 Assume you have a distributed DBMS that supports replication in- 
dependence. In determining how data should be distributed to various 
sites, what is the problem in deciding whether some data should be 
replicated at two or more sites? What are the alternatives to replicas? 

24.4 In distributed database management, suppose that you are determin- 
ing how data should be deployed to the various sites, and that you 
have decided to use decomposition by rows based on specified ranges 
of values in some column. Why is it desirable to ensure that the range 
of values for any one site does not overlap the range of values 
applicable to any other site? 

24.5 Consider the reversibility condition applied by RM/V2 to whatever 
transformations are used on the global database in planning the de- 
ployment of data in a distributed database. Consider also the revers- 
ibility condition applied in defining views that are intended to be 
updatable. Are these two conditions identical? If not, what are the 
differences and why? All parts of your answer should be precise. (See 
Chapter 17.) 

24.6 A single relational command happens to refer to data located in 
several sites. Assume that it has not been compiled yet. Supply a list 
of three inter-site activities that the DBMS must support if the pre- 
execution stage is to be completed correctly. Make no special as- 
sumptions about the command. 
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24.7 Supply one or more reasons why is it important that the DBMS retain 
the source code for every relational request in distributed database 
management. These reasons must not include those applicable to non- 
distributed data. 
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M o r e  on  D i s t r i b u t e d  

D a t a b a s e  M a n a g e m e n t  

25.1 • O p t i m i z a t i o n  in Dis tr ibuted  
Database  M a n a g e m e n t  

To provide high performance on a variety of query and manipulative com- 
mands, the optimizer is an important component, even in a non-distributed 
version of a relational database management system. The optimizer is even 
more important in a distributed version. In fact, I would describe it as a 
sine qua non. 

It is not hard for a user to devise tests that show how good an optimizer 
is in any given relational DBMS product. The basic idea is as follows. A 
query is created that makes use of several of the basic relational operators: 
for example, one or two joins, a union, a selection, and one or two projections. 
Using the relational language supported by the product, the query is cast in 
at least two distinct forms, which can be expected to give markedly different 
performance if the optimizer is not doing its job. 

These forms differ primarily in the ordering of terms within them. If 
the DBMS yields quite different performance on these two forms, then it is 
not executing the first important step in optimization~namely, converting 
each query into a single canonical form so that the performance attained 
does not depend on how the user expressed the request in the relational 
language. 

A question that arises is' Why is the optimizer so important in handling 
distributed databases? The following example should answer this question. 
It demonstrates the radical difference in performance that can be achieved 
depending on the quality of the optimizer in a distributed database man- 
agement system. 

417 
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25.1.1 A F i n a n c i a l  C o m p a n y  E x a m p l e  

Consider a sample distributed database that includes relations concerning 
customers, investments that are offered by the company, and investments 
held by the customers: 

CUSTOMER C (stored at site X) 

C#  Customer serial number 

CN Customer name 

CC Customer city 

CS Customer state 

CUSTOMER-INVESTMENT CI (stored at site Y) 

C#  Customer serial number 

I#  Investment serial number 

CV Value in U.S. dollars 

INVESTMENT I (stored at site Y) 

I#  Investment serial number 

IT Investment type 

IU Unit of investment 

Suppose that the following assumptions hold: 

• 100,000 customers in relation C. 

• 2,000 distinct types of investments in relation I. 

• 200,000 customer-investments in relation CI. 

• 2,000 bits per row (in any relation). 

• 10,000 bits per second over the communications links, a rate equivalent 
to five rows per second. 

• 1-second delay in gaining access to the communications links. 

• 10 type-G investments. 

• 4,000 customers in Illinois. 

Consider a sample query, to be expressed in SQL: find the identifiers 
and names of customers in the state of Illinois who have investments of type 
G. One way of expressing this in SQL is as follows: 

SELECT C#,  CN 
FROM C, CI, I 
W H E R E  C.CS = 'Illinois' 
AND C.C#  = CI .C# 
AND CI . I#  = I . I#  
AND IT = 'G' 
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There  are at least six alternative methods that can be used in executing 
this SQL command;  only these six are presented.  In what follows, only the 
load on the inter-site communicat ions lines is computed for each case, since 
this is likely to be the dominant  factor. An adequate  optimizer would, of 
course, go further and calculate processing loads at each site and input- 
output loads at each site. 

Method 1" Move C to site Y 
100K rows @ 5 per sec = 20K seconds 

= 5 hours 33 mins 20 secs 

Method 2: Move CI and I to site X 
202K rows @ 5 per sec = 11 hours 

G R E A T E S T  C O M M U N I C A T I O N  T I M E  

Method 3" Execute (CI * I)[IT = 'G']  at site Y, 
where * denotes natural join using I #  as the comparand 
For each row, check site X to see if customer state = 'Illinois' 
2 messages for each type-G investment held 

= 200 messages at 1 sec delay and 0.2 sec transmission 
= 240 secs = 4 minutes 

Method 4: Execute C[CS = 'Illinois'] at site X 
For each row, check site Y to see if customer has investment of 
type G 
2 messages for each Illinois customer 

= 8K messages at 1 sec delay, 
and 0.2 sec transmission 

= 9600 secs = 160 minutes 
= 2 hours 40 mins 

Method 5- Execute (CI * I)[CT = 'G ' ] [C# ,  I#]  at site Y, 
where * denotes natural join using I #  as the comparand 
Move result to site X to complete the query 
1 row for each type G investment held 

= 100 × 0.2 secs 
(ignoring single delay of 1 sec) 

= 20 secs ~ L E A S T  C O M M U N I C A T I O N  TIME 

Method 6: Execute C [CS = 'Illinois'] at site X 
Move result to site Y 
1 row for each Illinois customer 

= 4000 x 0.2 secs = 800 secs 
(ignoring single delay of 1 sec) 

= 13 mins 20 secs 
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Of these six methods, Method 2 consumes the most communication 
time 11 hours while Method 5 uses up the least 20 seconds. A high- 
quality optimizer, together with adequate statistics on the database, would 
select Method 5. 

Exercise 25.2 at the end of this chapter requests the reader to (1) 
construct a sample database that is distributed to only two sites, (2) construct 
a sample query that requires information be retrieved from both sites and 
combined by means of a join, and (3) show that the longest time in com- 
munication across the network is N days and the shortest time is N seconds. 

This exercise is not particularly difficult and demonstrates the importance 
of designing a high-quality optimizer in each DBMS of a distributed database 
management system. Such an optimizer normally selects the approach with 
the least communication time, since this time dominates the loading on all 
resources when a command happens to involve two or more sites. If the 
communication happens to be trans-Atlantic or trans-Pacific, the differences 
in communication time mean very large differences in communication cost. 

These examples suggest that, if the optimizer in a distributed database 
management system is either weak or missing entirely, there is a serious 
risk that certain commands will consume an unacceptable time on the 
communication lines and will also make the costs of communication too 
heavy. In other words, a distributed relational DBMS with a weak or non- 
existing optimizer is a DBA's nightmare. 

The examples also suggest the following question: What is an adequate 
collection of statistics about the database? The DBMS should occasionally 
generate, and use in every optimization, at least a minimal collection of 
statistics. This collection consists of the number of rows in each base relation, 
together with the number of distinct values in every column of every base 
relation. From these statistics and the assumption that within every column 
the distribution of values is uniform, the DBMS can calculate for every 
column the expected number of occurrences of each distinct value within 
that column. 

It is important to realize that statistics about a database do not normally 
change significantly whenever a single insertion, deletion, or update is 
executed. Therefore, the DBMS need not modify the statistics whenever an 
insertion, deletion, or update is executed. There would be a severe loss of 
performance if the DBMS attempted to keep the statistics as up-to-date as 
that. In many situations, it is quite adequate if the DBMS (1) generates 
statistics about a base table when that table is created and loaded, and 
(2) updates the statistics either once every week, or only when they have 
changed significantly. 

It is known that the usual assumption of uniform distribution within 
each column of the distinct values in that column is quite often far from the 
actual distribution. Adoption of this assumption, however, is a significant 
step in the right direction. 
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R X - 2 4  M i n i m u m  S t a n d a r d  f o r  S t a t i s t i c s  

The DBMS must maintain at least simple statistics for every relation 
and every distinct column stored in a distributed database. The 
statistics should include the number of rows in each relation and the 
number of distinct values in each column, whether or not that column 
happens to be indexed. 

In early versions of relational DB2 products, statistics were generated 
for only those columns that happened to be indexed. Thus, statistics on non- 
indexed columns were simply not available to the optimizer. This serious 
design flaw was corrected in later versions. 

To appreciate the seriousness of this flaw, suppose that one is given the 
description of a distributed database, including which columns of the base 
relations are indexed. It is then possible to conceive sample queries whose 
performance is heavily dependent on statistics being available concerning 
non-indexed columns. This exercise demonstrates the total inadequacy of a 
DBMS that does not maintain statistics on every column, and whose opti- 
mizer fails to make full use of these statistics. 

25.1.2 M o r e  o n  O p t i m i z a t i o n  in  t h e  D i s t r i b u t e d  C a s e  

Assume that the DBMS is receiving query and manipulative commands 
expressed in a relational language in a logic-based style. Optimization in- 
volves the following five steps. 

1. Convert the given command into a canonical form based on first-order 
predicate logic. 

2. Convert the command into a sequence of relational operators, a se- 
quence that is simply and directly related to the canonical form. 

3. Examine all the ways in which this sequence can be altered without 
altering the final result of the command. 

4. Deduce, for each viable sequence of operators, 

a. which of the operators can be concurrently executed at different 
sites, and 

b. which access paths provide the shortest execution time for each 
operator. 

5. Calculate for each viable sequence of operators, in combination with 
the best access paths for that sequence, the consumption of resources 
using a linear combination of processing load at each site involved, 
input-output load at each site involved, and communication load on the 
network. The coefficients in this linear combination are those established 
(and seldom changed) by the DBA. 
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R X - 2 5  M i n i m u m  S t a n d a r d  f o r  t h e  O p t i m i z e r  

The optimizer in a distributed DBMS must be capable of estimating 
the resources consumed in executing a relational command in a 
variety of ways. To generate the most effective target code, the 
optimizer must combine the three main components (processor time, 
input-output time, and time on the communication system) using a 
linear function in which these times appear with coefficients selected 
initially by the system, but alterable by the DBA. 

It should be noted that relational algebra plays a significant role in the 
second step in optimization. My work in the period 1968-1972 [Codd 1969- 
1971d], during which I developed both the algebra and the logic (and, 
incidentally, their inter-relatedness) for querying and manipulating relations 
of arbitrary degree, lays the foundation for this step. 

The semi-theta-join operator was described in Section 5.2.2. This oper- 
ator can prove useful in efficiently executing joins between relations that 
happen to be stored at different sites, but it is not always the most efficient 
technique, because in some cases it can involve an increased amount of 
inter-site communication. This fact, however, should not discourage DBMS 
vendors from incorporating semi-theta-join into their designs. At present, I 
do not know of any distributed DBMS product that uses it. 

A final note on performance distinguishes the site at which a relational 
request is entered from the site or sites at which it is executed. The following 
feature was suggested by Professor Michael Stonebraker of the University 
of California at Berkeley. 

R X - 2 6  P e r f o r m a n c e  I n d e p e n d e n c e  i n  

D i s t r i b u t e d  D a t a b a s e  M a n a g e m e n t  

In a distributed relational DBMS, the performance of a relational 
request is to a large extent independent of the site at which the 
request is entered. 

25 .2  [] O t h e r  I m p l e m e n t a t i o n  C o n s i d e r a t i o n s  

Two types of concurrency must be supported by a relational DBMS. The 
first kind, called intra-command concurrency, consists of treating various 
portions of a single relational command as independent tasks, and executing 
these tasks concurrently. The second kind, called inter-command concur- 
rency, consists of executing two or more relational commands concurrently. 
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R X - 2 7  Concurrency Independence  in 
Distributed Database Management  

The DBMS supports concurrency of execution of relational opera- 
tors between all of the sites in the network. Application programs 
and activities by end users at terminals must be logically independent 
of this inter-site concurrency, whether the DBMS supports intra- 
command concurrency or inter-command concurrency or both. These 
programs and activities must also be independent of the controls 
(usually locking) that protect any one action from interfering with 
or damaging any concurrent execution. 

As previously mentioned, execution of a single relational command can 
involve activity at multiple sites. Therefore, the execution of a single trans- 
action can certainly involve activity at multiple sites. Aborting such a trans- 
action would therefore involve recovery at multiple sites. 

R X - 2 8  Recovery at Multiple Sites 

If it is claimed that the DBMS provides full support for distributed 
database management, then without user intervention the DBMS 
must support and coordinate recovery involving multiple sites when- 
ever it has been necessary to abort a transaction at multiple sites. 
Application programs and activities by end users at terminals must 
be independent of this inter-site recovery. 

The locking scheme implemented in the DBMS must detect deadlocks 
that may occur between actions at distinct sites. These are often called global 
deadlocks, but a better term is inter-site deadlocks. 

R X - 2 9  Locking in Distributed 
Database Management  

The DBMS detects inter-site deadlocks, selects one of the contend- 
ing activities, backs it out to break the cycle of contention, and 
forces it to wait until a fresh occurrence of the deadlock is avoided 
as a result of one contender completing or absorbing its transaction. 
Relational languages contain no features specifically for the handling 
of deadlocks. 
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For further information on the intricate controls needed to support the 
management of distributed data safely and reliably, see [Williams et al. 
19811 . 

25.3 • H e t e r o g e n e o u s  D i s t r i b u t e d  
Database  M a n a g e m e n t  

Today, many companies make use of several computer systems in their 
business. It is quite likely that these systems were acquired from different 
vendors, and that each is operated independently of the others. There is a 
growing demand for software that supports the sharing of data across these 
systems. 

In database terms, the software needed is called a heterogeneous dis- 
tributed database management system. Ideally, such a system should be able 
to support all the user-oriented features of the homogeneous case. This 
means that the system must be able to translate correctly, and in a single 
uniform way, any statements expressed in a single relational language, with 
the following additional kinds of independence: 

• hardware independence; 

• operating-system independence; 

• network independence; 

• DBMS independence; and 

m catalog independence. 

Today, there exists a great diversity in the hardware and software of 
the various vendors, in spite of all the effort that has gone into creating 
information processing standards. For example, no two versions of SQL from 
different vendors are completely compatible. Sometimes this is even true of 
any two versions from a single vendor. Another example" no two versions 
of the DBMS catalog from different vendors are compatible with one another. 

The lack of appropriate and enforced standards, and the non-conformity 
of products with respect to existing standards, make the heterogeneous 
distributed DBMS an extremely ambitious goal. Except in quite simple cases 
of heterogeneity, the products that emerge are likely to have an extremely 
large number of cases of user-unfriendly exceptions, which make some of 
them impractical and unacceptable. 

As an aside, the occurrence of duplicate rows within a relation in either 
the homogeneous or heterogeneous case presents a quite unnecessary ad- 
ditional problem. 

Occasionally, one hears that a non-relational DBMS, such as IMS, is to 
be in the same network as a relational DBMS. Unless the non-relational 
DBMS is very simple, the problems encountered in trying to make this work 
are enormous [Date 1984]. 
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2 5 . 4  • S t e p  b y  S t e p  I n t r o d u c t i o n  o f  N e w  K i n d s  
o f  D a t a  

There are several ways in which new kinds of data can be introduced into 
a distributed database. The following example stresses initiative at a partic- 
ular site (site X), and how that initiative can be introduced step by step into 
the network using the features that have been described in Chapters 24 and 

25. 
In this example new kinds of data are introduced in a sequence of six 

steps. The abbreviations I, V, A mean integrity constraints, view definitions, 
and authorization constraints respectively. 

The six steps for introducing new kinds of data into site X are: 

1. create the necessary domains and relations--an addition to the local 
catalog at site X; 

2. load some test data in these relations; 

3. create whatever I,V,A in the local catalog are needed for purely local 
use, principally for testing, and make the tests; 

4. obtain clearance from the global DBA for some users at site X to make 
read-only use of data in the network to participate in conditions for 
relational requests that confine their modifying activities to the new data 

only; 

5. load regular (non-test) data into the new relations; 

6. negotiate with the global DBA the introduction of these new relations 
into the network as site X participants. 

6.1 

6.2 

6.3 

6.4 

6.5 

The negotiation in Step 6 can be broken down into five parts" 

examine whether any new domains created at site X can be identified 
as domains that already exist on the network--if  so, use the global 
domain name and definition; 

determine the correspondence between the local names newly introduced 
at site X and the existing collection of global names; 

define necessary views ] these may straddle 

define integrity constraints I new and old data and 

define authorization constraints possibly several sites 

25 .5  • C o n c l u d i n g  R e m a r k s  

The relational model represents the best existing technology for supporting 
distributed database management. So far, it is the only approach that sup- 
ports a language of adequate level, a language in which the user is able to 
issue a request without dictating to the system how it is tO be carried out. 
To quote Dr. Bruce Lindsay Of. IBM Almaden Research Center, San Jose: 
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Single-record-at-a-time DBMS products (the old approach) in which 
the user or programmer has to navigate his way through the database 
are the kiss of death in managing distributed databases. 

The level of language is more than a matter of how many records or 
rows can be retrieved using a single command. It is also more than the 
complexity of the logical condition that can be expressed in a single command 
to determine which pieces of information are to be retrieved. Comprehen- 
sibility of statements expressed in that language represents an extremely 
important concern. This applies not only to end users, who may be nonpro- 
grammers, but also to application programmers, who often must maintain 
programs written by people other than themselves. In such a task, compre- 
hensibility of the statements in those programs is a sine qua non. 

Here are some more specific reasons why the relational model lends 
itself to the management of distributed data. The first reason, decomposition 
flexibility, is applicable to two important tasks: (1) the task of distributing 
a large database to multiple sites (discussed at length in Section 24.4), and 
(2) the task of decomposing logically expressed relational commands into 
sequences of operators of the relational algebra. 

From the discussion in Section 24.4, it should be obvious that the 
relational operators provide an extremely flexible tool for carving up the 
information for distribution purposes. A single relational command can touch 
many columns scattered over many relations. Such a command can be 
decomposed into the basic relational operators that are involved. The power 
of decomposition of relational commands should also be obvious from the 
discussion of optimization in Section 25.1. 

The second reason why the relational model lends itself to the manage- 
ment of distributed data is recomposition power. After a relational command 
has been decomposed into basic relational operators acting on data at various 
sites, these sites return data in the form of derived relations to the requesting 
site. This site now has the task of recombining these returned relations into 
the single relation that is the overall result that was requested. All the 
relational operators are available for specifying this recombining activity. 

The third reason is economy of transmission. As discussed earlier, upon 
receipt of a relational command, a distributed DBMS decomposes it into 
several basic relational operators that can be applied to the relations stored 
at various sites. These operators, expressed as simple relational commands, 
are sent as messages to the appropriate sites. Each command may involve 
the processing of hundreds, thousands, or possibly millions of rows in 
relations. If the DBMS had been an old single-record-at-a-time product, a 
message across the network would have been necessary for each one of the 
hundreds, thousands, or millions of records involved. Thus, a relational 
distributed database management system can be orders of magnitude cheaper 
than a non-relational DBMS in terms of inter-site communication costs, as 
well as orders of magnitude faster. 
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The fourth reason is analyzability of intent and optimizability. A query 
or manipulative command expressed in a relational language tells the DBMS 
what kinds of information the user wants and under what conditions, but 
does not specify how the system is to find and extract this information. It 
is therefore reasonable to say that (1) such a command expresses the user's 
intent, and (2) the methods used by the system to satisfy this intent are left 
entirely up to the system. These facts give the DBMS a very wide choice of 
methods from which to make a selection. 

Thus, the scope for optimization is significantly wider than that of any 
other approach known today. In turn, this means that, with respect to the 
management of distributed data, it is very difficult for any non-relational 
DBMS to compete in combination of cost and performance with a relational 
DBMS that is equipped with a well-designed optimizer. Note that it is 
essential for an optimizer to be able to re-optimize commands in a transaction 
that touches parts of the database where the statistics have changed signif- 
icantly. Then the DBA can feel confident that the system is really helping 
him or her to meet the DBA's responsibilities. 

The fifth reason, distribution independence, was explained in Chapter 
20 as one of the means by which a user's investment is protected if a 
relational DBMS is acquired. First of all, application programs can be 
developed for a non-distributed version of a relational DBMS. A distributed 
version of that same DBMS (if it is completely language-compatible with 
the non-distributed version) can then be installed. The database can be 
distributed to multiple sites that are geographically separated. The appli- 
cation programs that were originally developed for the non-distributed ver- 
sion will, without change, run correctly on the distributed version. 

Also, the data may be re-distributed across these sites and possibly 
others. Once again, application programs will continue to run correctly, 
without changing them. This ease of redistribution is an important require- 
ment for every company that acquires a distributed database management 
system, a requirement that companies often overlook. 

It has been proved that distribution independence is supportable by the 
relational model by means of prototype relational database management 
systems, such as System R (non-distributed) and System R* (distributed) 
[Williams et al. 1981]. Not one of the non-relational database management 
systems has been proven to be effective in this respect. The principal reasons 
for this superiority in the relational approach are (1) the very high level of 
relational languages, and (2) the sharp separation between the user's per- 
ception and manipulation of the data, on the one hand, and the storage 
representation and access methods used by the DBMS, on the other. 

To recapitulate, the five reasons why the relational approach lends itself 
to the interrogation, manipulation, and control of distributed data are as 
follows: 

1. decomposition flexibility; 

2. recomposition power; 
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3. economy of transmission; 

4. analyzability of intent; and 

5. distribution independence. 

Exercises  

25.1 

25.2 

Why does a DBMS need any statistics about the database? Why does 
a DBMS need statistics about each column of each relation in the 
database? Why is it insufficient for the DBMS to have statistics about 
indexed columns only? What are the minimum statistics required by 
RM/V2, and where are they stored? 

Construct a sample database which is simple (three relations are 
adequate) and which is distributed to only two sites (two of the 
relations at one site, one at the other site). Construct a sample query 
that requires information be retrieved from both sites and then com- 
bined by means of a join.  Select a set of realistic parameters for the 
communication rate across the network, the time to access the network 
for each message, and the number of bits per row of a relation. For 
some integer N of your own choosing, show that" 
1. If the optimizer does a bad job, the time spent in communication 

across the network is approximately N days. 
2. If the optimizer does a good job, the communication time is 

approximately N seconds. 

25.3 

25.4 

Hints: 
1. The three relations can be the usual suppliers S, parts P, and 

capabilities C. 
2. S and C can be stored in site # 1, and P in site # 2. 
3. Consider the query: Which suppliers are based in London and 

can supply instruments for airplanes? 
4. An example of parameters and their values that may be assumed: 

• Network access time for each message = 1 second. 

• Transmission speed - 10,000 bits per second. 

• Each record consists of 10,000 bits. 

Note that there are 86,400 seconds in a 24-hour day. 

What does it mean to assert that application programs and terminal 
activities must be independent of inter-site concurrency? 

Suppose that a transaction T straddles two or more sites. Consider 
the following five assertions: 
1. T must involve retrieval only; 
2. T must involve insertion only; 
3. T must involve update only; 
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25.5 

4. T must involve deletion only; 
5. T can involve any combination of retrieval, insertion, update, and 

deletion commands. 

Which of these five assertions is true, andwhich is false? Which of 
the currently available relational DBMS products supports such multi- 
site execution of a transaction? 

Is it possible for the execution of a single relational command to 
straddle two or more sites? Supply an example showing the need for 
this. Which of the currently available DBMS products supports such 
multi-site execution of a single command? Are there any constraints 
on the type of command? 





a C H A P T E R  2 6  • 

Advantages of the 

Relational Approach 

The advantages of the relational approach over other approaches to database 
management are so numerous that I do not claim that the 15 advantages 
discussed in this chapter constitute a complete list. My opinion regarding 
the various pre-relational approaches is that the only advantage they enjoy 
is that some large-scale users have a very large investment in those systems-- 
not only in the form of large quantities of company data represented in a 
way peculiar to the pertinent DBMS, but also in the form of application 
programs that appear to work correctly against that data. Such programs 
are very difficult to translate into the corresponding programs needed on a 
relational database, a difficulty largely due to the lack of a discipline in the 
design and use of pre-relational DBMS products. 

Even though the conversion from pre-relational to relational DBMS 
products is very labor-intensive and costly, I believe that users should start 
now to plan such a conversion, and execute the plan step by step. In this 
way, users can realize at an earlier time the benefits in cost, efficiency, and 
integrity of managing their databases by means of a more modern, relational 
DBMS. 

When a company postpones conversion to a relational DBMS, it incurs 
the cost of conversion sometime in the future, when the cost will be signif- 
icantly higher because of the labor-intensive nature of conversion. During 
the period of delay, the company also loses the productivity, safety, and 
security of the relational approach. 

431 
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26 .1  • P o w e r  

The relational approach is very powerful and flexible in access to information 
(by means of ad hoc queries from terminals) and in inter-relating information 
without resorting to programming concepts (e.g., iterative loops and recur- 
sion). The power stems from the fact that the relational model is based on 
four-valued, first-order predicate logic. 

26 .2  • A d a p t a b i l i t y  

Errors are often made in both logical and physical database design. When 
a database is created, it is virtually impossible to predict all the uses that 
will be made of it. With regard to changes in use of the data and changes 
in the database traffic, the relational approach is much more forgiving than 
any other approach. (There is no claim, of course, that it is totally forgiving.) 

The features that make the relational approach more capable of accom- 
modating change are the immunity of the application programs and terminal 
activities to the following types of changes: 

1. the storage-representation and access methods; 

2. the logical design of base relations; 

3. integrity constraints; 

4. the deployment of data at various sites. 

Database design is still necessary. When it becomes necessary to change 
either the logical or the physical design, however, a relational database is 
much more adaptive to the changes because of these four features. 

26 .3  m S a f e t y  o f  I n v e s t m e n t  

How safe is an investment in a relational DBMS? Will the relational ap- 
proach be replaced by some new, incompatible approach in the near future? 

Many people attach considerable importance to the fact that the rela- 
tional model has a sound theoretical foundation. It is based on predicate 
logic and the theory of relations, parts of mathematics that have taken about 
two thousand years to develop. Thus, it is highly unlikely that the theoretical 
foundation will be replaced overnight. This observation makes the relational 
approach a reasonably safe investment on the part of DBMS vendors and 
DBMS users. 

Furthermore, the relational approach is the only one to offer the four 
important investment-protection features cited in Chapter 20: (1) physical 
data independence, (2) logical data independence, (3) integrity indepen- 
dence, and (4) distribution independence. The kinds of investments pro- 
tected by these features include investments in the development of application 



26.5 Round-the-Clock Operation • 433 

programs and in the training of the programmers and end users. In acquiring 
any new DBMS produc t~whether  relational or not, and whether hardware, 
software, or both are involved~a  company is likely to invest more money 
in application programming and training than in actually purchasing the 
DBMS product. 

2 6 . 4  m P r o d u c t i v i t y  

Early users of relational DBMS products report a substantial increase in the 
productivity of their application programmers. This advantage can be traced 
to several facts: 

• Application programs developed to run on top of a relational DBMS 
contain significantly fewer database statements than corresponding ap- 
plication programs developed to run on a non-relational DBMS, 

• These statements convey intent, and are therefore easier to understand 
by people responsible for the maintenance of the programs, who may 
not be the original developers. 

• The database statements are clearly separate from the non-database 
statements, and can be separately developed and speedily debugged 
using terminals. 

• The burden of achieving the best performance is largely removed from 
the application programmer and interactive user, and is instead assumed 
by the DBMS. 

These early users also report that end users on their systems are able 
to make extensive use of the information in relational databases (including 
the generation of requested reports) without requiring help from application 
programming staff. This is mainly because, in constructing the relational 
model, I rejected the need for users to have programming skills in retrieving 
and modifying data in the database (skills such as designing iterative and 
recursive loops and creating I/O channel commands). 

This ability of end users to make direct use of information in relational 
databases without assistance is undoubtedly the primary reason why the 
relational DBMS market has expanded so quickly. In just a few years, it 
has overtaken the market for all its predecessors. One of the many reasons 
that users need substantially increased productivity is that it enables them 
to plan and launch new products much more rapidly. 

26 .5  • R o u n d - t h e - C l o c k  Operation 
The relational approach is designed for round-the-clock operation of the 
database management system. Pre-relational DBMS products often required 
the traffic on the database to be brought to a halt if changes were to be 

. . . .  2 - = 
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made in the access methods or access paths, or in any aspect of the database 
description (e.g., the record types in the database). 

In a relational DBMS, this interruption of service is unnecessary for the 
following reasons: 

• the sophisticated nature of the locking scheme; 

• the automatic recompiling of just those database manipulation com- 
mands adversely affected by any changes in the database description; 

• the inclusion of both data-definition commands and data-manipulation 
commands within any relational language. 

Indexes may therefore be dynamically created and dropped. New col- 
umns may be introduced dynamically into a base relation. Old columns may 
be dynamically dropped. Authorization may be dynamically granted and 
dynamically revoked. Domains, views, integrity constraints, and functions 
may be dynamically created and dropped. 

26.6 • P e r s o n - t o - P e r s o n  C o m m u n i c a b i l i t y  

One of the many problems with pre-relational DBMS products was that the 
application programmers had to have extensive training of a very narrow 
kind, training oriented toward the particular DBMS installed. This meant 
that it was virtually impossible for a company executive to find out for 
himself or herself what kind of information was stored in the database. To 
do so, the executive had to ask a database specialist to interrogate either 
the system or manually prepared documents related to the particular data- 
base, and then translate his or her discovery into terms comprehensible to 
the executive. 

With the relational approach, an executive can have a terminal on his 
or her desk from which answers to questions can be readily obtained. He 
or she can readily communicate with colleagues about the information stored 
in the database because that information is perceived by users in such a 
simple way. The simplicity of the relational model is intended to end the 
company's dependence on a small, narrowly trained, and highly paid group 
of employees. 

It is important to note that, if the relational approach is being used, end 
users and application programmers can at last talk to one another about 
both the content of the database (because of its simple structure) and 
database actions (because end users and application programmers employ a 
common database sublanguage). 

26.7 • D a t a b a s e  C o n t r o l l a b i l i t y  

The relational model was designed to provide much stronger machinery than 
any pre-relational DBMS for maintaining the integrity of the database. The 
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motivation was that many companies store in their databases information 
that is vital to the continued success of the company. The accuracy of this 
information is therefore of great concern. Now, it is well-known that pre- 
venting the loss of accuracy or integrity is much more readily mechanized 
than is the cure of such loss. 

As explained in Chapters 13 and 14, the relational model not only 
supports the two types of integrity (entity integrity and referential integrity) 
that apply to every relational database, but also supports domain integrity, 
column integrity, and user-defined integrity. In this last category, the model 
provides the power of four-valued, first-order predicate logic in the creation 
by users (principally the database administrator, of course) of integrity 
constraints that chiefly reflect the company policy, governmental regulations, 
and certain semantic aspects of the data used in designing the database. 

The environment in which the company operates is bound to change as 
time passes. Therefore, it is unrealistic to expect that company policy, 
government regulations, and the semantics of data will somehow remain 
unchanged. For this reason, the relational model supports integrity inde- 
pendence, which permits integrity constraints to be changed without chang- 
ing application programs. This integrity independence makes it much less 
costly to implement changes in integrity constraints, and therefore makes 
the company much more adaptable to environmental changes. 

Of course, in many of the relational DBMS products on the market 
today, support for the integrity features of the relational model is quite 
weak. This weakness reflects irresponsibility on the part of DBMS vendors. 

26 .8  • R i c h e r  V a r i e t y  o f  V i e w s  

Pre-relational DBMS products were quite weak in their support of views. 
For example, the CODASYL-proposed DBTG standard I of the 1970s sup- 
ported nothing more than those views that just one of the relational operators 
project can generate. The relational model, on the other hand, supports the 
full power of four-valued, first-order predicate logic in defining views. 

Unfortunately, the relational DBMS products available today do not yet 
possess the strength of the relational model in regard to defining views. 
Within the next decade or two, however, we can expect the necessary product 
improvements. 

26 .9  • F l e x i b l e  A u t h o r i z a t i o n  

Pre-relational DBMS products were embarrassingly weak in their support 
for permitting or denying access to parts of the database. Usually the access 
control was based on explicit denial of access by specified users to specified 

tFrom the Report of Data Base Task Group of CODASYL Programming Language Committee, 
April 1971. Available from ACM, BCS, and lAG. 
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record types or specified fields. Usually these DBMS products also failed 
to support access control that is dependent on values encountered in the 
database. 

The relational model, on the other hand, uses view definitions based on 
four-valued, first-order predicate logic to determine the portions of the 
database to which access will be permitted; these portions can easily be 
defined to be value-dependent. A user is then permitted by the system to 
access one or more specified views only, and to use certain specified rela- 
tional operators only on each view. 

2 6 . 1 0  • I n t e g r a t a b i l i t y  

On top of a DBMS, a user is likely to need products such as application 
development aids, report generation support, terminal screen painting sup- 
port, graphics support, support for the creation and manipulation of business 
forms, and support for logical inference. Pre-relational DBMS products 
offered nothing more than a low-level, single-record-at-a-time interface to 
such products. 

Relational DBMS products, on the other hand, offer a powerful, mul- 
tiple-record-at-a-time language for this purpose, making it significantly easier 
to develop the products on top. As a result, we can expect to see a vast 
proliferation of products that interface with relational DBMS products and 
make use of the data supported in the databases. 

Those products that support logical inference (e.g., a few of the so- 
called expert systems) can easily exploit the relational language interface, 
since'a ~ language for logical inference must be closely related to predicate 
logic, which is the most powerful known tool for making precise logical 
inferences. 

2 6 . 1 1  • Distributability 
Now that vendors have discovered the relational aPProach to database 
management, numerous systems capable of managing distributed databases 
are beginning to appear on the market. One DBMS product supports not 
only retrieval from remote sites, but also insertion, update, and deletion at 
remote sites, as well as full-scale transactions, each of which may straddle 
multiple remote sites without the user being aware of which sites were 
involved. 

In Chapter 25, I discussed five principal reasons why the relational 
approach has been far more successful than any non-relational approach in 
managing distributed databases: 

1. decomposition flexibility; 

2. recompositi0n power; 

3. economy of transmission; 
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4. analyzability of intent; and 
5. distribution independence. 

2 6 . 1 2  • O p t i m i z a b i l i t y  

The ability of a DBMS to assume a large portion of the burden of achieving 
good performance on all database interactions depends on its ability to 
generate the best quality target code from the source code in which the user 
expresses these interactions. This translation from source code to efficient 
target code is usually called the optimization problem. 

Although present relational DBMS products differ significantly in their 
abilities to handle the optimization problem, almost all of them have far 
superior capabilities in this area when compared with pre-relational DBMS 
products. This is because of both (1) the high level of relational languages 
and (2) the sharp separation of the user's perception of the data from the 
representation of this data in storage and from the access methods presently 
in effect. 

There are several reasons why companies should avoid depending on 
their application programmers, however skilled, for obtaining good perform- 
ance from the DBMS for their application programs. Even the most highly 
skilled programmers sometimes find it difficult to concentrate on the job at 
hand. In addition, the DBMS is in a far better position than the programmer 
to keep track of DBMS performance, and know when it is necessary to 
make changes in access methods and access paths and to recompile certain 
relational commands to cope efficiently with these changes. 

These remarks apply whether the database is distributed or not. In the 
distributed case, however, the DBMS can provide an additional service. It 
can help determine at appropriate times whether and how the database 
should be re-distributed. I do not know of any current product that provides 
this service. Perhaps the problem will be a good subject for one or more 
doctoral dissertations. 

2 6 . 1 3  • C o n c u r r e n t  A c t i o n  b y  M u l t i p l e  P r o c e s s i n g  
U n i t s  t o  A c h i e v e  S u p e r i o r  P e r f o r m a n c e  

For many years, people in the computer field have been aware of the vast 
difference in speeds of processing units, on the one hand, and secondary 
storage such as disks, on the other. There have been suggestions that what 
was needed in commercial data processing was a high-level language for 
input and output, but no such proposal has been forthcoming. Now, the 
relational approach to database management offers vast new opportunities 
to exploit concurrent action by multiple processing unitsmnot just 2, 4, or 
6 units, but 50, 100, or more. For example, Tandem has shown that, by 
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adding processing units, it is possible to obtain an improvement in speed of 
the whole system that is linear with cost. 

Tandem's NonStop SQL is more powerful in speed than any non-rela- 
tional DBMS products because automatic concurrent actions are made pos- 
sible by the relational approach, and Tandem exploits this concurrency 
opportunity to the hilt. By "automatic," I mean that the concurrency is not 
programmed by either the user or the application programmer. 

Incidentally, Tandem's announcement and the audited benchmark finally 
laid to rest the ill-conceived notion that the relational approach would never 
be accepted because it "performed poorly." No other architectural approach 
is known for achieving very high performance on database management: for 
example, over 1000 simple transactions per second, coupled with fast re- 
sponse (e.g., less than 2 seconds per transaction). The IBM product IMS 
Fastpath, once considered a leader in performance among database man- 
agement systems, has been overtaken by Tandem's NonStop SQL coupled 
with Tandem's NonStop architecture. Moreover, IMS and IMS Fastpath 
cannot catch up in this race, since they are single-record-at-a-time systems, 
in which opportunities for concurrent action are quite limited. 

It is worthwhile to distinguish between two types of concurrency: 

inter-command concurrency~concurrency between the execution of dis- 
tinct relational commands; 

. intra-command concurrency~concurrency between tasks that are part 
of a single relational command. 

The present release of Tandem's NonStop SQL concentrates on the first 
type, while the Teradata DBMS product concentrates on the second type 
of concurrency. 

2 6 . 1 4  • C o n c u r r e n t  A c t i o n  b y  M u l t i p l e  P r o c e s s i n g  
U n i t s  t o  A c h i e v e  F a u l t  T o l e r a n c e  

Today, as more and more companies become international in scope, they 
must operate effectively in multiple time zones. Such companies tend to 
need continuous, round-the-clock operation of their complete systems. Thus, 
if a processing unit, channel, or disk unit fails, the system as a whole should 
continue to function, even though its performance may be reduced. 

Tandem Corporation has shown that this fault tolerance can be achieved 
in data processing through its NonStop architecture (hardware and software), 
and in database management through its NonStop SQL (software). Thus, it 
is clear that one advantage of the relational approach is that it lends itself 
to a high degree of concurrent action, which, with an appropriate architec- 
ture, in turn leads to a high degree of fault tolerance. 

In scientific computing, arrays and matrices offer significant opportun- 



26.16 Summary of Advantages of the Relational Approach • 439 

ities for concurrent execution; this has been exploited to obtain performance 
improvements. In commercial data processing, relations offer similar op- 
portunities. The need in commercial data processing is greater, however, in 
that not only must performance improvements be obtained, but also signif- 
icant improvements in fault tolerance must be achieved. 

2 6 . 1 5  • Ease  o f  C o n v e r s i o n  

If and when the relational approach to database management becomes 
obsolete, it will be much easier to convert to whatever approach replaces 
the relational model. There are two chief reasons: 

1. all information in a relational database is perceived in the form of values; 

2. the language used in creating and manipulating a relational database is 
much higher in level than the languages used in pre-relational database 
management. 

2 6 . 1 6  • S u m m a r y  o f  A d v a n t a g e s  
o f  t h e  R e l a t i o n a l  A p p r o a c h  

To recapitulate, the relational approach is the leading approach to database 
management today because of its sound theoretical foundation plus the 
following 15 major advantages it has over other approaches. 

1. powerful approach; 

2. adaptability; 

3. safety of investment; 

4. productivity; 

5. round-the-clock operation: 

• dynamic tuning 

• dynamic change of database description; 

6. person-to-person communicability; 

7. control capability, especially integrity constraints; 

8. richer variety of views; 

9. flexible authorization; 

10. integratability; 

11. distributability; 

12. optimizability; 

13. radically increased opportunities for concurrent action by multiple pro- 
cessing units to achieve better performance; 
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14. radically increased opportunities for concurrent action by multiple pro- 
cessing units to achieve fault tolerance; and 

15. ease of conversion to any new approach. 

E x e r c i s e s  

26.1 

26.2 

26.3 

26.4 

26.5 

26.6 

26.7 

The introduction of relations into the management of large databases 
has spurred the development of commercial computer systems with 
large numbers of processing units capable of executing many com- 
mands concurrently. Identify two types of concurrency, and give two 
practical reasons why the multiplicity of processing units means im- 
proved service to users. 

A designer of DBMS products wrote a lengthy memorandum in the 
mid-1970s asserting that data models were a waste of time. He asserted 
that all that any vendor needed to supply were access methods. Take 
a position on this and compare" 

• the old access methods (SAM, ISAM, PAM, DAM, etc.); 

• the old database management systems (IMS, IDMS, ADABAS); 

• the relational model. 

Cite four ways in which RM/V2 is adaptable to change. 

Cite four reasons why a relational DBMS yields substantial increases 
in productivity. 

What capabilities does RM/V2 provide to help the DBA keep the 
database well-controlled and accurate? 

Cite five reasons for expecting the relational model to be more capable 
in managing distributed databases than any single-record-at-a-time 
DBMS. 

Why were pre-relational DBMS products unable to support optimizing 
as part of the translation from source language into efficient target 
language? 
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P r e s e n t  P r o d u c t s  

and  Future  

I m p r o v e m e n t s  

The extent of support of the relational model (even Version 1) in present 
DBMS products is disappointingly low. In Chapter 27 we discuss the major 
errors of omission and errors of commission in these products. These errors 
have a negative impact not only on the DBMS products themselves, but 
also on products developed to run on top of these DBMS products. We will 
discuss the future of these products on top from two viewpoints: 

1. The future if logically based. 

2. What is to be expected. 

The next subject to be discussed is the relatively new area of exploiting 
the many opportunities for concurrency offered by the relational approach 
in order to achieve top performance and fault tolerance. The last topic is 
the ability to communicate between machines of different architectures, 
including IBM's SAA (Systems Application Architecture) strategy. 

27 .1  • F e a t u r e s :  t h e  P r e s e n t  S i t u a t i o n  

Present relational DBMS products and languages, including the language 
SQL, support at most only half of the relational model, and consequently 
fail to provide some of the significant benefits of the relational approach. I 
have encountered among the staff of vendors a curious tendency to continue 
supporting obsolete methods because they are familiar. To some, familiarity 
appears more important than technical progress. 

44I 
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27 .1 .1  Errors  o f  O m i s s i o n  

The most important errors of omission in present versions and releases are 
domains as extended data types, primary keys, and foreign keys. The IBM 
product DB2 is one of the few that provides partial support for the keys. 
DB2, however, still fails to require exactly one primary key for each base 
R-table on a mandatory basis. It does not support the existence in the entire 
database of two or more primary keys on a single primary domain. These 
keys, of course, would necessarily occur in distinct R-tables. One conse- 
quence of two or more primary keys on a common domain is that a given 
foreign key may have two or more target primary keys. 

Finally, updating a primary key with the same update being applied to 
all corresponding foreign keys (1) requires the participation of the host 
language, (2) is far too complicated, and (3) depends on some application 
programmer knowing on an up-to-the-millisecond basis the state of the 
foreign keys for a given primary key. If the DBMS is relational, only the 
system can hold such knowledge. 

Additional features that are not supported in present versions of most 
relational DBMS products include referential integrity (although this is 
partially supported in DB2 Version 2), user-defined integrity constraints, 
and user-defined functions. 

Because of the inextricably interwoven features of the relational model, 
each of these omissions negatively impacts numerous benefits of relational 
DBMS. In particular, since domains are part of many features of the model, 
none of these features can be fully supported without first supporting do- 
mains. To cite just three examples" 

1. The DBMS should require that each foreign key be subjected to refer- 
ential integrity with respect to all of the primary keys with the same 
domain as the foreign key. To manage this on a highly dynamic basis, 
the system must know all the keys that draw their values from a common 
domain, and this knowledge must be current on a millisecond basis. 

2. Each pair of comparand columns in joins, relational division, and certain 
selects should be based on a common domain. The DBMS should always 
check this safety feature, unless the user requests the rarely used DO- 
MAIN CHECK OVERRIDE.  

3. A DBMS should check whether a requested union is meaningful or not. 
To do this, the system must be able to check the domains of all columns 
involved in the union. The same applies, of course, to relational differ- 
ence and intersection. 

Finally, view updatability in present products is extremely weak and 
inadequately investigated. Consequently, logical data independence is hardly 
supported at all. 
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27.1.2 Errors of Commiss ion  

In present DBMS products, there are not only numerous errors of omission, 
but also significant errors of commission, only three of which are discussed 
here. Among the errors of this type, SQL allows duplicate rows within a 
relation, whether base or derived. (See Chapter 23 for the resulting penal- 
ties.) Apparently, many vendors and ANSI have not noticed this and other 
flaws in SQL. 

A second major flaw in SQL is the inadequately investigated nesting of 
queries within queries. It should always be possible for the DBMS to 
translate a nested version into a non-nested version. One important reason 
is that the optimizer can then do an equally good job, no matter which 
version is presented by the user. Failure in this regard places a major part 
of the performance burden right back in the user's lap, just as in pre- 
relational DBMS products~and this is n o t  what I intended. Clearly, there 
must exist a canonical form into which all relational requests can be cast. 

A third major flaw lies in the way that present DBMS represent and 
treat missing database values. In RM/V2, both the representation of the fact 
that a database value is missing and the treatment of each missing value are 
independent of the type of value that is missing (see Chapter 8). Several 
relational DBMS products fail the representation requirement by repre- 
senting the fact that a numeric value is missing differently from the fact that 
a character-string value is missing. A few relational DBMS products satisfy 
the representation requirement, but fail the treatment requirement. 

The only feature in SQL related to the treatment question is the clause 
IS NULL. This feature is clearly inadequate, Moreover, four-valued logic 
should be provided under the covers in any relational DBMS product; the 
logic supported by most relational products today is not even three-valued. 

27 .2  • P r o d u c t s  N e e d e d  o n  Top  
of  t h e  R e l a t i o n a l  D B M S  

It is clear that the rapidly expanding market for relational DBMS products 
opens up a substantial market for products that operate on top of these 
systems. Such products must interface with relational DBMS; they do so by 
using whatever relational language the relational DBMS supports, usually 
SQL. Thus, in recent years vendors, especially software vendors, have an- 
nounced many new products that operate on top of the more popular 
relational DBMS products. 

Examples of such products follow: 

dictionaries forms support 
database design aids screen painting 
application development aids graphics support 
expert-system shells natural-language support 
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computer-assisted software 
engineering (CASE) tools 

re-engineering tools 

27 .3  • F e a t u r e s  o f  t h e  R e l a t i o n a l  D B M S  
a n d  P r o d u c t s  o n  Top A s s u m i n g  t h a t  t h e  F u t u r e  
is Log ica l ly  B a s e d  

If a relational DBMS is to provide all of the benefits of the Relational 
Model, it is important that the errors of omission and commission be fixed 
first. This is the only way to avoid giving these errors a permanence that 
results from the substantial investment users make on the assumption that 
the features of a system will continue to exist. 

Then, it Will be possible for both vendors and users to proceed on a 
secure foundation with (1) all the products on top and (2) distributed 
relational DBMS products. 

27.4 • Fea tures  of  R e l a t i o n a l  D B M S  a n d  P r o d u c t s  o n  
Top,  A s s U m i n g  t h a t  V e n d o r s  C o n t i n u e  to  T a k e  
a Very  S h o r t - t e r m  V i e w  

Vendors, however, are forging ahead with both products on top and dis- 
tributed relational DBMS products, disregarding errors in present relational 
DBMS products. All the evidence indicates that they will continue to do so. 

An inevitable result is that existing errors will become more difficult to 
fix, because more products and more users will be affected. Over time, the 
defects and deficiencies in the present versions of SQL will become totally 
embedded in relational DBMS products. 

It is important to be aware that, first, the language SOL is not part of  the 
relational model. Second, the defects and deficiencies in SOL correspond closely 
to the various departures of SOL from the relational model. 

27.5 • P e r f o r m a n C e  a n d  Faul t  T o l e r a n c e  

Many relational DBMS products offer excellent performance; some can 
outperform n0n-relational DBMS pr0ducts. Improvements in performance 
are being introduced rapidly as each new version or release comes to market. 

Today's leader in general fault tolerance, including DBMS fault toler- 
ance, is Tandem, with its NonStop architecture and NonStop SQL. Moreover, 
the adaptable performance of the NonStop architecture will prove attractive 
to many comPanies. If a user's workload grows, he or she can cope with 
the growth by adding onto the installed system several closely coupled 
processing units and additional disk-storage units. The user need not replace 
the entire installed system with a completely new, higher-performance system. 
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27.6  m P e r f o r m a n c e  a n d  F a u l t  T o l e r a n c e  A s s u m i n g  
t h a t  t h e  F u t u r e  Is L o g i c a l l y  B a s e d  

As more and more companies become international and operate in multiple 
time zones, there is a greater need for improved fault tolerance. There is 
also a growing need for very high transaction rates. Therefore, DBMS 
vendors can be expected to recognize the growing market for increased 
DBMS performance and fault tolerance. Eventually, they will also recognize 
that relational DBMS, coupled with architecture that exploits concurrency, 
can exceed the performance and fault tolerance of non-relational DBMS by 
a wide margin. 

It would be reasonable for each DBMS vendor eventually to exploit 
both inter-command and intra-command concurrency in its DBMS products 
(see Section 26.13 for an explanation of these terms). 

27.7 • P e r f o r m a n c e  a n d  F a u l t  T o l e r a n c e  A s s u m i n g  
t h a t  t h e  V e n d o r s  C o n t i n u e  to  T a k e  a V e r y  
S h o r t - t e r m  V i e w  

Why can we expect a logically based future in performance and fault tol- 
erance? Competition will force this, and vendors seem more comfortable in 
competing in this arena than in any questions related to the services provided 
by their products. 

Relational DBMS vendors will gradually see the advantages of exploiting 
the concurrency opportunities offered by the relational approach~specifi- 
cally, performance (usually measured in simple transactions per second), 
performance adaptability, and fault tolerance. 

2 7 . 8  • C o m m u n i c a t i o n  b e t w e e n  M a c h i n e s  
o f  D i f f e r e n t  A r c h i t e c t u r e s  

It is not easy to design effective communication links between machines of 
different architectures. Two major problems are (1) the concise represen- 
tation of control messages and (2) the representation of large blocks of data. 
Clearly, standards are needed in both areas. Some work has been done on 
the first, but it appears that no attention is being given by standards com- 
mittees to the second. 

The relational model offers a partial solution to the representation of 
large blocks of data--namely, how those blocks should be organized and 
structured. In addition, however, we need standards dealing with the bit- 
level representation of the various types of atomic data. I believe that the 
standards committees should have considered the communication of large 
blocks of data before trying to standardize on the relational language SOL. 
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IBM has introduced a much-needed standard for its own systems of 
different architectures. The IBM term is the systems application architecture 
(abbreviated SAA). A major part of this IBM standard is communication 
between databases managed on these different architectures. This commu- 
nication involves relational commands and relational blocks of data, an 
approach I advocated in 1970 in an internal memorandum addressed to a 
senior IBM manager in Poughkeepsie, New York. 

Communication concerning databases between machines acquired from 
different vendors involves numerous problems of substantial difficulty. 
Nevertheless, some software vendors are beginning to work on these prob- 
lems. If they are successful in solving them, the market for their products 
will be very substantial. The relational approach to database management 
appears to be the cornerstone of every current attempt to solve this com- 
munication problem. 

Exercises  

27.1 Present relational DBMS products fail to support numerous features 
of the relational model. List six such features. For each omitted 
feature, cite two benefits that users lose as a result. 

27.2 Many relational DBMS products violate a very fundamental feature 
in the relational model (a part of that model from its conception 20 
years ago). What is this feature, and what harm does this violation 
create? 

27.3 Why will vendors probably be slow to correct the infidelities to the 
relational model in their products, but will improve their architectures 
rapidly to support concurrent processing of data from databases? 

27.4 What kinds of products are needed on top of a relational DBMS? In 
what ways is SQL an inadequate database-oriented language for these 
products to use in communicating with the DBMS? 
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Extending the 

Relational Model  

28.1 • R e q u e s t e d  E x t e n s i o n s  

I am frequently asked how the relational model can be extended to handle 
(1) very large quantities of image data, (2) very large quantities of text, and 
(3) computer-aided engineering design. 

These kinds of data appear to require specialized user-perceived rep- 
resentation and specialized kinds of retrieval capability. In other words, the 
representation and retrieval are different from those of the relational model. 
At present, I believe that the details of handling these kinds of data should 
not be explicitly incorporated in the relational model, because (at present 
and in the foreseeable future) only a minority of businesses and other 
institutions are concerned with these three kinds of data. 

Note, however, that the version support required in computer-aided 
engineering is provided to a limited degree by the library check-out and 
return features, Features RM-19 and RM-20 (see Chapter 12). 

Instead of expanding the relational model to handle every specialized 
need, the interfacing features of the relational model should be exploited 
so that the usual kinds of data handled by the model can be enriched by 
developing specialized invokable functions. It then becomes unnecessary to 
introduce new, specialized features into the model. With respect to the 
relational language, this means the ability to incorporate data extracted from 
image bases, text bases, or design bases into the target part, the condition 
part, or both of a relational query. Note also that each image base, text 
base, and engineering base is likely to have descriptive data associated with 
it that is relational in character. 

447 
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What are these interfacing features? First, Features RF-4-RF-7 in Chap- 
ter 19 support user-defined functions that can be exploited in both the target 
part and the condition part of a relational request. Second, if necessary, the 
names of these functions, the names of the built-in functions, the names of 
their arguments, and the values of the arguments can all be stored as regular 
data in a relational database. Numerous other features of the model are 
user-defined. Two of the most important are user-defined integrity con- 
straints and user-defined extended data types. 

Incidentally, the term "user" in "user-defined" includes database ad- 
ministrators and even hardware and software vendors. Such vendors are 
quite likely to offer a package of functions for use with a relational DBMS 
in accessing image data. 

2 8 . 2  • G e n e r a l  R u l e s  i n  M a k i n g  E x t e n s i o n s  

Now let us discuss the introduction of new features into the relational model. 
When extending the representation, manipulative, or integrity aspects of 
either a DBMS or a relational language beyond the capabilities of RM/V2, 
I strongly recommend that the problem be examined first at the level of 
abstraction of the relational model. This means treating the relational model, 
together with any necessary and relevant extensions, as a tool for solving 
the problem. 

This approach is recommended because it is more likely to yield an 
extension that is minimal in complexity with respect to (1) user comprehen- 
sion and (2) implementation. It is also more likely to yield an elegant solution 
that avoids an unwarranted number of exceptions, each of which must be 
handled by additional pieces of code in the DBMS, and many of which 
burden users with exceptions that must be remembered. Such exceptions 
require different cases to be handled in quite different ways. 

Suppose that a simple extension to the relational model (e.g., adding a 
new authorization feature) will suffice. Then, the extension should be made 
unless in its present form it runs counter to other features of the relational 
model. If and when this inconsistency is discovered, a revised version should 
be created that is not inconsistent. 

When examining the usefulness of the model together with any necessary 
extensions for more complicated types of applications, the following 15 
questions should be answered: 

1. What is a precise statement of the general problem? 

2. What mathematical tools are known to be relevant, and, using examples, 
how can these tools be used? 

3. Does any collection of these tools solve the whole problem without the 
need for programming skill? 

4. Is a collection of relations of the relational model an adequate, simple 
representation tool for the problem? 
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5. Can a combination of relations, relational operators, and functions solve 
the manipulative aspects of the problem, while avoiding programming 
concepts such as pointers and iterative loops? Are any new operators 
needed? If so, which ones? 

6. Even though the functions may have to be coded by a programmer in 
one of the host languages, can the interface between the functions, their 
arguments, and the relational language protect the user from program- 
ming concepts? 

7. Is there any need for the names of invokable functions to be part of the 
database? Can Feature RF-9 in Chapter 19 (repeated next) be helpful? 

RF-9 D o m a i n s  a n d  C o l u m n s  C o n t a i n i n g  N a m e s  

o f  F u n c t i o n s  

One of the domains (extended data types) that is built into the 
DBMS is that of function names. Such names can be stored in a 
column (possibly in several columns) of a relation by declaring that 
the column(s) draw their values from the domain of function names. 
Both RL and the host programming language support the assemblage 
of the arguments together with the function name, followed by the 
invocation of that function to transform the assembled arguments. 

8. Is there any need for the names of arguments for these functions to be 
part of the database? Can Feature RF-10 in Chapter 19 (repeated next) 
be helpful? 

RE-tO D o m a i n s  a n d  C o l u m n s  c o n t a i n i n g  N a m e s  

o f  A r g u m e n t s  

One of the domains (extended data types) that is built into the 
DBMS is that of argument names. Such names can be stored in a 
column (possibly in several columns) of a relation by declaring that 
the column(s) draw their values from the domain of argument names. 
These arguments have values that can be retrieved either from the 
database or from storage associated with a program expressed in 
the HL. 

9. Which integrity constraints must be supported? 

10. Can a combination of relations, relational operators, and functions solve 
the integrity aspects of the problem, while avoiding programming con- 
cepts such as pointers and iterative loops? Are any new operators 
needed? If so, which ones? 
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11. 

12. 

13. 

14. 

15. 

From the standpoint of (a) end users, (b) application programmers, and 
(c) the DBA, what are the advantages and disadvantages of the relational 
approach? 

From each of these standpoints, what are both the manipulative and 
integrity aspects of the problem? 

How does this approach compare with other approaches (e.g., hierarchic 
and network-structured approaches)? 

Does a relational language that includes the extensions to support DBA- 
defined integrity constraints (described in Chapter 14) require even more 
extensions? If so, what are these extensions, and can programming 
concepts such as iterative loops be avoided? 

From the standpoint of the DBA, what are the advantages and disad- 
vantages of the relational approach to solving the integrity aspects of 
the problem when compared with other approaches? 

With regard to Question 6, it is neither necessary nor desirable to require 
that any functions that are involved be coded entirely in the relational 
language, Such a requirement would necessitate extending the relational 
language to become just another programming language that supports the 
coding of all computable functions. The functions can be coded in the host 
language, in the RE, or 8. combination. 

In executing these steps, it is very important to use proper relations 
(e.g., no duplicate rows), and to avoid the ordering of rows in any relation 
whenever the ordering represents information that is not also represented 
by values in the operand or result relations. It is also important to make 
sure that the extensions comply with the mathematical closure feature, 
Feature RM-5 (see Chapter 12). If any one of these recommendations is 
ignored, the extensions will be incompatible with the relational model. 

In this chapter, a bill-of-materials (BoM for brevity) type of problem is 
used from time to time as an example. This problem is of significant scope 
because it is a problem of wide ranging application. It is also a good example 
to use as an illustration of how the model can be extended because there is 
a very large market for a sound solution, and hence the extensions described 
for this example are very likely to be made. 

In 1987, I developed extensions of the relational model to handle the 
BoM-type of problem, both from the manipulative point of view and from 
the integrity preservation point of view. In 1988, I prepared a rather complete 
technical paper on this subject. One of my motivations for this work was 
that many people were glibly and falsely claiming that the relational model 
was incapable of solving this kind of problem. Although I have solved the 
BoM problem within the relational approach, the emphasis here is not on 
the solution, but instead on the method by which the solution was created. 
(The solution will be published elsewhere at a more appropriate time.) 
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In tackling the BoM problem, I bring to bear the powerful tools of the 
relational model and propose extensions to this model, especially additional 
manipulative techniques and integrity-preservation operators. It should be 
noted that the relational model requires that at least three aspects be 
covered: structural, manipulative, and integrity. These aspects are now 
discussed in turn. 

28.3 • I n t r o d u c t i o n  to  t h e  B i l l -o f -Mater ia l s  P r o b l e m  

In dealing with the BoM problem and similar problems, it is necessary to 
establish a precise theoretical foundation, allowing the methods developed 
to be handled correctly by computers. Therefore, relevant mathematical 
tools should be selected, such as graphs, matrices, and relations, along with 
their various operators. 

The main purpose of using these tools is to understand the problem and 
then invent commands to solve it. However, such commands should be 
usable by people who do not understand either regular programming or the 
underlying mathematics. 

As in Chapter 5, the terms "graph" and "network" are used to denote 
a set of points (called nodes) together with lines (called edges) that connect 
pairs of these points. When every edge of the graph has an associated 
direction, the graph is called a directed graph (or digraph, for brevity). It is 
then possible to speak of the starting node of each edge and the terminating 
node of that same edge. In the bill-of-materials problem, it is appropriate 
to make the following assumptions: 

• No edge has a single node that is both the starting node and the 
terminating node of that edge. 

• The number of edges that start at any selected node and provide an 
immediate link to any other single node is either zero or one (no other 
number is either necessary or acceptable). 

A principal aim is to extend the relational model so that it can manage 
a databasethat  happens to contain (but not necessarily exclusively) the kind 
of information to which the BoM-type of problem can be applied. Of the 
tools just mentioned, if software packages for presentation purposes are 
ignored, users will continue to see relations only. Graphs and matrices are 
used to explain the relational operators and the integrity constraints, as well 
as to show that implementation is feasible and potentially very efficient. 

28.4 u C o n s t r u c t i n g  E x a m p l e s  

To attack the problem and later to explain the solution, it is necessary to 
devise one or more examples that are simple enough to be readily under- 
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stood, but sufficiently complicated to contain the most serious problems 
encountered in finding the solution. Even when, for explanatory reasons, 
the examples are relatively simple, the methods described should be appli- 
cable to very large relations such as would pertain in the industrial world. 

In the connectivity part of the BoM type of problem, an example of this 
type is the product-structure graph shown in Figure 28.1. This acyclic graph 
represents the structure of several products by showing which parts are 
components of which. For the sake of simplicity, single letters are used as 
identifiers of distinct kinds of parts as they are assembled (including final 
products). An edge of the graph indicates that a certain part is an immediate 
component of some other part. The nodes labeled "product" represent 
products that are constructed within the company and then shipped out to 
customers. The nodes labeled "base" represent parts that are not constructed 
in the company. Base parts are likely to be purchased from outside sources 
and shipped in. 

Whenever product structure for two or more products is represented by 
a directed graph, each node represents a component and each edge repre- 
sents the fact that one component is an immediate component of another. 
That graph is certainly acyclic, but it is very unlikely to be hierarchic. Even 
in the unlikelY case that it begins life as a pure hierarchy, it is unlikely to 
remain that way. Thus, a general solution to the bill-of-materials problem 
should not assume the hierarchic structure. 

I claim to have a solution to the  general bill-of-materials problem, one 

Figure 28.1 The  S truc ture  of  Severa l  P r o d u c t s  
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that is very concise, that protects the user from iterative and recursive 
programming, and that provides pertinent integrity constraints as well as 
manipulative power. However, the recursive join described in Chapter 5 is 
not a complete solution to this problem. (The more complete solution will, 
of course, be published later.) 

2 8 . 5  a Representation Aspects 
The problem should be carefully examined to determine if the relations of 
the relational model are adequate as a representation tool. If a hierarchy 
or network is involved in the problem, it is not necessarily true that a 
hierarchic or network data structure is essential, or even necessarily best. 

In the BoM problem, the representation issue is how to represent 
product structure; such structure is often treated as if it were a pure hier- 
archy. Many observers draw the immediate conclusion that a DBMS is 
needed that exposes hierarchically structured data to users. Each hierarchic 
link would represent the fact that one type of part is an immediate component 
of another. Recent proposals to ANSI are clear evidence of this. 

A hierarchy may be an adequate representation in a few manufacturing 
environments, but in manymprobably most- - i t  is not adequate. In these 
latter environments, a particular type of part may be an immediate com- 
ponent of several types of parts, not just one. A second, all-too-rapid 
conclusion is that a DBMS is needed that exposes network-structured data 
to users. 

In fact, in 1970 I presented [Codd 1970] an extremely simple represen- 
tation of product structure in the relational model by means of the COM- 
PONENT relation: 

COMPONENT ( S U B _ P #  S U P _ P #  Q1 Q2 ... Qn ), 

where SUB___P# denotes subordinate part number, S U P _ P #  denotes su- 
perior part number, and Q1, Q2, ..., Qn denote immediate properties of 
each particular subordination. 

Note that the columns SUB__P# and S U P ~ P #  draw their values from 
the same domain, that of part numbers. Incidentally, if (pl, p2, ql, q2, ..., 
qn) is a row of the COMPONENT relation, then part pl is an immediate 
component of part p2. The fact that part p is a non-immediate component 
of a part p7 (say) is not directly represented in the COMPONENT relation. 
m fact of this type can be easily derived by the recursive join operator (see 
Feature RZ-40 in Chapter 5 and [Codd 1979]). 

The following relational representation of product structure represents 
the structure illustrated in Figure 28.1. To save space, the COMPONENT 
relation is abbreviated AG (for acyclic graph), the relation is listed "on its 
side," and the immediate properties of each edge are represented by a single 
lowercase letter. 

i 
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Name of Column Names 
e l a t i o n /  

AG SUP A B C C 
SUB D C D E 
P a b c d 

Typical Row 

D E IF IG G B F H H H K L N 
F F I gGI J N H H K L M N N X 
e f h i j k 1 m n o p q 

In a computer-oriented sense, this kind of representation in a relation 
is adequate for all kinds of networks, whether they happen to be pure 
hierarchies, acyclic nets, or nets in which cycles may occur. It is also a very 
simple representation for a computer to manage. For the product-structure 
network, the acyclic net is adequately general. 

In the preceding paragraph, I use the term "computer-oriented sense" 
because the relational representation is probably not the best for use by 
human beings, for whom graphs drawn as pictures appear to be more 
comprehensible and suitable. However, that subject can be discussed sep- 
arately, and handled by separate code, when presenting data to people in a 
form more consumable by people (e.g., the formatting of reports)~i t  has 
very little relevance to mechanizing the management of data. 

28 .6  l M a n i p u l a t i v e  A s p e c t s  

It was clear at least 10 years ago [Codd 1979] that extensions to the relational 
model would be required to handle the manipulative and integrity aspects 
of the BoM application. This application involves manipulating relations 
that represent acyclic directed graphs. Such manipulations usually involve 
transitive closure. In the context of relations, transitive closure is expressed 
in the form of recursive join. Feature RZ-40 in Chapter 5 is a simple version 
of this type of join. 

A slightly more complicated version of recursive join is needed for the 
BoM application. This is because this application has a connectivity aspect 
that deals with the path finding, and a computational aspect that deals with 
machine times, personnel times, and costs of assembling each batch of 
superior parts from a batch of subordinate parts. These two aspects should 
be handled together in as few passes as possible over the COMPONENT 
relation and other relations. 

Whatever new operators are introduced, they should have relations as 
both their operands and their results, in compliance with the operational 
closure feature, Feature RM-5 (see Chapter 12). The attempt by the Oracle 
Corporation to extend SQL to handle the BoM application is quite inadequate 
in that the total effort is represented by the CONNECT command. This 
command not only violates the closure feature, RM-5, but also fails to 
handle many aspects of the BoM problem, including the integrity aspects. 
Finally, in early releases the CONNECT command failed to work on views. 
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2 8 . 7  m I n t e g r i t y  C h e c k s  

Normally, it is necessary to establish the kinds of integrity constraints that 
are pertinent to the problem at hand. If these integrity constraints cannot 
be expressed in terms of those types already supported in RM/V2, it becomes 
necessary to invent extensions of RE and algorithms to support these exten- 
sions under the covers of the DBMS. 

In the case of the BoM example, RE extensions are needed, along with 
sample algorithms for supporting these extensions. When a database contains 
one or more relations, each of which happens to represent an acyclic graph, 
certain types of integrity checking are needed. Three of these types are 
discussed here: maintaining the acyclic constraint, checking for isolated 
subgraphs, and, when applicable, checking hierarchic structure. However, 
the discussion does not include the RM/V2 extensions or sample algorithms. 

28.7.1 C h e c k i n g  for U n i n t e n d e d  Cyc le s  

If, as a result of insertions or modifications, a relation that represents an 
acyclic graph changes in such a way as to reflect a cycle in the graph, this 
indicates that one part p is a component (not necessarily immediate) of 
another q, and that q is at the same time a component (not necessarily 
immediate) of p. This condition is normally deemed unacceptable. 

Hence, an overall method of checking the whole relation is needed to 
see whether it is acyclic. Furthermore, it is desirable to have a more localized 
method of establishing incrementally that any insertion into or modification 
of an acyclic relation does not introduce a cycle. In this way, the DBMS 
can efficiently ensure that a graph that is initially acyclic remains acyclic. 

28.7.2 I s o l a t e d  S u b g r a p h s  

Let us take the following definition: a subgraph of a graph G is any collection 
of edges all of which occur in the graph G. In the relational representation 
of graph G, each and every subset of that relation represents a subgraph of 
G. 

The two extremes are the largest subgraph (i.e., G itself) and the smallest 
subgraph (i.e., the empty graph with no edges). If g and G are graphs, then 
the complement of g in G is the set of edges in G but not in g; it is denoted 
G - g. Note that G - g is a subgraph of G. 

An isolated subgraph of G is any subgraph g of G that has no edges 
connecting it to the complement of g in G, namely, G - g. Therefore, in 
this case, the graphs g and G - g have no nodes in common. Clearly, an 
isolated subgraph may itself contain an isolated subgraph. Hence, one may 
sensibly speak of decomposing any given graph into a collection of minimal 
isolated subgraphs, each of which has no isolated subgraph itself. Two kinds 
of programs are needed: one intended merely to detect whether any subgraph 
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of G is isolated, and a second that identifies all the isolated subgraphs of 
G. 

Actually, when a graph G has an isolated sUbgraph g, then G has at 
least two isolated subgraphs: g and its complement with respect to G. In 
practice, from a purely logical standpoint, it may not be necessary to separate 
the isolated subgraphs by casting them into distinct relations. However, such 
separation may yield a noticeable performance advantage if large amounts 
of data are involved. 

28.7.3 S t r i c t  H i e r a r c h y  

A strict hierarchy is not only free from cycles, but also has the property that 
each node has exactly one parent, except for the topmost node which has 
no parent at all. Occasionally, it may be necessary to check whether the 
strict hierarchic structure has been maintained. 

2 8 . 8  [] C o m p u t a t i o n a l  A s p e c t s  

A general requirement is that a user be able to supply some of the arguments, 
that the database supplies the others, and that the DBMS invokes the 
appropriate DBA-defined functions. It should be possible to execute this 
activity by the user, together with the development of function definitions 
by the DBA, without programming tricks such as loops. This can be achieved 
within relational operators that scan graphs, whether these graphs are acyclic 
or not. 

The main requirement in the BoM application is to compute the cost, 
the time, or both for manufacturing one quantum of the kind of part at the 
terminating node, where a quantum is the smallest number of such parts 
built in a single run. The result should be a relation that indicates not only 
the previously cited cost, time, or both, but also the contribution to these 
amounts from each of the edges that must be traversed in manufacturing 
the pertinent part at node k. Then, the cost or time for N quanta can be 
computed by a simple final computation. 

Since each edge in the product structure graph is represented by a single 
row in the COMPONENT relation, it is easy to arrange for appropriate 
functions and arguments to be available for the edge-based computations 
by including as columns in this relation the names of pertinent functions, 
together with the names and/or values of arguments for these functions. 
This represents an exploitation of Features RF-9 and RF-10 (re-introduced 
in Section 28.2). 

It may also be necessary to exploit node-based functions and their 
arguments. This can be arranged similarly by including as columns in a 
PART relation the names of pertinent functions, together with the names 
and/or values of arguments for these functions. The PART relation has part 
number P#  as its primary key. This column contains at least all of the 
distinct part numbers that occur in the COMPONENT relation. 
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28.9 a C o n c l u d i n g  R e m a r k s  

Once again, there has been no attempt in this chapter to give a full account 
of the extensions of the relational model planned for the bill-of-materials 
application. Instead, the focus was on the general task of making extensions, 
using the BoM as an example. 

To make sensible and acceptable extensions of the relational model, it 
is necessary to be thoroughly familiar with the model. It is also necessary 
to make a thorough mathematical investigation of the problem that these 
extensions are designed to solve. One purpose of such an investigation is to 
determine whether any extensions are needed at all. Thus, it should be clear 
that, if a brilliant idea concerning an extension suddenly comes to mind, 
there remains a substantial piece of work before an extension should be 
proposed. 

E x e r c i s e s  

28.1 What are the 15 questions that should be answered when extending 
the relational model to handle a particular type of problem? 

28.2 Discuss whether conserving the mathematical closure of the relational 
operators is (1) crucial, (2) fairly important, or (3) of no concern 
whatsoever. 

28.3 It has been claimed that the bill-of-materials problem involves the 
processing of purely hierarchic data, and that therefore a hierarchic 
DBMS (such as IBM's IMS) is ideally suited to the problem. Take a 
position on this and defend it. 

28.4 In what specific way does the CONNECT command of the Oracle 
Corporation fail to satisfy the operational closure feature, Feature 
RM-5? In what additional respect is the Oracle approach to solving 
the bill-of-materials problem inadequate? 

28.5 Supply two reasons why mathematical tools other than relations should 
be explored whenever a significant extension of the relational model 
is being contemplated. 
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F u n d a m e n t a l  Laws 

of Database  M a n a g e m e n t  

This chapter could be regarded as summarizing in a new framework what 
has been presented earlier. Actually, however, it is an attempt to generalize 
upon the relational approach by stating concisely some 20 principles with 
which any new approach to database management should comply. My de- 
velopment of these principles was motivated by various object-oriented 
approaches to database management. 

What impressed me the most in these proposals was the clear lack of 
knowlege of the relational model on the part of their authors. In any attempt 
to invent an approach that is superior to the relational model, the first step 
must be to learn about that model. Moreover, one should not assume that 
the relational DBMS products of today or the corresponding manuals fairly 
represent the model. As a corollary, it is highly unlikely that anyone who 
has learned to use a relational DBMS solely from the vendor's manual really 
knows how to use it. 

The fundamental laws outlined in this chapter are principles to which 
the relational model adheres. Any new approach to database management 
intended to compete with the relational model should adhere to these 
principles. It appears unlikely that any competitor will seriously challenge 
the dominant position of the relational model today, because the model is 
based on first-order predicate logic. Predicate logic took 2,000 years to 
develop, beginning with the ancient Greeks who discovered that the subject 
of logic could be intelligently discussed separately from the subject to which 
it might be applied, a major step in applying levels of abstraction. 
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This chapter attempts to discourage the outrageous claims that have 
been made regarding "semantic data models." It is also an attempt to 
encourage researchers to direct their attention to the overall problem of 
database management, instead of considering only one small part, such as 
data structures. 

The fundamental laws are as follows: 

. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

i0. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

object identification; 

objects identified in one way; 

unrelated portions of a database; 

community issues; 

three levels of concepts; 

same logical level of abstraction for all users; 

self-contained logical level of abstraction; 

sharp separation; 

no iterative or recursive loops; 

parts of the database inter-related by value-comparing; 

dynamic approach; 

extent to which data should be typed; 

creating and dropping performance-oriented structures; 

adjustments in the content of performance-oriented structures; 

re-executable commands; 

prohibition of cursors within the database; 

protection against integrity loss; 

recovery of integrity; 

re-distribution of data without damaging application programs; 

semantic distinctiveness. 

Now, let us consider each of these laws in turn. 

1. Object identification 

A database models a micro-world. Each object about which information 
is stored in the database must be uniquely identified, and thereby 
distinguished from every other object. The DBMS must enforce this 
law. 

The unique identifier in the relational model is the combination of the 
relation name and the primary-key value. 

2. Objects identified in one way 

Both programming and non-programming users perceive all objects to 
be identified in exactly one way, whether these objects are abstract or 
concrete and whether they are so-called entities or relationships. 
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So far, no one has come forward with definitions for the concepts in the 
"whether" clauses that are reasonable, objective, precise, non-overlapping, 
and unambiguous. It is extremely doubtful that the task is worthwhile 
pursuing. In the relational model, such distinctions are avoided altogether. 

3. Unrelated portions of the database 

If the database can be theoretically split into two or more mutually 
unrelated parts without loss of information, whether stored or derived, 
there exists a simple and general algorithm, independent of access paths, 
to make this split. 

The database-splitting algorithm that is part of the relational model was 
described in Chapter 3. It is heavily based on the domain concept. 

4. Community issues 

All database issues of concern to the community of users (except, for 
the time being, performance goals and advice) should be: 

a. Removed from application programs, if incorporated therein; 

b. openly and explicitly declared in the catalog or in some part of the 
database to which all suitably authorized users have access; and 

c. managed by the DBMS. Such management includes enforcement in 
the case of integrity constraints and authorization. 

Much of the relational model is based on Fundamental Law 4. Such support 
is clearly visible in the techniques used for the retention of database integrity 
and in the authorization mechanism. 

5. Three levels of concepts 

Three levels of concepts must be distinguished: (1) psychological (the 
user's level), (2) logical and semantic (the logical level), and (3) storage- 
oriented and access-method (the physical level). 

A data model should address the requirements of the logical level first 
and foremost. Any attempt to define Level 1 or Level 3 must be accompanied 
by transformations of concepts, structure, data, and actions upon data from 
Level 2 to and from whatever level is added to Level 2. For a single logical 
Level 2, there may be many instances of psychological Level 1 and many 
instances of physical Level 3. Levels 1 and 2 do not represent different levels 
of abstraction. 

The relational model specifies the properties required at the logical level 
(Level 2), and in such a way as to leave to the DBMS vendors how to treat 
the physical level (Level 3) and the psychological level (Level 1). This model 
defines the boundaries between the three levels very sharply; and it may be 
the only existing approach that does this. 

6. Same logical level of abstraction for all users 

The level of abstraction supported by the DBMS for end users must be 
the same as that supported for application programmers. 
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This law runs counter to the practices of the past, when end users were 
offered query products that were defined separately and packaged separately 
from the DBMS. The designers of these query products tried to offer end 
users a higher level of abstraction than the DBMS offered to application 
programmers. 

7. Self-contained logical level of abstraction 

The logical level must be sufficiently complete that there is no need to 
proceed to a lower level of abstraction to explain how a command at 
the logical level works. 

An example of an unsuccessful departure from this law was a DBMS product 
that required those users with the responsibility of defining views to know 
how the information was represented at a lower level of abstraction. In 
effect, the product limited the defining of views to the DBA staff. While 
these people should have the specialized skills for this job, they would 
rapidly become overloaded with work that users should be able to do for 
themselves. 

8. Sharp separation 

In the services offered by the DBMS, there must be a sharp separation 
between aspects of Type 1 (the logical and semantic aspects), and those 
of Type 2 (the storage-representation and performance aspects, including 
access methods). 

It is this sharp separation that makes the relational model a standard that 
vendors can live with, while not restricting their freedom and inventiveness 
to design competitive products. This separation is also of great value to 
users since it protects their investment in training and in the development 
of application programs. 

9. No iterative or recursive loops 

In order to extract any information whatsoever in the database, neither 
an application programmer nor a non-programming user needs to de- 
velop any iterative or recursive loops. 

This law significantly reduces the occurrences of bugs in programs, and 
sharply improves the productivity of application programmers and end users. 
Great care has been taken to uphold this law in developing the relational 
model, more than in any other approach. 

10. Parts of the database inter-related by value comparing 

All inter-relating is achieved by means of comparisons of values, whether 
these values identify objects in the real world or indicate properties of 
those objects. A pair of values may be meaningfully compared if and 
only if these values are of the same extended data type. Inter-relating 
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parts of the database is n o t  achieved by means of pointers visible to 
users. 

It is safe to assume that all kinds of users understand the act of comparing 
values, but that relatively few understand the complexities of pointers. The 
relational model is based on this fundamental principle. Note also that the 
manipulation of pointers is more bug-prone than is the act of comparing 
values, even if the user happens to understand the complexities of pointers. 

11. Dynamic approach 

Performance-oriented structures can be created and dropped dynami- 
cally, which means without bringing traffic on the database to a halt. 
Automatic locking by the DBMS permits such activities without damage 
to the information content of the database and without impairing any 
transactions. 

With pre-relational DBMS products, there was a significant dependence on 
utilities--programs that changed the performance-oriented structures and 
access methods, but that could be executed in the off-line mode only. In 
other words, execution of any one of these utilities required that the database 
traffic be brought to a complete halt. In contrast, the relational approach, 
which is highly dynamic, can support the kind of concurrency architecture 
designed to cope with non-stop traffic on the database and provide various 
degrees of fault tolerance. 

12. Extent to which data should be typed 

The types of data seen by users should be strict enough to capture some 
of the meaning of the data, but not so strict as to make the initially 
planned uses and applications the only viable ones. 

When a new database is created or when new kinds of information are 
incorporated into an already existing database, the creator is almost always 
unable to foresee all the uses to which the new kinds of data will be applied. 
While suited to the development of programs, the object-oriented approach 
probably imposes too many restrictions on the use of data through its typing 
of data. 

13. Creating and dropping performance-oriented structures 

Performance-oriented structures, such as indexes, must be capable of 
being created and dropped by either the DBA or the DBMS without 
adversely affecting the semantic information, all of which should be in 
the database or in the catalog. 

At some time in the future, probably early in the next century, even the 
DBA will be eliminated from this law as an acceptable agent for creating 
and dropping performance-oriented structures. DBMS vendors will have 
invented ways in which performance-oriented structures can be automatically 
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adjusted to support changes in the database traffic, changes that last for a 
reasonable time. 

14. Adjustments in the content of performance-oriented structures 

When data is inserted into a database, updated, or deleted from a 
database by a user, it must not be necessary for that user or any other 
user to make corresponding changes in the information content of 
performance-oriented structures. It is the responsibility of the DBMS 
to make these adjustments dynamically. 

Most existing index-based relational DBMS products comply with this law 
by adjusting the content of their indexes automatically whenever an insert, 
update, or delete occurs on the data in the database. 

15. Re-executable commands 

Every command at the logical level of abstraction must be re- executable 
and yield exactly the same results, provided the data operated upon by 
the command remains unchanged in information content (i.e., un- 
changed at the logical level). This means that results must be indepen- 
dent of the data organization and access methods that are in effect at 
lower levels of abstraction. 

Most of the relational operators comply with this law. None of them is 
affected in its results by the data organization and access methods that are 
in effect at the time of execution. 

16. Prohibition of cursors within the database 

At the logical and psychological levels, users are not required to ma- 
nipulate cursors that traverse data within the database. However, cursors 
that traverse data extracted from the database are acceptable as a means 
of providing an interface to single-record-at-a-time host languages. 

Cursors within the database, a nightmare in the CODASYL approach to 
database management, are the source of severe bugs that are very hard to 
track down. In the debate in 1974 [Codd 1974], I used an example developed 
by members of the CODASYL DBTG committee that was intended by 
them to show off their approach. I demonstrated how the manipulative 
activity in this example could be reduced from eight pages of DBTG and 
COBOL code to just one statement in a relational language. It is interesting 
to note that, five years later, someone discovered that there were two bugs 
in the CODASYL program that were directly related to cursor manipulation. 

Cursors that traverse data extracted from a relational database are much 
easier to manage correctly. Such cursors are supported in several DBMS 
products to enable single-record-at-a-time host languages such as FORTRAN, 
COBOL, and PL/1 to interface with relational DBMS. However, these cursors 
are troublesome in the management of distributed databases. The file is a 
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more promising package for a relational DBMS to use in delivering data to 
programs written in these languages. 

17. 

18. 

Protection against integrity loss 

With the help of the DBA, the DBMS must provide strong protection 
against loss of data integrity. 

Recovery of integrity 

The support provided for correction of any integrity loss actually expe- 
rienced must include an audit log that is readily transformable into a 
database of the same kind as that handled by the pertinent approach. 

Laws 17 and 18 reflect the fact that it is easier to prevent loss of database 
integrity than to correct such loss. Even with an audit log, trying to correct 
loss of integrity is often a painful task. Without such a log, it is an impossible 
task in most cases. Much of the emphasis in the relational model is on 
prevention of such loss. 

19. Re-distribution of data without damaging application programs 

In a DBMS capable of managing distributed data, it should be possible 
to re-distribute the data in a highly flexible manner without affecting 
the logical correctness of any application programs. 

The relational model appears to be the only approach known today that is 
capable of supporting this law. For details, see Chapters 24 and 25. 

20. Semantic distinctiveness 

Semantically distinct observations, whether derived or not, must be 
represented distinctly to the users. In any database, all of the data 
redundancy that is made visible to the users must be both introducible 
and removable by those users who are authorized to do so, without 
affecting the logical correctness of any application programs and the 
training of interactive users. 

In all base and derived relations of the relational model, duplicate rows are 
prohibited. Note that data may superficially appear to be redundant, but 
still not be redundant. The crucial question is' If the data were removed, 
would information be lost? 

By now, the reader should be in a good position to counter the frequently 
held opinion that the relational model is nothing more than its structures, 
and that these structures are merely tables. How could the single concept 
of tables comply with all 20 of the principles just outlined? A thorough 
reading of the preceding 28 chapters should enable the reader to determine 
exactly how the relational model adheres to each and every one of these 
laws. 
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Exercises 

29.1 Taking each of the 20 fundamental laws in turn, list the features of 
RM/V2 that ensure compliance with the law. 

29.2 Choose any approach to database management other than the rela- 
tional model. Repeat the same 20 exercises for the approach selected. 
Then compare this approach with the relational model. 
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C l a i m e d  A l t e r n a t i v e s  

to  t h e  R e l a t i o n a l  M o d e l  

After the publication of my papers on Version 1 of the relational model in 
the period 1969-1973, numerous articles began to appear proposing new 
approaches to database management. Frequently, the articles began with 
the false claim that the relational model contains no features for representing 
the meaning of the data. 

Often these new approaches were no more than new kinds of data 
structure or data typingmoften new to the database management field only. 
In other words, the authors overlooked the need to specify query and 
manipulative operators, integrity constraints, authorization, commands for 
the DBA, a counterpart to the catalog, distributed database management, 
user-defined data types, and user-defined functions. That is why I call each 
of them an "approach," and avoid using the term "data model." 

Occasionally, mistakes of the past are revisited, apparently by authors 
who have no knowledge of the DBMS products of the past. Examples of 
such mistakes are repeating groups and representing information in many 
distinct ways. These mistakes add complexity but not generality. 

In this chapter, only five kinds of approaches are discussed: 

1. the universal relation approach (UR); 

2. the binary relation approach (BR); 

3. the entity-relationship approaches (ER); 

4. the semantic data approaches (SD); 

5. the object-oriented approaches (OO). 
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The main objective of this chapter is to improve understanding of the 
relational model, and especially to indicate why the relational model is the 
way it is. A lesser objective is to review these approaches as replacements 
for or alternatives to the relational model. The purpose is not to dismiss all 
the ideas contained in these approaches. Each one, except ER, contains 
some good ideas, some of which are quite eligible to be attached to the 
relational model. 

My comments about UR and B R tend to be quite precise becausethese 
approaches are precisely defined. On the other hand, my comments about 
ER, SD, and OO tend to be quite imprecise because at present these 
approaches are imprecisely defined with respect to database management. 

30.1 • T h e  U n i v e r s a l  R e l a t i o n  a n d  B i n a r y  R e l a t i o n s  

These two approaches to database design and management represent op- 
posite extremes. UR takes all the relations in a regular relational database 
and glues them together by means of one operator (e.g., natural join based 
on primary and foreign keys) to form a single relation of very high degree 
that is claimed to contain all the information in the given database. BR 
splits every relation into a collection of binary relations (i.e., relations of 
degree two) Thus, the universal relation can be regarded as a "macro" 
approach; the collection of binary relations, as a "micro" approach. 

Both approaches are examined with the principal aim of shedding more 
light on Why the relational model is based on a middle-of-the-road ap- 
proachmnamely, a collection of relations of assorted degrees. This means 
that any base or derived relation of the relational model can be of any 
degree n, where n is a strictly positive integer (n > 0). 

In contrast to the relational model, UR requires just one relation of a 
very large degree (the degree must be large enough to accommodate all of 
the information in the database). BR requires relations, each of which is of 
degree one or two only. 

As is apparent from the referenced papers (and perhaps this chapter), 
it is questionable whether either UR or B R is really comprehensive enough 
in tackling the total problem of database management to be treated as a 
data model. In the case of UR, it is also questionable whether the approach 
deserves the label "universal." 

In what• follows, I point out claims that are clearly false. In doing so, 
my aim is not to discourage university researchers from pursuing their lines 
of investigation, but rather to clarify these approaches and their relationship 
to the relational model. 

30.2  • W h y  t h e  U n i v e r S a l  R e l a t i o n  W i l l  N o t  R e p l a c e  
t h e  R e l a t i o n a l  M o d e l  

The "universal relation" is just One of the very many views Supported by 
the relational model. For detailed information, see [Maier, Ullman, and 
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Vardi 1984]. The assertion has been made [Vardi 1988]~and the very title 
of [Maier, Ullman, and Vardi 1984] makes this same c la im~tha t  the uni- 
versal relation can replace the entire relational model. This assertion is quite 
preposterous. I now present eight solid reasons for stating this. 

In [Vardi 1988], the author complains about the need for users to 
"navigate" through the logical parts of a relational database, and proposes 
the Stanford University "universal relation" as a means of protecting users 
from this burden. The "universal relation" fails completely to provide an 
alternative to the relational model. I am not arguing, however, that Stanford 
University should never have undertaken research into the "universal rela- 
tion"; there may be some useful by-products of this research. Nevertheless, 
I do think that the term "universal" is a complete misnomer-- the reason 
why it is enclosed in quotation marks in this chapter. 

In [Codd 1971d], I proved that collectively the algebraic operators of 
the relational model are as powerful as first-order predicate logic in retrieving 
information from a relational database. Indeed, if the several relations in a 
relational database are transformed into a single relation, the resulting 
relation, together with operators that can interrogate a single relation only, 
is not as powerful as the relational model. In the following subsections, eight 
reasons are presented for asserting that UR will not replace the relational 
model. 

3 0 . 2 . 1  T h e  O p e r a t o r s  

First, let us look at an ordinary relational database containing several 
relations, and consider how it might be transformed into a single "universal 
relation." Vardi and others suggest the use of either natural join or equi- 
join (it does not matter which is chosen) as the "connecting function." This 
function is presumably key-based~in  other words, it joins by comparing a 
primary key with a foreign key. Immediately, we are struck with the notion 
that there are 10 distinct kinds of theta-joins based on the following 10 
comparators: 

o 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

EQUAL TO 

NOT EQUAL TO 

LESS THAN 

LESS THAN OR EQUAL TO 

G R E A T E R  THAN 

G R E A T E R  THAN OR EQUAL TO 

GREATEST LESS THAN 

GREATEST LESS THAN OR EQUAL TO 

LEAST G R E A T E R  THAN 

LEAST G R E A T E R  THAN OR EQUAL TO 
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In constructing the "universal relation" using equi-join, what happened 
to the nine other kinds of theta-joins? Moreover, what happened to relational 
division, the algebraic counterpart of the universal quantifier? 

30 .2 .2  J o i n s  B a s e d  o n  K e y s  

The construction of a "universal relation" from a given relational database 
involves the repeated application of either natural join or equi-join based 
on the keys of the relational model. The "universal relation" is based on 
the false assumption that two classes of entities (e.g., suppliers and types of 
parts) have only one relationship between them. This assumption is proved 
false by citing just one counter-example: each supplier can be related to 
each type of part by its capability of supplying that part; each supplier can 
also be related to each type of part by its possibly several, actual deliveries 
of that part in response to a sequence of orders for the part. 

30 .2 .3  J o i n s  B a s e d  o n  N o n - k e y s  

If only key-based joins are used in constructing the "universal relation," 
then it is possible that hundreds of joins that are not based on keys have 
been overlooked. An example would be the query: "Find the employees 
who reside in a city in which the company owns one or more warehouses." 
Assume that this query is applied to a frequently encountered database in 
which city is not a primary key because of the company's lack of interest in 
cities as objects whose properties need to be recorded. In the relational 
model, this query then involves an equi-join based on a non-key. I fail to 
see how a user would make this request against a "universal relation" without 
applying equi-join as an operator to two parts of the allegedly "universal 
relation." 

Vardi claims the "universal relation" reduces the burden on users of 
choosing which operators to apply, and choosing the relations and attributes 
to which these operators should be applied. This claim may be true when 
only one operator is involved and it happens to match the one used in 
constructing the "universal relation." However, when there may be several 
operators involved in a single query and at least one of them does not match 
the construction operator, the user is faced with significantly more com- 
plexity than with the relational model. 

30.2.4 Cycl ic  K e y  S t a t e s  

It is not at all clear how the "universal relation" copes with what are often 
called cyclic key states. Suppose that a relation R1 has a primary key PK1, 
while a relation R2 has a foreign key FK1 drawing its values from the same 
domain as PK1. Suppose also that the primary key of R2 is PK2, and that 
R1 contains a foreign key FK2 drawing its values from the same domain as 
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PK2. Then, R1 and R2 participate in a cyclic key state, in which the cycle 
is of size two. 

An example may clarify this situation. Suppose that we are using the 
relational model and we have the following two relations" 

EMP ( E # . . .  DEPT#  . . . ), 

with primary key E# ,  and 

DEPT ( DEPT#  . . . M G R # . . .  ), 

with primary key DEPT#.  EMP identifies and describes employees, E #  is 
the employee serial number, DEPT#  is the department identifier, DEPT 
identifies and describes departments, and M G R #  is the employee serial 
number of the department manager. 

Suppose that (1) DEPT#  in EMP is a foreign key with respect to the 
primary key DEPT#  of the DEPT relation, and that (2) M G R #  in DEPT 
is a foreign key with respect to the primary key E #  of the EMP relation. 
Then, these two relations have a two-step cyclic key state. 

Clearly, such cycles can be of size greater than two. Cycles are not only 
possible, they occur rather frequently. Any solution to this problem in the 
context of the "universal relation," which requires data to be repeated in 
different parts of such a relation, is unacceptable as a confusing and unnec- 
essary form of redundancy. 

30.2.5 Insertion, Deletion, and Updating 

As a vehicle for inserting information, deleting, and updating, the "universal 
relation" is replete with problems. It is a relation that is not even in third 
normal form, let alone fifth. One can therefore expect to encounter update 
anomalies galore [Codd 1971b]. If the connecting function used in construct- 
ing the "universal relation" were other than a key-based join, there would 
be the serious possibility that it could not be updated at all. 

30.2.6 Coping with Change 

The ability of a data model to cope with change must be taken into account. 
Nothing is as certain as change in requirements as time goes on. A particular 
relation in the relational model may become obsolete through lack of use 
or for other reasons (perhaps it is going to be replaced by two or more new 
relations with different descriptions). 

The relation may then be simply dropped, and all remaining users of 
that relation warned of the drop. Unless that relation happens to be a 
boundary member of the "universal re la t ion"~which is improbable~the  
data will have to be extracted from some non-boundary position of the 
"universal relation" and it will be necessary to reconstruct this relation 
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completely. A similar remark applies to the counterpart in the "universal 
relation" of a newly introduced relation in the relational model. In either 
case, does this reorganization impair the application programs? 

30.2 .7  N o  C o m p r e h e n s i v e  D a t a  M o d e l  

No data model has been published for the UR approach. To be compre- 
hensive, such a data model must support all of the well-known requirements 
of database management. Until this occurs, companies intending to acquire 
a DBMS product should be concerned about the risk of investing in the 
"universal relational" approach. 

As an aside, Vardi's use of the term "access path" is a complete 
departure from the usual use of this term. Usually, it can be assumed that, 
when two or more alternative access paths can be used to extract certain 
data from a database, the only difference between those access paths is 
performance. There is no semantic distinction between the paths. In a 
relational DBMS, it is the optimizer that selects access paths with the 
objective of good performance. Vardi's "access paths" are quite different 
because distinct paths yield distinct results (all of the paths to which he 
refers are semantically distinct). 

30.2 .8  U R  N o t  E s s e n t i a l  for  N a t u r a l  L a n g u a g e  

The allegation in [Vardi 1988, page 85] that a "universal relation" is essential 
as a natural-language interface is quite incorrect. Curiously, advocates of 
the binary relational approach make the same claim. Certainly, at least one 
of the claims must be incorrect. It is my belief that both are incorrect. 

During the period 1974-1977, I led the development of a prototype 
translator from English to a relational language, and from the relational 
language back into precise English. This two-way translator was accompanied 
by a third component that supported clarification dialogue. Incidentally, I 
believe that it is very risky to use a natural-language package with any l~ind 
of database unless the package supports (1) clarification dialogue, and (2) 
before database access, a routine check by the system that it understands 
the user's request by telling the user in the same natural language precisely 
its interpretation of the user's request. 

All three components were based on the relational model and on pred- 
icate logic. The prototype, called Rendezvous [Codd 1978], was successfully 
tested in 1977 against 30 subjects with wide variations in their knowledge 
of computers and of English. Some subjects tried as hard as they could to 
beat the system, but failed. This evidence suggests that the natural-language 
claims of both the UR and the B R approaches are false. 
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30.2.9 Concluding  Remarks  Regarding UR 

In conclusion, I would not rule out the "universal relation" as one of the 
many views that should be supported in a relational DBMS, but I consider 
it incapable of replacing the relational model. I also believe that for many 
purposes it is too complicated as a relational view, and it is not likely to be 
popular even in that restricted role. The question remains: What does the 
'universal relation' accomplish that simpler views in the relational model do 
not? 

30.3 • Why the Binary Relation Approach Will Not  
Replace the Relational Model  

In Chapter 1, a false claim found in many mathematical textbooks was 
briefly discussed--namely, the assertion that every problem expressed in 
terms of relations of degree higher than two can be reduced to an equivalent 
problem in which the relations are of degree either one or two. This false 
idea has appealed to several people doing research in database management. 
Why not perceive and manipulate the information in the database as a 
collection of unary and binary relations? 

I believe that this approach was first proposed in the IBM Hursley 
Laboratory in England; a prototype [Titman 1974] was built there about 
1973. The approach recently re-surfaced at the University of Maryland [Mark 
1988]. One attractive feature is that it is easy to get a prototype into 
operational state because relatively few operators must be implemented, 
and these few are quite simple to implement. 

Users are faced with serious problems, however, if the approach is 
applied to the kind of large-scale databases encountered in the commercial 
and industrial world. If the binary relations are perceived as tables, they are 
two-column tables. 

In what follows, nine reasons are discussed for the assertion that the 
binary-relation approach cannot replace the relational model. For this pur- 
pose, it is useful to have two examples, each representing just a portion of 
a database. 

Consider a simple example: if an insurance-policy relation in the rela- 
tional model has a single-column primary key (usually the policy number), 
together with 100 columns each containing a simple immediate property of 
the policy, then in the binary relationship approach there will be 100 tables 
each with two columns. Each table carries the policy number to identify the 
policy, together with just one simple immediate property. 

Now consider a more complicated example: in a suppliers and parts 
database, suppose that there is a capability relation indicating in each row 
that a specified supplier can supply a specified quantum of a specified kind 
of part within a specified time at a specified cost. Note that the primary key 
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of this relation is composite. It consists of the combination of supplier serial 
number and part serial number. 

To represent this n-ary relation in terms of binary relations, the simple 
approach adopted in the insurance-policy case (i.e., repetition of the primary 
key along with each of the simple immediate properties) is no longer viable 
because each of those relations would be ternary (i.e., of degree three). 
One solution, perhaps the simplest, is to introduce an extra (artificial) single- 
column primary key in the n-ary version, and then convert that relation into 
a collection of binary relations, just as in the insurance case. Unfortunately 
the users will have to know about this artificial primary key in order to 
manipulate these binary relations properly. 

30.3.1  N o r m a l i z a t i o n  C a n n o t  B e  F o r g o t t e n  

In [Mark 1988], the author claims, 

"The model [he is referring to the BR approach] seems to be easy 
for non-technical people because it avoids normalization and because 
schemata defined in terms of the model can be read almost like 
natural language." 

In database design, normalization can certainly be relegated to an an- 
alytical or checking stage, but it cannot be avoided altogether if surprising 
anomalies in insertions, updates, and deletions are to be avoided when use 
of the database begins. Join dependencies, difficult to discover even in the 
regular relational model, are even more difficult to discover in B R. 

Corresponding to any given n-ary relational version of a database, there 
is clearly a binary relational counterpart. Consider two n-ary versions of a 
common conceptual database, one thoroughly normalized (say B1), and the 
other incompletely normalized (say B2). Each of these databases has a 
binary relational counterpart (say b l and b2, respectively). 

Unfortunately, in the binary relational form it is extremely difficult to 
see that b2 is effectively incompletely normalized, and that under certain 
conditions insert, update, and delete anomalies will occur. Thus, the claim 
that "normalization of n-ary relations can be forgotten" [Mark 1988] is false. 
Moreover, it is harder to cope with this aspect if the database designer is 
constrained to think in terms of binary relations only. 

30.3 .2  M u c h  D e c o m p o s i t i o n  u p o n  I n p u t  

When information about an insurance policy is entered into the insurance 
database, a good proportion is entered in a single operation. Otherwise, 
questions such as, "To whom does this policy belong?, . . . .  Does the policy- 
holder satisfy our minimum requirements for this kind of policy?," and 
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"How frequently does the policyholder have to be billed?" could arise and 
be unanswerable. 

If users are to perceive this policy information as part of a collection of 
binary relations, it is likely that the DBMS, either once upon entry or else 
many times, whenever the information is manipulated, must decompose the 
policy information into small pieces to fit into the large collection of binary 
relations. Even the policyholder's home address and work address each must 
be decomposed into at least six separate items: (1) apartment or suite number 
within a building, (2) building number within a street, (3) street name within 
a city, (4) city name within a state, (5) name of state, and (6) zip code. 
Presumably this task of decomposition is a burden on the DBMS, not the 
user. However, no matter where the burden falls such decomposition is 
completely unnecessary. 

An important part of the difficulties encountered with the BR approach 
is the fact that composite domains, composite columns, composite primary 
keys, and composite foreign keys all must be abandoned (see Section 30.3.5). 
From the user's point of view, the units of information that are atomic with 
respect to a DBMS based on the BR approach are frequently too small to 
support concise and clear thinking. 

30.3.3 Extra Storage Space and Channel  Time 

DBMS prototypes of the BR type tend to store the data in the form of a 
two-column table for each binary relation. The net result is that the storage 
spaceconsumed for a BR database is about double what would be required 
for a regular relational database. 

The extra bits have to be transmitted to and from the processing units 
across channels. Therefore, the channel load will be significantly greater 
than that experienced if the structure and operators of the relational model 
were used. 

30.3.4 Much Recompos i t ion  upon Output  

For obvious reasons, business and government reports are rarely, if ever, 
presented as a collection of two-column tables. Thus, the development of 
reports and replies to queries by any DBMS based on the binary relational 
approach entails putting together many items that are perceived by users as 
separately tabulated items residing in tables that have just two columns. 
This recomposition entails either many key-based natural joins of carefully 
selected binary relations, or else an extended version of natural join that 
collects all the desired properties into a single n-ary relation [Codd 1979]. 

Considering together the reasons in Sections 30.3.2 and 30.3.3, one 
wonders what the purpose of decomposition was, if it is followed later by 
as many recompositions as there are reports to be generated and queries 
for which replies are needed. 
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30.3.5 Composi te  Domains ,  Composi te  C o l u m n s ,  
and Composi te  Keys Abandoned  

The concepts of composite domains, columns, and keys fit quite naturally 
into the relational model. These concepts appear to have been abandoned 
in the binary relational approach. Any attempt to fit them into this approach 
is bound to result in bending the approach and in unnecessary complexity. 
The example of a person's  home address or work address cited earlier 
illustrates the need for composite domains and columns. The example of 
the capability relation cited earlier also illustrates the need for composite 
domains and composite primary keys, and therefore for composite foreign 
keys. 

The absence of these concepts from the binary relational approach means 
that users must manipulate information in the database in terms of pieces 
that are smaller than the user's customary perception. Thus, it should be 
expected that user productivity will decrease. 

30.3.6 The Heavy Load of Joins 

The binary relational approach places an unnecessarily heavy load of joining 
on the DBMS. In the regular relational model, database designers occa- 
sionally must de-normalize parts of the database to reduce the time spent 
in executing joins and, in this way, obtain good performance. The binary 
relational approach is likely to cause an order-of-magnitude increase in the 
execution of joins over that required by the relational model. 

30.3.7 Joins Restricted to Entity-based Joins 

In [Mark 1988], the author says that in the binary relation approach, "Re- 
lationships between object types are derived through entity-joins rather than 
symbol-joins." This is equivalent to taking the regular relational model and 
permitting key-based joins only, since keys denote objects, while non-keys 
denote properties of objects. All joins based on non-keys would be prohib- 
ited. This is a very severe restriction that would be hard to justify. 

Consider the query" Find the employees who live in a combination of 
city and state in which the company has a warehouse. Given Mark's ground 
rules, this query could not be handled by a binary relational DBMS, unless 
every city and state combination were already treated as an object (having 
its own immediate properties), and consequently this combination would 
constitute the primary key in some relation. 

When designing a database, it is quite likely that the designer will choose 
to treat the city and state combination as a combination of properties of 
other kinds of objects. Normally, this combination of city and state will be 
treated as an object only if the company's business heavily depends upon 
data maintained about cities (e.g., population, size of market, crime rate, 
and distribution of wealth). 
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30.3.8 I n t e g r i t y  C o n s t r a i n t s  H a r d e r  t o  C o n c e i v e  a n d  E x p r e s s  

In the relational model, each case of referential integrity frequently involves 
two distinct relations (although more than two can be involved). Many user- 
defined integrity constraints can also be expected to involve two or more 
distinct relations. In the binary relational approach, each of these integrity 
constraints is likely to involve even more distinct binary relations, and 
therefore be harder to conceive, more cumbersome to express, and entail 
more overhead for the DBMS, thus reducing its performance. 

As an example, consider any referential integrity constraint that involves 
a composite key in the relational model. As a second example, consider a 
user-defined integrity constraint that requires the company's salespeople to 
be based in city and state combinations for which the market is at least 10% 
of the company's total market in the immediately preceding year. 

30.3.9 No Comprehens ive  Data Model  

So far, the BR approach lacks a solid foundation. No data model for it has 
been published that supports all the well-known requirements of database 
management. Until this occurs, companies intending to acquire a DBMS 
product should be concerned about the risk of investing in the binary 
relational approach. 

3 0 . 4  • T h e  E n t i t y - R e l a t i o n s h i p  A p p r o a c h e s  

Numerous approaches based on splitting objects into two types, entities and 
relationships, have been proposed. Many of the authors of these approaches 
identify P.P. Chen as their source of inspiration [Chen 1976], even though 
he was by no means the first to propose such a split. In fact, this kind of 
split was an inherent part of the thinking that went into all single-record-at- 
a-time, pre-relational approaches to database management. Of the five 
approaches discussed in this chapter, this one is clearly the winner in terms 
of its lack of precise definitions, lack of a clear level of abstraction, and 
lack of a mental discipline. The popularity of ER may lie in its multitude 
of interpretations, as well as its use of familiar but obsolete modes of thought. 

The major problem in the entity-relationship approach is that one per- 
son's entity is another person's relationship. There is no general and precisely 
defined distinction between these two concepts, even when discussion is 
limited to a particular part of a business that is to be modeled by means of 
a database. If there are 10 people in a room and each is asked for definitions 
of the terms "entity" and "relationship," 20 different definitions are likely 
to be supplied for each term. 

A good example is an airline flight. An accountant is likely to think of 
this as an entity. Someone responsible for airplane scheduling or crew 
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scheduling is likely to think of it as a relationship between a type of aircraft, 
a flight route, a crew, and a date. 

A second problem with this approach is that a relationship between 
objects is not supposed to have immediate properties that are recorded in 
the database. It should be very obvious that relationships can have any 
number of immediate properties. Consider as an example a database con- 
taining information about parts and suppliers. Two quite distinct relation- 
ships between parts and suppliers are as follows: 

1. the CAPABILITY relation, in which each assertion states that a partic- 
ular supplier can supply a particular kind of part; 

2. the SHIP relation, in which each assertion states that a particular supplier 
has supplied a particular kind of part to the pertinent company. 

Each of these relations is likely to have a distinct collection of numerous 
immediate properties. For example, CAPABILITY may have estimated 
speed of delivery, the number of units supplied as a non-divisible package, 
and the cost of each such package. SHIP may have date of shipment, quantity 
of parts shipped, and an identifier for the destination warehouse. 

Even though a relationship may begin life with no immediate properties, 
it is extremely unwise to establish the database design and the development 
of application programs on the assumption that it will stay that way forever. 

If it is proposed to handle the manipulation of entities and relationships 
by means of distinct commands, then the vocabulary for retrievals, insertions, 
updates, and deletions is doubled over the vocabulary in the relational 
model. If no manipulative distinctions are made between entities and rela- 
tionships, why are they conceived as two different kinds of information? Is 
this just one more example of a distinction that leads to an increase in 
complexity, but no increase whatsoever in generality? 

No data model has yet been published for the entity-relationship ap- 
proach. To be comprehensive, it must support all of the well-known require- 
ments of database management. Until this occurs, companies intending to 
acquire a DBMS product should be concerned about the risk of investing 
in the entity-relationship approach. 

30.5 • The  S e m a n t i c  Data  A p p r o a c h e s  

The claim that an approach is semantic is a very strong claim indeed, strong 
enough to be considered extravagant. One test that I believe should be 
made to check such a claim is as follows. Imagine that the computer system 
is equipped with the five human senses: touch, smell, vision, hearing, and 
taste. If such a system were also equipped with a DBMS based on some 
approach that is claimed to be semantic, together with a database concerning 
suppliers, parts, warehouses, projects, and employees, could this system use 
its five senses and the database to distinguish these objects from one another 
in its environment, and recognize the type of each object? 
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While there have been numerous approaches to database management 
claimed to be semantic, the one discussed here is that of Hammer and 
McLeod [1981]. This particular case is chosen, because one United States 
vendor, Unisys, claims that its product INFOEXEC is based on it, and that 
"it will become the preferred approach to database management in the 
1990s" [Balfour 1988]. The major difficulties encountered by any approach 
that is claimed to be exclusively semantic are two-fold: 

1. there is no known, totally objective boundary to the world of semantics; 

2. there is no known way to replace predicate logic by semantic machinery. 

Of course, either or both of these states of affairs could change in the 
future, but in neither case is it likely to be an overnight change. Until such 
a change occurs, however, both of these states represent sound reasons for 
all of us to avoid claims that a semantic approach can replace the relational 
model. 

In [Hammer and McLeod 1981, page 353], the authors make the mistake 
of characterizing the relational model as "record-oriented." They proceed 
to declare that "it is necessary to break with the tradition of record-based 
modeling, and to base a database model on structural constructs that are 
highly user-oriented and expressive of the application environment." This 
completely overlooks all the integrity constraints of the relational model, as 
well as their definition by linguistic means independently of application 
programs. The linguistic approach to defining these aspects of the meaning 
of data is much more powerful than any known structural approach. It 
represents a strong step forward from the old hierarchic and network- 
structured approaches. 

In [Balfour 1988], the author lists several properties of the relational 
model that he alleges are "fundamental weaknesses." I find his supporting 
case for the allegations to be quite shallow and completely unconvincing. 
He interposes some criticisms of current SOL and current implementations 
of the relational model. I agree with his criticism of SOL, but I believe his 
assertion that "current implementations of the relational model have not 
performed as well as the older database technologies in high-volume on-line 
transaction-oriented environments" is not only false [Codd 1987a], but also 
irrelevant to his defense of semantic data approaches. 

No data model has yet been published for the semantic approach. To 
be comprehensive, it must support all of the well-known requirements of 
database management. Until this occurs, companies intending to acquire a 
DBMS product should be concerned about the risk of investing in the 
semantic approach. 

30 .6  • T h e  Object-oriented Approaches 
There are several different approaches in the object-oriented category, and 
no vendor has yet announced a database management product based on one 
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of them. The ideas in this kind of approach stem from the need in program- 
ming languages for more thoroughly defined and more abstract data types. 
In particular, the concept known as abstract data type is the key to most of 
the research in this area. Such ideas are clearly a step forward in the area 
of programming languages, but it is not at all clear that they represent a 
step forward in the technology for database management. 

As time progresses, a database is bound to change in terms of the types 
of information stored in it. In fact, there is likely to be a significant expansion 
in the kinds of information stored in any database. Such expansion should 
not require changes to be made in application programs. Some kinds of 
information may be dropped. When any drop occurs, there should be a 
simple way to detect (1) all the application programs that are adversely 
affected, and (2) all the commands within each such program that are 
adversely affected. 

If each of these requirements is met, the approach can be claimed with 
some credibility to be adaptable to change. When applied to database man- 
agement, the object-oriented approaches take a very restrictive and non- 
adaptable approach to the interpretation and treatment of data. 

It is important to ask whether any object-oriented language exists that 
is as high in level as the relational languages. Without a language that 
conveys the user's intent at a high level of abstraction, how can the system 
optimize the sequence of minor operations and the choice of access paths 
when executing a request? The answer to this question is particularly crucial 
when distributed database mangement is involved. 

Can the OO approach to database management support distribution 
independence? In other words, can application programs remain unchanged 
and correct when a database is converted from centralized to distributed, 
and later when the data must be re-distributed? What support does the OO 
approach provide for built-in and user-defined integrity constraints that are 
not embedded in the application programs? 

No comprehensive data model has yet been published for the object- 
oriented approach. To be comprehensive, it must support all of the well- 
known requirements of database management. Until this occurs, companies 
intending to acquire a DBMS product should be concerned about the risk 
of investing in the object-oriented approach. 

30 .7  • C o n c l u d i n g  R e m a r k s  

Both the SD and the OO approaches emphasize the need for DBMS products 
to support generalization or type hierarchies. I agree that such support is 
necessary, and showed with RM/T [Codd 1979] how type hierarchies could 
be supported without making the data structure concepts more complicated. 
This is a feature of RM/T that is very likely to drop down into RM/V3 
within the next decade. 

The five approaches to database management examined in this chapter 
are just five of many that are.now competing for a place in the sun. 
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Development of the relational model has made researchers aware of the 
impact a data model can have on the field of data processing. Each new 
model that comes along must be carefully examined from the standpoint of 
its technical merit, usability, and comprehensiveness. New theoretical con- 
tributions to the field should also be examined carefully, not glibly cast aside 
as just theory, and therefore not pract ical~a judgment made many times 
in the last 20 years about the relational model. 

E x e r c i s e s  

30.1 

30.2 

30.3 

30.4 

30.5 

30.6 

30.7 

joins and relational division are Occasionally criticized for requiring 
Users to engage in "logical navigation." This presumably means 
"finding their way through a logical data model." Discuss the claimed 
alternatives to logical navigation, and your position regarding how 
complete each alternative is and its technical pros and cons. 

Does the "universal relation" provide a means of protecting users 
from the multi-relation operators of the relational model? Defend 
your position on this issue. 

When insertions, deletions, and updates are applied to the "universal 
relation," what problems are encountered? 

When a new relation is created in a relational database, what is the 
counterpart activity in a "universal relation?" Create an example 
such that the addition cannot be attached to the outer boundaries of 
the "universal relation." 

Consider this query: find the suppliers, and 10 immediate properties 
of these suppliers, each of whom can supply every part listed by part 
serial number in a given unary relation. Assume that the database 
contains information about suppliers including their supplier serial 
numbers and 50 other immediate properties. Assume also that the 
database contains capability information about suppliers and parts, 
together with 20 immediate properties that apply to each combination 
of supplier and part. Outline a binary relational database, and express 
the query in terms of joins, relational division, projects, and so forth 
(but only as these operators apply to binary and unary relations). 
Do not assume that any relation of degree greater than two can be 
generated as a derived relation, except as the final "report-presen- 
tation" step. 

Take an example of a relation of degree five in which there exists a 
join dependency that is not a multi-valued or functional dependency. 
Cast this relation into a collection of binary relations that is equiv- 
alent in information content, Comment on whether the join depend- 
ency is easier to detect in this form or in the original form. 

A bank has branches in several cities, and each city has its own 
DBMS storing the customer accounts. Assume that the accounts are 
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30.8 

30.9 

30.10 

all the same in the kinds of identifying properties and other properties 
stored for each. Thus, they are union-compatible. Suppose that the 
DBMS in each city is part of the bank's overall control of its dis- 
tributed database. If each DBMS is based solely on the binary 
relation approach~ and each customer account has 20 distinct prop- 
erties recorded, iibw would you obtain at bank headquarters the 
union of all customer accounts? 

Supply six reasons why the "universal relation" will not replace the 
relational model. 

Supply eight reasons why the binary relation approach will not 
replace the relational model. 

How prevalent is the property-not-applicable mark in a ',universal 
relation?" Take a simple example involving 50 suppliers with 20 
distinct properties, 1,000 parts with 40 distinct properties, and 2,000 
capabilities with 15 distinct properties. Assume the usual condition 
that none of the properties of an object of any one type is applicable 
to objects of the other two types, where the three types are suppliers, 
parts, and capabilities. In this database, how many items of data are 
marked property inapplicable? 
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R M / V 2  F e a t u r e  I n d e x  

A.1  • I n d e x  t o  t h e  F e a t u r e s  

This index of the 333 features of Version 2 of the relational model described 
in this book is intended to make it easy to find each feature of RM/V2. 

The features are labeled with consecutive numbers within each of 18 
classes. The following table indicates the letters denoting each class and the 
chapter(s) each class falls in: 

Chapter Class 

18 A Authorization 
4 B Basic operators 

15 C Catalog 
21 D Principles of DBMS design 

3,7 E Commands for the DBA 
19 F Functions 

13,14 I Integrity 
11 J Indicators 
22 L Principles of language design 
12 M Manipulation 
6 N Naming 

20 P Protection 
10 Q Qualifiers 
2 S Structure 

4.83 
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Chapter Class 

3 T Data types 
16,17 V Views 
24,25 X Distributed database management 
5,17 Z Advanced operators 

In the "priority" column, the letter F or B appears (F denotes funda- 
mental, and hence top priority, while B denotes basic). The phrase "multiple 
rows" includes zero and one row as special cases that are not given special 
treatment. 

Note that DBMS products can be classified by the features they support. 
In the early 1990s, a DBMS product that fully supports all the features of 
both Type F and Type B deserves to be called advanced. 

Structure-Oriented and Data-Oriented Features (Chapter 2) 

Feature 
Label Priority 

RS-1 F 
RS-2 F 
RS-3 F 
RS-4 F 
RS-5 B 
RS-6 F 
RS-7 F 
RS-8 F 
RS-9 B 
RS-10 F 
RS-11 B 
RS-12 B 
RS-13 F 
RS-14 B 

Feature Title Page 

The information feature 30 
Freedom from positional concepts 32 
Duplicate rows prohibited in every relation 32 
Information portability 33 
Three-level architecture 34 
Declaration of domains as extended data types 34 

Column descriptions 35 
Primary key for each base R-table 35 
Primary key for certain views 36 
Foreign key 36 
Composite domains 37 
Composite columns 37 
Missing information: representation 39 
Avoiding the universal relation 40 

Domains as Ex tended  Data Types (Chapter 3) 

Feature 
Label Priority 

RT-1 F 
RT-2 F 
RT-3 F 

Feature Title Page 

Safety feature when comparing database values 46 
Extended data types built into the system 49 
User-defined extended data types 50 
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Feature 
Label Priority Feature Title 

RT-4 B Calendar dates 

RT-5 B Clock times 

RT-6 B Coupling of dates with times 

RT-7 B Time-zone conversion 

RT-8 B Non-negative decimal currency 

RT-9 B Free decimal currency 

Page 

50 

52 

53 

53 

53 

54 

The  ten compara to r s  in the ta-se lec t  and the ta- jo in  are as follows'  

1 E Q U A L  TO = 

2 N O T  E Q U A L  T O  4= 

3 LESS T H A N  < 

4 LESS T H A N  O R  E Q U A L  T O  < = 

5 G R E A T E R  T H A N  > 

6 G R E A T E R  T H A N  O R  E Q U A L  T O  > = 

7 G R E A T E S T  LESS T H A N  G <  

8 G R E A T E S T  LESS T H A N  O R  E Q U A L  TO G <  = 

9 L E A S T  G R E A T E R  T H A N  L >  

10 L E A S T  G R E A T E R  T H A N  O R  E Q U A L  T O  L >  = 

The Basic Operators (Chapter 4) 

Feature 
Label Priority 

RB-1 F 

RB-2 F 

RB-3 F 

RB-4 F 

RB-5 F 

RB-6 F 

RB-7 F 

RB-8 F 

RB-9 F 

RB-10 F 

RB-11 F 

RB-12 F 

Feature Title 

De-emphasis of Cartesian product as an operator 

The project operator 

Theta select using = 

Theta select using 

Theta select using < 

Theta select using < = 

Theta select using > 

Theta select using > = 

Theta select using G< 

Theta select using G<  = 

Theta select using L> 
Theta select using L< = 

Page 

66 

67 

69 

69 

69 

69 

69 

69 

69 

69 

69 

69 
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Feature 
Label Priority 

RB-13 B 

RB-14 F 

RB-15 F 

RB-16 F 

RB-17 F 

RB-18 F 

RB-19 F 

RB-20 F 

RB-21 F 

RB-22 F 

RB-23 F 

RB-24 B 

RB-25 F 

RB-26 F 

RB-27 F 

RB-28 F 

RB-29 F 

RB-30 F 

RB-31 F 

RB-32 F 

RB-33 B 

RB-34 B 

RB-35 F 

RB-36 B 

RB-37 B 

Feature Title Page 

The Boolean extension of theta-select 72 

Theta join using = 73 

Theta join using ~ 73 

Theta join using < 73 

Theta join using < = 73 

Theta join using > 73 

Theta join using > = 73 

Theta join using G< 73 

Theta join using G< = 73 

Theta join using L> 73 

Theta join using L< = 73 

The Boolean extension of thetaojoin 76 

The natural join operator 77 

The union operator. 78 

The intersection operator 81 

The difference operator 82 

The relational division operator 83 

Relational assignment 87 

The insert operator 88 

The update operator 89 

Primary.key update with cascaded update of for- 90 
eign keys and optional update of sibling primary 
keys 

Primary-key update with cascaded marking of for- 92 
eign keys 

The delete operator 92 

The delete operator with cascaded deletion 93 

The delete operator with cascaded A-marking and 94 
optional sibling deletion 

The Advanced Operators (Chapters 5 and 17) 

Feature 
Label Priority 

RZ-1 F 

RZ-2 F 

RZ-3 B 

RZ-4 B 

RZ-5 B 

Feature Title 

Framing a relation 

Extend the description of one relation to include 
all the columns of another relation 

Semi-theta join using = 

Semi-theta join using 

Semi-theta join using < 

Page 

98 

103 

105 

105 

105 
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Feature 
Label 

RZ-6 

RZ-7 

RZ-8 

RZ-9 

RZ-10 

RZ-11 

RZ-12 

RZ-13 

RZ-14 

RZ-15 

RZ-16 

RZ-17 

RZ-18 

RZ-19 

RZ-20 

RZ-21 

RZ-22 

RZ-23 

RZ-24 

RZ-25 

RZ-26 

RZ-27 

RZ-28 

RZ-29 

RZ-30 

RZ-31 

RZ-32 

RZ-33 

RZ-34 

RZ-35 

RZ-36 

RZ-37 

RZ-38 

RZ-39 

RZ-40 

RZ-41 

RZ-42 

RZ-43 

RZ-44 

Priority 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

Feature Title 

Semi-theta join using < = 

Semi-theta join using > 

Semi-theta join using > = 

Semi-theta join using G< 

Semi-theta join using (3< = 

Semi-theta join using L> 

Semi-theta join using L< = 

Left outer equi-join 

Right outer equi-join 

Symmetric outer equi-join 

Left outer natural join 

Right outer natural join 

Symmetric outer natural join 

Outer union 

Outer set difference .., 

Outer set intersection 

Inner T-join using < 

Inner T-join using < = 

Inner T-join using > 

Inner T-join using > = 

Left outer T-join using < 

Left outer T-join using < = 

Left outer T-join using > 

Left outer T-join using > = 

Right outer T-join using < 

Right outer T-join using < = 

Right outer T-join using > 

Right outer T-join using > = 

Symmetric outer T-join using < 

Symmetric outer T-join using < = 

Symmetric outer T-join using > 

Symmetric outer T-join using > = 

User-defined select 

User-defined join 

Recursive join 

Semi-insert operator 

Semi-update operator 

Semi-archive operator 

Semi-delete operator 

Page 

105 

105 

105 

105 

105 

105 

105 

107 

108 

108 

114 

114 

114 

117 

119 

120 

125 

125 

125 

125 

134 

134 

134 

134 

134 

134 

134 

134 

i34 
134 

134 

134 

137 

138 

140 

320 

321 

321 

321 
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Naming (Chapter 6) 

Feature 
Label Priority 

RN-1 F 

RN-2 F 

RN-3 F 

RN-4 F 

RN-5 F 

RN-6 F 

RN-7 F 

RN-8 B 

RN-9 B 

RN-10 B 

RN-11 B 

RN-12 B 

RN-13 B 

RN-14 B 

Feature Title Page 

Naming of domains and data types 146 

Naming of relations and functions 146 

Naming of columns 146 

Selecting columns within relational commands 148 

Naming freedom 148 

Names of columns involved in the union class of 148 
operators 

Non-impairment of commutativity 150 

Names of columns of result of the join and 151 
division operators 

Names of columns of result of a project 151 
operation 

Naming the columns whose values are function- 151 
generated 

Inheritance of column names 152 

Naming archived relations 152 

Naming integrity constraints 153 

Naming for the detective mode 153 

Commands for the DBA (Chapters 3 and 7) 

Feature 
Label Priority 

RE-1 B 

RE-2 B 

RE-3 F 

RE-4 B 

RE-5 B 

RE-6 F 

RE-7 F 

RE-8 B 

RE-9 F 

RE-10 F 

RE-11 B 

RE-12 B 

RE-13 F 

RE-14 F 

RE-15 B 

Feature Title Page 

The FAO__AV command 56 

The FAO__LIST command 57 

The CREATE DOMAIN command 156 

The RENAME DOMAIN command 157 

The ALTER DOMAIN command 157 

The DROP DOMAIN command 158 

The CREATE R-TABLE command 158 

The RENAME R-TABLE command 159 

The DROP R-TABLE command 159 

The APPEND COLUMN command 161 

The RENAME COLUMN command 161 

The ALTER COLUMN command 161 

The DROP COLUMN command 161 

The CREATE INDEX command 162 

The CREATE DOMAIN-BASED INDEX 163 
command 



A.I Index  to the  Features  • 489 

Feature 
Label Priority 

RE-16 F 

RE-17 B 

RE-18 B 

RE-19 B 

RE-20 B 

RE-21 B 

RE-22 B 

Feature Title 

The DROP INDEX command 

The CREATE SNAPSHOT command 

The LOAD AN R-TABLE command 

The EXTRACT AN R-TABLE command 

The CONTROL DUPLICATE ROWS 
command 

The ARCHIVE command 

The REACTIVATE command 

Page 

163 

163 

164, 

164 

164 

167 

167 

Missing Information (Chapters 8 and 9) 

Feature 
Label Priority 

RS-13 F 

RQ-1 B 
RQ-2 B 

RQ-3 F 

RQ-4 B 

RQ-5 B 

RJ-3 B 

RM-10 F 

RM-11 F 

RM~-12 F 

RM-13 F 

RI-12 F 

RI-26 B 

RI-27 B 

RF-9 B 

RF-iO B 

Feature Title 

Missing information: representation 

The MAYBE__A qualifier 

The MAYBE__I qualifier 

The MAYBE qualifier 

Temporary replacement of missing database 
values (applicable) 

Temporary replacement of missing database 
values (inapplicable) 

Missing-information indicator (result indicator) 

Four-valued logic: truth tables 

Missing information: manipulation 

Arithmetic operators: effect of missing values 

Concatenation: effect of marked values 

User-defined prohibition of missing database 
values 

Insertion involving I-marked values 

Update involving I-marked values 

Domains and columns containing names of 
functions 

Domains and columns containing names of 
arguments 

Page 

39 

209 

210 

210 

210 

210 

223 

236 

236 

237 

237 

250 

267 

268 

54 

55 

Qualifiers (Chapter 10) 

Feature 
Label Priority 

RQ-1 B 

RQ-2 B 

Feature Title 

The MAYBE__A qualifier 

The MAYBEmI qualifier 

Page 

209 

210 
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Feature 
Label Priority 

RQ-3 F 
RQ-4 B 

RQ-5 B 

RQ-6 B 
RQ-7 F 
RQ-8 B 
RQ-9 B 

RQ-10 B 
RQ-i1 F 

RQ-12 B 
RQ-13 B 

Feature Title 

The MAYBE qualifier 

Temporary replacement of missing database 
values (applicable) 

Temporary replacement of missing database 
values (inapplicable) 

Temporary replacement of empty relation(s) 
The ORDER BY qualifier 
The ONCE ONLY qualifier 

The DOMAIN CHECK OVERRIDE (DCO) 
qualifier 

The EXCLUDE SIBLINGS qualifier 

The appended DEGREE OF DUPLICATION 
(DOD) qualifier 
The SAVE qualifier 
The VALUE qualifier 

Page 

210 
210 

210 

211 
211 
214 
215 

216 
216 

218 
218 

Indicators (Chapter 11) 

Feature 
Label Priority 

RJ-1 B 
RJ-2 B 
RJ-3 B 
R J-4 B 

RJ-5 B 

R J-6 B 

RJ-7 B 

R J-8 B 
R J-9 B 

RJ-10 B 

RJ-11 B 
RJ-12 B 
RJ-13 B 
RJ-14 B 

Feature Title 

Empty-relation indicator (result indicator) 
Empty-divisor indicator (argument indicator) 
Missing-information indicator (result indicator) 
Non-existing argument indicator (argument 
indicator) 

Domain-not-declared indicator (argument 
indicator) 

Domain-check-error indicator (argument 
indicator) 

Domain not droppable, column still exists 
indicator (argument indicator) 

Duplicate-row indicator (argument indicator) 
Duplicate-primary-key indicator (argument 
indicator) 

Non-redundant ordering indicator (result 
indicator) 

Catalog block indicator (result indicator) 
View not tuple,insertible 

View not component-updatable 
View not tuple-deletable 

Page 

223 
223 
223 
224 

224 

224 

224 

225 
225 

225 

226 
226 
226 
227 
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Data Manipulation (Chapter 12) 

Feature 
Label Priority 

RM-1 F 

RM-2 F 

RM-3 B 

RM-4 F 

RM-5 F 

RM-6 F 

RM-7 B 

RM-8 F 

RM-9 F 

RM-10 F 

RM-11 F 

RM-12 F 

RM-13 F 

RM-14 F 

RM-15 F 

RM-16 B 

RM-17 B 

RM-18 F 

RM-19 B 

RM-20 B 

Feature Title Page 

Guaranteed access 229 

Parsable relational data sublanguage 230 

Power of the relational language 231 

High-level insert, update, and delete 231 

Operational closure 232 

Transaction block 233 

Blocks to simplify altering the database 234 
description 

Dynamic mode 235 

Triple mode 235 

Four-valued logic: truth tables 236 

Missing information" manipulation 236 

Arithmetic operators: effect of missing values 237 

Concatenation" effect of marked values 237 

Domain-constrained operators and DOMAIN 238 
CHECK OVERRIDE 

Operators constrained by basic data type only, if 238 
one operand or both operands are function- 
generated 

Prohibition of essential ordering 239 

Interface to single-record-at-a-time host 239 
languages 

The comprehensive data sublanguage 240 

Library check-out 240 

Library return 241 

Integrity Constraints (Chapter 13) 

Feature 
Label Priority 

RI-1 F 
RI-2 F 

RI-3 F 

RI-4 F 

RI-5 F 

RI-6 B 

RI-7 B 

Feature Title Page 

Domain integrity constraints: Type D 246 

Column integrity constraints: Type C 246 

Entity integrity constraints: Type E 246 

Referential integrity constraints: Type R 246 

User-defined integrity constraints: Type U 246 

Timing of testing for Types R and U 247 

Response to attempted violation of Types R and 248 
U 
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Feature 
Label Priority 

RI-8 B 

RI-9 B 

RI-10 B 

RI-11 F 

RI-12 F 

RI-13 B 

RI-14 B 

RI-15 B 

RI-16 F 

RI-17 B 

RI-18 B 

RI-19 F 

RI-20 B 

RI-21 B 

RI-22 B 

Feature Title Page 

Determining applicability of constraints 248 

Retention of constraint definitions for Types R 248 
and U 

Activation of constraint testing 249 

Violations of integrity constraints of Types D, 249 
C, and E 

User-defined prohibition of missing database 250 
values 

User-defined prohibition of duplicate values 251 

Illegal tuple 251 

Audit log 252 

Non-subversion 252 

Creating and dropping an integrity constraint 253 

New integrity constraints checked 253 

Introducing a column integrity constraint (Type 253 
C) for disallowing missing database values 

Minimal adequate scope of checking 254 

Each integrity .constraint executable as a 255 
command 

On-the-fly, end of command, and end of 255 
transaction timing 

User-Defined Integrity Constraints (Chapter 14) 

Feature 
Label Priority 

RI-23 B 

RI-24 B 

RI-25 B 

RI-26 B 

RI-27 B 

RI-28 B 

RI-29 B 

RI-30 B 

RI-31 B 

RI-32 F 

RI-33 F 

RI-34 F 

Feature Title Page 

Information in a user-defined integrity constraint 260 

Triggering based on AP and TU actions 260 

Triggering based on date and time 261 

Insertion involving I-marked values 267 

Update involving I-marked values 268 

Functional dependency constraint 272 

Multi-valued dependency constraint 272 

Join dependency constraint 273 

Inclusion dependency constraint 273 

The REJECT command 274 

The CASCADE command 274 

The MARK command 274 
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The Catalog (Chapter 15) 

Feature 
Label Priority 

RC-1 F 

RC-2 F 

RC-3 F 

RC-4 F 

RC-5 B 

RC-6 F 

RC-7 B 

RC-8 F 

RC-9 B 

RC-10 F 

RC-11 F 

Feature Title 

Dynamic on-line catalog 

Concurrency 

Description of domains 

Description of base R-tables 

Description of composite columns 

Description of views 

User-defined integrity constraints 

Referential integrity constraints 

User-defined functions 

Authorization data 

Database statistics in the catalog 

Page 

278 

278 

279 

279 

280 

280 

281 

281 

282 

282 

282 

Views (Chapters 16 and 17) 

Feature 
Label Priority 

RV-1 F 

RV-2 F 

RV-3 F 

RV-4 F 

RV-5 F 

RV-6 F 

RV-7 F 

RV-8 F 

Feature Title 

View definitions: what they are 

View definitions: what they are not 

View definitions: retention and interrogation 

Retrieval using views 

Manipulation using views 

View updating 

Names of columns of views 

Domains applicable to columns of views 

Page 

285 

287 

288 

288 

289 

290 

291 

291 

Authorization (Chapter 18) 

Feature 
Label Priority 

RA-1 F 

RA-2 F 

RA-3 B 

RA-4 B 

RA-5 B 

RA-6 F 

Feature Title 

Affirmative basis 

Granting authorization: space-time scope 

Hiding selected columns in views 

Blocking updates that remove rows from a view 

N-person turn-key 

Delayed deletions of data and drops by 
archiving 

Page 

327 

327 

329 

330 

330 

331 
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Feature 
Label Priority 

RA-7 F 

RA-8 F 

RA-9 B 

RA-10 F 

RA-11 B 

RA-12 B 

RA-13 B 

RA-14 B 

RA-15 B 

RA-16 B 

Feature Title 

Authorizable database-control activities 

Authorizable query and manipulative activities 

Authorizable qualifiers 

Granting and revoking authorization 

Passing on authority to grant 

Cascading revocation 

Date and time conditions 

Resource consumption (anticipated or actual) 

Choice of terminal 

Assigning authorization 

Page 

331 

332 

333 

333 

334 

334 

334 

335 

335 

335 

Functions (Chapter 19) 

Feature 
Label Priority 

RF-1 F 

RF-2 F 

RF-3 B 

RF-4 B 

RF-5 B 

RF-6 B 

RF-7 B 

RF-8 F 

RF-9 B 

RF-10 B 

Feature Title 

Built-in aggregate functions 

The DOD versions of built-in statistical 
functions 

Built-in scalar functions 

User-defined functions: their use 

Inverse function required, if it exists 

User-defined functions: compiled form required 

Functions can access the database 

Non-generation of marked values by functions 

Domains and columns containing names of 
functions 

Domains and columns containing names of 
arguments 

Page 

338 

340 

340 

341 

341 

341 

342 

342 

343 

344 

Protection o f  I nve s tmen t  (Chapter 20) 

Feature 
Label Priority 

RP-1 F 

RP-2 B 

RP-3 B 

RP-4 B 

RP-5 B 

Feature Title 

Physical data independence 

Logical data independence 

Integrity independence 

Distribution independence 

Distributed database management: 
decomposition and recomposition 

Page 

345 

346 

347 

347 

349 
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DBMS Design (Chapter 21) 

Feature 
Label Priority 

RD-1 F 

RD-2 F 

RD-3 B 

RD-4 F 

RD-5 B 

RD-6 F 

RD-7 B 

RD-8 B 

RD-9 B 

RD-10 B 

RD-11 F 

RD-12 B 

RD-13 F 

RD-14 B 

RD-15 F 

RD-16 F 

Feature Title 

Non-violation of any fundamental law of 
mathematics 

Under-the-covers representation and access 

Sharp boundary 
Concurrency independence 

Protection against unauthorized long-term 
locking 

Orthogonality in DBMS design 

Domain-based index 

Database statistics 

Interrogation of statistics 

Changing storage representation and access 
options 

Automatic protection in case of malfunction 

Automatic recovery in case of malfunction 

Atomic execution of relational commands 

Automatic archiving 

Avoiding Cartesian product 
Responsibility for encryption and decryption 

Page 

351 

352 

352 

353 

353 

354 

355 

355 

355 

355 

356 

356 

356 

357 

357 

358 

Language Design (Chapter 22) 

Feature 
Label Priority 

RL-1 F 

RL-2 F 

RL-3 F 

RL-4 F 

RL-5 F 

RL-6 F 

RL-7 F 

RL-8 B 

RL-9 B 

RL-10 B 

RL-11 B 

Feature Title 

Data sublanguage: variety of users 

Compiling and re-compiling 

Intermixability of relational- and host-language 
statements 

Principal relational language is dynamically 
executable 

RL is both a source and a target language 

Simple rule for scope within an RE command 

Explicit BEGIN and END for multi-command 
blocks 

Orthogonality in language design 

Predicate logic versus relational algebra 

Set-oriented operators and comparators 

Set constants and nesting of queries within 
queries 

Page 

362 

362 

362 

363 

363 

363 

363 

364 

364 

365 

365 
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Feature 
Label Priority 

RL-12 B 

RL-13 B 

RL-14 B 

RL-15 B 

RL-16 B 

RL-17 F 

Feature Title 

Canonical form for every request 

Global optimization 

Uniform optimization 

Constants, variables, and functions 
interchangeable 

Expressing time-oriented conditions 

Flexible role for operators 

Page 

366 

366 

367 

367 

367 

368 

Distributed Database Management (Chapters 24 and 25) 

Feature 
Label 

RX-1 

RX-2 

RX-3 

RX-4 

RX-5 

RX-6 

RX-7 

RX-8 

RX-9 

RX-10 

RX-11 

RX-12 

RX-13 

RX-14 

RX-15 

RX-16 

RX-17 

RX-18 

RX-19 

RX-20 

RX-21 

RX-22 

Priority 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

Feature Title 

Multi-site action from a single relational 
command 

Local autonomy 

Global database and global catalog 

N copies of global catalog (N > 1) 

Synonym relation in each local catalog 

Unique names for sites 

Naming objects in a distributed database 

Reversibility and redistribution 

Decomposition by columns for distributing data 

Decomposition by rows for distributing data 

General transformation for distributing data 

Replicas and snapshots 

Integrity constraints that straddle two or more 
sites 

Views that straddle two or more sites 

Authorization that straddles two or more sites 

Name resolution with a distributed catalog 

Inter-site move of a relation 

Inter-site moves of rows of a relation 

Dropping a relation from a site 

Creating a new relation 

Abandoning an old site and perhaps its data 

Introducing a new site 

Page 

393 

394 

396 

397 

398 

399 

399 

401 

403 

404 

404 

405 

406 

407 

408 

409 

410 

411 

412 

412 

413 

414 
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Feature 
Label 

RX-23 

RX-24 B 

RX-25 B 

RX-26 B 

RX-27 B 

RX-28 B 

RX-29 B 

Priority 

B 

Feature Title Page 

415 Deactivating and reactivating items in the 
catalog 
Minimum standard for statistics 421 

Minimum standard for the optimizer 422 

Performance independence in distributed 422 
database management 

Concurrency independence in distributed 423 
database management 

Recovery at multiple sites 423 

Locking in distributed database management 423 

A.2 • S u m m a r y  of RM/V2 Features by Class 

Table of features fundamental and basic 

Feature 
Class 

RS 

RT 

RB 

RZ 

RN 
RE 

RQ 

RJ 

RM 

RI 

RC 

RV 

RA 

RF 

RP 

RD 
RL 
RX 

Totals 

Fundamental Basic 
(F) (B) Totals 

9 5 14 

3 6 9 

31 6 37 104 

2 42 44 

7 7 14 221 

8 14 22 

3 10 13 63 

0 14 14 

14 6 20 '~ 

11 23 34 1 54 

8 3 11}  

8 0 8 35 

6 10 16 

3 7 10 

1 4 5 112 

8 8 16 77 

8 9 17 

0 29 29 

130 203 333 " 333 333 
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A . 3  a C l a s s e s  o f  F e a t u r e s  a n d  N u m b e r s  o f  F e a t u r e s  in  
E a c h  Class  

Number of 
Class Features 

Z 44 ~} 
B 37 115 
I 34 
X 29 } 
E 22 71 
M 20 
D 16 
L 17 77 
A 16 
S 14 
N 14 

J 14 t Q 13 38 
C 11 
F 10 
T 9 
V 8 32 
P 5 

186 

147 

333 

A . 4  m P r i n c i p a l  O b j e c t s  a n d  P r o p e r t i e s  in  R M / V 1  

S t ruc tu re  

Domains 
Relations (same as R-tables) 
Attributes (same as columns) 
Primary keys 
Foreign keys 
Information portability 

Data  Types  

See Features RT-1-RT-6. 
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O p e r a t o r s  

Each operator can be expressed in at most one command, and without 
circumlocution or circumconception. 

Theta-select (restrict) 

Project 

Theta-join 

(Where theta is any of the comparat0rs 1-6 for theta-select, and any of the 
comparators 1-10 for theta-join.) 

Union 

Set difference 

Intersection (inner types) 

Left, right, and symmetric outer join 

Relational division 

Relational assignment 

Q u a l i f i e r s  

Qualifiers include the temporary replacement of missing elementary data- 
base values, as well as the MAYBE qualifiers. 

I n d i c a t o r s  

Empty relation 

Empty divisor in relational division 

M a n i p u l a t i v e  F e a t u r e s  

See Features RM-1-RM-5. 

I n t e g r i t y  C o n s t r a i n t s  

Each integrity constraint can be expressed in one command per constraint, 
and without circumlocution or circumconception. Each such constraint is 
stored in the catalog, not in an application program. 

D Domain integrity 

C Column integrity 

E Entity integrity 
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R Referential integrity 

U User-defined integrity 

Catalog 

See Features RC-I-RC-4. 

V i e w s  

See Features RV-1-RV-5. 

A u t h o r i z a t i o n  

See Features RA-i-RA-4.  

A . 5  • F u n c t i O n s  

See Features RF-1-RF,3. 

A . 6  • Investment P r o t e c t i o n  

See Features RP-i and RP-2. 

D B M S  D e s i g n  

See Features RD-i,  RD-2, RD-4, RD-6, RD-11, and RD-13. 

L a n g u a g e  D e s i g n  

See Features RL-1-RL-6. 

A . 7  • T h e  R u l e s  I n d e x  

The following table shows the features of RM/V2 that correspond to the 
twelve rules published in 1985 [Codd 1985]. The text of any selected rule 
can be found by first using this table to determine which feature(s) of RM/ 
V2 corresponds to the selected rule, and then by using the index to the 
features at the beginning of this Appendix to find the text in the book. 

1985 RM/V2 
Rule Feature Name 

1 RS-i Information rule 
2 RM-1 Guaranteed access 
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1985 
Rule 

3 
4 

5 
6 
7 

8 
9 

10 
11 
12 

RM/V2 
Feature 

RS-13, RM-10 
RC-1 
RM-3 
RV-4, RV-5 
RM-4 

RP-1 
RP-2 
RP-3 
RP-4 
RI-16 

Name 

Missing information 

Active catalog 
Comprehensive data sublanguage (DSL) 
View updatability 
High level language 
Physical data independence 
Logical data independence 
Integrity independence 
Distribution independence 
Non-subversion 
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Exercises in Logic and the 

Theory of Relations 

The following exercises are included in this book to help the reader test his 
or her own knowledge in these two branches of mathematics. Although 
these topics are not covered in this book, knowledge of them is important 
for the designers of DBMS products and for database administrators. 

B.1 t S i m p l e  Exercises  in Pred icate  Logic 

In the following exercises, P, Q are predicates, x is an individual variable, 
c is a constant, (~J) denotes the existential quantifier, (V) denotes the 
universal quantifier, and--~ denotes logical implication. 

Which of the following pairs of formulas in predicate logic are logically 
equivalent? 

la. Vx(Px k /Qx)  lb. (VxPx V VxQx) 

2a. V x ( P x A O x )  2b. ( V x P x A V x Q x )  

3a. --1 (PcV Qc) 3b. (--1 Pc) A (~  Qc) 

4a. P c ~ Q c  4b. (-1 Pc) V Q c  

5a. --1 VxPx 5b. 3x(-n Px) 

6a. Vx(Px ~ Qx) 6b. (,.qxPx k/VxQx) 

7a. ~[x(Px --~ Qx) 7b. 5tx(--1 Px) k/~lxQx 

8a. --1 2txPx 8b. -1 V x Px 

503 
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B.2  • S i m p l e  E x e r c i s e s  i n  R e l a t i o n a l  T h e o r y  

In the following exercises, R, S, and T are union-compatible relations. The 
three operators are relational union (denoted U), relational difference (de- 
noted - ) ,  and relational intersection (denoted n).  

Which of the following pairs of expressions are guaranteed to yield 
identical results? 

la. R U S  lb. S u R 

2a. R -  S 2b. S -  R 

3a. R N S  3b. S A R  

4a. ( R U S )  A T  4b. ( R A T )  U (S A T )  

5a. ( R U  S) - T 5b. (R - T) U (S - T) 

ha. (R n S) - T 6b. (R - T) N (S - T) 

7a. ( R A  S) U T  7b. (R U T )  n (S U T )  

8a. (R - S) A T  8b. ( R A T )  - (S A T )  

B.3  • E x e r c i s e s  C o n c e r n i n g  t h e  I n t e r - r e l a t e d n e s s  o f  
R M / V 2  F e a t u r e s  

No claim has been made that all 333 features of RM/V2 are independent of 
one another; such a claim would be false. This kind of independence would 
make the relational model, whether Version 1 or Version 2, difficult to 
understand. It would be similar to trying to learn an IBM 3090 by first 
learning a universal Turing machine. 

Suppose that F and G are two features of RM/V2. The notation F ~ G 
means that the DBMS must support F if it is to provide full support for G. 

1. Let F be view updatability and G be logical data independence. Show 
that F ~ G. 

2. Let F be domains as extended data types and G be view updatability. 
Show that F --~ G. 

Let F be primary keys and G be view updatability. Show that F ~ G. 

Take each distinct pair of features F and G in RM/V2. Examine whether 
F ~ G or G -~ F, or neither. Explain your answers. 

. 

4. 
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I N D E X  

Abandoning an Old Site and Perhaps 
Its Data (RX-21), 413-414 

Abstract data type, 480 
Abstract machine, Relational Model 

as, 11-12 
Abstract machine standard, 13-14 
Access, under-the-covers, 352 
Access options, changing, 355-356 
"Access path," universal relation and, 

472 
Activation of Constraint Testing 

(RI-IO), 249 
Acyclic graph, 141 
Acyclic path, 141-142 
Adaptability 

to change, 480 
of relational approach, 432 

Advanced operators, 63, 97-144 
auxiliary operators and, 103-106 

extending relations and, 103-104 
semi-theta-join operator and, 104- 

106 
framing relations and, 98-103 

applying aggregate functions to 
framed relations and, 101-103 

introduction to, 98-99 
partitioning relations by individ- 

ual values and, 99-100 
partitioning relations by ranges of 

values and, 100-101 
inner and outer T-join and, 123-137 

inner T-join and, 125-134 
introduction to T-join operators 

and, 123-125 
outer T-join and, 134-135 

outer equi-join operators and, 106- 
110 

with MAYBE qualifier, 110-113 
outer natural joins and, 113-115 
outer set operators and, 115-122 

inner operators and, 115-116 
relationship between, 122 

recursive join and, 140-143 
user-defined join operator and, 

138-140 
user-defined select operator and, 

137-138 
Affirmative Basis (RA-1), 327 
Aggregate functions, 338-340 

built-in, 338-340 
Algebraic approach, 62 
ALPHA, 61, 86 
ALTER COLUMN command 

(RE-12), 161 
ALTER DOMAIN command (RE-5), 

157 
A-marks (missing-but-applicable value 

mark), 173-174 
rows containing, 175-176 
updating, 177-178 

Ambiguity of origin, 304 
Analysis of semantic distinctiveness, 

379 
Analyzability of intent, 349,427 
APPEND COLUMN command 

(RE-IO), 161 
Appended DEGREE OF DUPLICA- 

TION (DOD) qualifier (RQ- 
11), 216-218 

ARCHIVE command (RE-21), 167 

511 
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Archived Relations, Naming, 152 
Archiving 

automatic, 357 
commands for, 166-167 
delayed deletions of data and drops 

by, 331 
Arguments, names of, as extended 

data type, 55 
of a function, 187 

Arithmetic Operators: Effect of Miss- 
ing Values (RM-12), 237 

Assertions, 29-30 
Assigning Authorization (RA-16), 335 
Associated source relation, 152 
Atomic data, 6 
Atomic value, definition of, 172 
Attempted violation, 269 
Attributes, 43 
Audit Log (RI-15), 252 
Authorizable Database-control Activi- 

ties (RA-7), 331-332 
Authorizable Qualifiers (RA-9), 333 
Authorizable Query and Manipulative 

Activities (RA-8), 332 
Authorization, 325-336 

assigning, 335 
authorizable actions and, 331-334 
basic features of, 327-331 
distributed, 407-408 
flexible, with relational approach, 

435-436 
granting and revoking, 327, 333, 

335 
subject to date, time, resource con- 

sumption, and terminal, 334- 
336 

Authorization Data (RC-IO), 282 
Authorization that Straddles Two or 

More Sites (RX-15), 407 
Automatic Archiving (RD-14), 357 
Automatic Execution of Relational 

Commands (RD-13), 356-357 
Automatic payment, for parts, 270 
Automatic Protection in Case of Mal- 

function (RD-11), 356 
Automatic Recovery in Case of Mal- 

function (RD-12), 356 
Autonomy, local, 394-395 

Auxiliary operators, 103-106 
extending relations and, 103-104 
semi-theta.join operator and, 104- 

106 
Avoiding Cartesian Product (RD-15), 

357 
Avoiding the Universal Relation 

(RS-14), 40-41 

B 
Back-traceability, 302 
Base R-tables, 18 

catalog and, 279-280 
integrity constraints and, 36 
primary key for, 35-36 

Base relations, 17-18, 30, 33 
catalog and, 279-281 
new operators for, 320-321 
rows containing A-marks and/or 

I-marks and, 175 
Basic data types, 43, 54, 150 

operators constrained by, 238-239 
Basic operators, 61-95 

Boolean extension of theta-join and, 
76-77 

Boolean extension of theta-select 
and, 72 

intersection, 81-82 
natural-join, 77-78 
project, 67-69 
relational difference, 82-83 
relational division, 83-87 
relational union, 78-81 
safety feature when comparing data- 

base values and, 71-72 
techniques for explaining, 63-66 
theta-join, 73-76 
theta-select, 69-71 

BEGIN, explicit, for multi-command 
blocks, 363-364 

Bill-of-materials problem, 452 
Binary relationship, 

inability to replace relational model, 
473-477 

abandonment of composite do- 
mains, composite columns, and 
composite keys and, 476 
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decomposition on input and, 474- 
475 

difficulty of conceiving and ex- 
pressing integrity constraints 
and, 477 

extra storage space and channel 
time and, 475 

heavy load of joins and, 476 
lack of comprehensive data model 

and, 477 
normalization and, 474 
recomposition upon input and, 

475 
restriction to entity-based joins 

and, 476 
Birth site, 399 
Blocking commands, 232-235 
Blocking Updates That Remove Rows 

From a View (RA-4), 330 
Blocksto Simplify Alteringm the Data- 

base Description (RM-7), 234- 
235 

Boolean Extension of Theta-Join 
(RB-24), 76-77 

Boolean Extension Of Theta-Select 
(RB-13), 72 

Boolean logic, 19 
Boundary, sharp, 352-353 
Built-in Aggregate Functions (RF-1), 

338-340 
Built-in Scalar Functions (RF-3), 340 

C 
Calendar Dates (RT-4), 50-52 
Canonical Form for Every Request 

(RL-12), 366 
Can supply, 223 
Cartesian product, 64-67 

avoiding, 357 
de-emphasis as operator, 66 
techniques for explaining, 64-66 
theta-join operator and, 74-75 

CASCADE command (RI-33), 274 
Cascaded deletion, delete operator 

with, 93 
Cascade delete, implementation of do- 

mains and, 47 

Cascaded marking 
delete operator with, 94 
primary-key update with, 92 

Cascade insert, implementation of do- 
mains and, 47 

Cascade update, implementation of 
domains and, 47 

Cascading, 90 
update of foreign keys and, 89-92 

Cascading option, 90 
Cascading Revocation (RA-12), 334 
Catalog, 16, 277-283 

access to, 277-278 
deactivating and reactivating items 

in, 415 
description of domains, base rela- 

tions, and views and, 278-281 
distributed, 408-412 

dropping relations and creating 
new relatitJns and, 412 

inter-site move Of a relation and, 
4i0 

inter-site move of one or more 
rows of a relation and, 410- 
411 

more comialicated redistribution 
and, 411 

features for safety and performance 
and, 282-283 

functions in, 282 
global. See Global cataiog 
integrity constraints in, 281 
synonym relation in, 398 

Catalog block, 160 
Catalog Block Indicator (RJ-11), 

226 
Change, universal relation versus rela- 

tional approach and, 471-472 
Changing Storage Representation and 

Access Options (RD-IO), 355- 
356 

Channel time, extra, binary relation- 
ship approach versus relational 
approach and, 475 

Choice of Terminal (RA-15), 335 
Citation ordering, 66 
Clock Times (RT-5), 52-53 
Close counterpart, 116 
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Column(s), 43 
ALTER COLUMN command and, 

161 
APPEND COLUMN command 

and, 161 
comparand, 73,305,307 
composite, 37-39 

binary relationship approach ver- 
sus relational approach and, 
476 

catalog and, 280 
containing names of arguments, 

344, 449 
containing names of functions, 343, 

449 
DROP COLUMN command and, 

161-162 
with function-generated values, 

naming, 151-152 
hiding in views, 329-330 
inheritance of names of, 152 
involved in union class of operators, 

naming, 148-150 
naming, 146-147 
RENAME COLUMN command 

and, 161 
of result of join and division opera- 

tors, naming, 151 
of result of project operation, nam- 

ing, 151 
selecting within relational com- 

mands, 148 
of views 

domains applicable to, 291 
names of, 291 

Column Descriptions (RS-7), 35 
Column names, reasons for using, 3 
Command-interpretation time, 313 
Commands 

automatic execution of, 356-357 
choosing ordering of, 377 
simple rule for scope within, 363 
single, multi-site action from, 393 
single relational, 423 
for triggered action, 273-274 

COMMIT command, 248 
"Common", 374 
Common domain, primary keys on, 

25-26 

"Common domain" constraint, 8 
Communicability, person-to-person, 

with relational approach, 434 
Commutativity, non-impairment of, 

150-151 
Comparand columns, 73,305,307 
Comparators, 

ordering, 125 
set-oriented, 365 

Comparing terms, 72, 76 
Compiling and Re-compiling (RL-2), 

362 
Component-updatable by a DBMS, 

296 
Composite Columns (RS-12), 37-39 
Composite columns, 37-38 

binary relationship approach versus 
relational approach and, 4.76 

catalog and, 280 
Composite Domains (RS-11), 37 
Composite key, 36 
Compound data, 6-7 
Comprehensive data model 

binary relationship approach versus 
relational approach and, 477 

universal relation versus relational 
approach and, 472 

Comprehensive Data Sublanguage 
(RM-18), 240 

Computation, extending relational 
model and, 456 

Concatenation: Effect of marked Val- 
ues (RM-13), 237-238 

Concurrency (RC-2), 278 
Concurrency 

inter-command, 353, 423 
intra-command, 353,423 

Concurrency control, 19 
Concurrency Independence (RD-4), 

353 
Concurrency Independence in Distrib- 

uted Database Management 
(RX-27), 423 

Condition(s), 337 
time-oriented, expressing, 367-368 

Condition part, of user-defined integ- 
rity constraint, 261-264 

Constants, Variables, and Functions 
Interchangeable (RL-15), 367 
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CONTROL DUPLICATE ROWS 
command (RE-20), 164-166 

Conversion, ease of, with relational 
approach, 439 

Corrupted relations, 3, 373 
SQL and 

alleged security problem and, 378 
application of statistical functions 

and, 374 
ordering of relational operators 

and, 374-378 
semantic problem and, 373-374 
supermarket check-out problem 

and, 378-379 
Coupling of Dates with Times (RT-6), 

53 
CREATE DOMAIN command 

(RE-3), 156-157 
CREATE DOMAIN command, 156- 

157 
CREATE DOMAIN-BASED INDEX 

command (RE-15), 163 
CREATE INDEX command (RE-14), 

162-163 
CREATE R-TABLE command 

(RE-7), 158 
CREATE SNAPSHOT command 

(RE-17), 163-164 
Creating a New Relation (RX-20), 

412 
Creating and Dropping an Integrity 

Constraint (RI-17), 253 
Cross-ties, 130 
Currency 

decimal, non-negative, 53-54 
free decimal, 54 

Cyclic key states, universal relation 
versus relational approach and, 
470-471 

Cyclic path, 141 

D 
Data 

atomic, 6 
compound, 6 
discipline needed for sharing of, 5- 

6 
Database(s) 

controls on, 11 

exploratory, 5 
global. See Global database 
knowledge bases and, 29-30 
production-oriented, 5 
relational, 7, 395 

Database administrator (DBA) 
commands for, 155-168 

for archiving and related activi- 
ties, 166-168 

CONTROL DUPLICATE 
ROWS, 164-166 

CREATE SNAPSHOT, 163-164 
for domains, relations, and col- 

umns, 156-162 
EXTRACT AN R-TABLE, 164 
for indexes, 162-163 
LOAD AN R-TABLE, 164 

controls on database and, 11 
responsibilities of, 155-156 

Database-c0ntrol activities, authoriza- 
blel '331-332 

Database controllability, with rela- 
tional approach, 434-435 

Database description, 30 
altering, blocks to simplify, 234-235 

Database management 
distributed, 391-416, 417-429 

abandoning an old site and, 412- 
414 

DBMS at each site and, 394-395 
distributed authorization and, 

407-408 
distributed catalog and, 408-412 
distributed integrity constants 

and, 406 
distributed processing distin- 

guished from, 391 
distributed views and, 406-407 
heterogeneous, 424 
implementation considerations 

and, 422-424 
introducing a new site and, 414- 

415 
optimization in, 417-422 
optimizer in, 393-394 
relational approach to distributing 

data and, 395-404 
requirements for, 391-393 

entity-relationship approach to, 7 
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exploratory, 5 
fundamental laws of, 459-466 

Database management system 
_ 

(DBMS) 
fully relational, 16 
implementation of, 11 
relational, 16-17, 395 

communication between machines 
of different architectures and, 
445-446 

features and products on top of, 
assuming future is logically 
based, 444 

features and products on top of, 
assuming vendors continue to 
take very short-term view, 444 

performance and fault tolerance 
of, 444 

performance and fault tolerance 
of, assuming future is logically 
based, 444 

performance and fault tolerance 
of, assuming vendors take very 
short-term view, 445 

products needed on top of, 443- 
444 

Database management system 
(DBMS) design, 351-359 

Database Statistics (RD-8), 355 
Database Statistics in the Catalog 

(R C-11), 282-283 
Database values 

missing, 197 
introducing column integrity con- 

straint 'for disallowing, 253-254 
temporary replacement of, 210 
user-defined prohibition of, 250- 

251 
safety feature when comparing, 46- 

49, 71-72, 105 ~ 
Data distribution, relational approach 

to, 395-405 
assignment of relations for the 

global database and, 401 
combination of relations from the 

global database and, 404 
decomposition of relations from 

the global databaseand, 402- 
404 • 

naming rules and, 398-401 
replicas and snapshots and, 405 

Data Sublanguage: Variety of Users 
(RL-1), 362 

Data types 
abstract, 480 
naming, 146 

Date(s), 50-53 
coupling with times, 53 
integrity Constraints triggere d by, 

266 
time-zone conversion and, 53 

Date and Time Conditions (RA-13), 
334 

DBA. See Database administrator 
DBMS. See Database management 

system 
Deactivating and Reactivating Items 

in the Catalog (RX-23), 415 
Deadlocks 

global, 423 
inter.site, 423 

Declaration of Domains as Extended 
Data Types (RS-6), 34-35 

Decomposition, upon input, binary 
relationship approach versus re- 
lational approach and, 474-475 

Decomposition by Columns for Dis- 
tributing Data (RX-9), 403- 
404 

Decomposition by Rows for Distribut- 
ing Data (RX-IO), 404 

Decomposition flexibility, 349,426 
Decryption, responsibility for, 358 
De-emphasis of Cartesian Product as 

an Operator (RB-1), 66 
Default value(s), legitimate use of, 

1204-205 
Default-value approach, problems en- 

: countered in, 203-204 
Default value scheme, 197, 198-200 
Definitely incorrect, 199 
Degree n, 2, 20 
Delayed Deletions of Data and Drops 

By Archiving (RA.6), 331 
Delete, high-level, 231-232 
Delete command, 7 
"'Delete duplicates," 20 
Delete Operator (RB-35), 92 
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Delete Operator with Cascaded 
A-marking and Optional Sib- 
ling Detection (RB-37), 94 

Delete Operator with Cascaded Dele- 
tion (RB-36), 93 

(RB-37), 93-94 
"Delete redundant duplicates," 20 
Deletion, universal relation versus re- 

lational approach and, 471 
Denied access, 327 
Dependency 

functional, 272 
inclusion, 273 
join, 273 
multi-valued, 272 

Derived relations, 16, 18, 30, 166 
rows containing A-marks and/or 

I-marks and, 175-176 
Derived R-tables, 18 

exclusion of duplicate rows from, 
18-19 

Description of Base R-tables (RC-4), 
279-280 

Description of Composite Columns 
(RC-5), 280 

Description of Domains (RC-3), 279 
Description of Views (RC-6), 280-281 
Detective mode, naming for, 153 
Determining Applicability of Con- 

straints (RI-8), 248 
Dictionaries, 46, 159, 277 
Difference Operator (RB-28), 82-83 
Digraph, 451 
Directed graph, 451 
Directed graph relation, 140-141 
Disjoint subrelations, 403 
Distributability, with relational ap- 

proach, 436-437 
Distributed database, naming objects 

in, 399-401 
Distributed database management. 

See Database management, 
distributed 

Distributed Database Management: 
Decomposition and Recomposi- 
tion (RP-5), 349 

Distributed processing, distributed da- 
tabase management distin- 
guished from, 391 

Distribution Independence (RP-4), 
347-349 

Distribution independence, 348, 392, 
427 

Division operators, names of columns 
of results of, 151 

DOD column, 216 
DOD Versions of Built-in Statistical 

Functions (RF-2), 340 
Domain(s), 2 

ALTER DOMAIN command and, 
157 

catalog and, 279 
composite, 37 

binary relationship approach ver- 
sus relational approach and, 476 

CREATE DOMAIN command 
and, 156-157 

DROP DOMAIN command and, 
158 

as extended data types, 34-35, 43- 
59 

basic and extended data types 
and, 43-45 

calendar dates and clock times 
and, 50-53 

for currency, 53-55 
features built into RM/V2 system 

and, 49-50 
FIND commands and, 55-58 
reasons for supporting domains 

and, 45-49 
user-defined data types and, 50 

exercise, 283 
naming, 146 
primary, 49 
RENAME DOMAIN command 

and, 157 
Domain-based Index (RD-7), 355 
Domain-check-error Indicator (R J-6), 

224 
DOMAIN CHECK OVERRIDE 

qualifier (RQ-9), 215-216 
Domain-constrained Operators and 

DOMAIN CHECK 
OVERRIDE (RM-14), 238 

Domain integrity, 46 
Domain-not-declared Indicator (R J-5), 

224 
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Domain Not Droppable, Column Still 
Exists Indicator (R J-7), 224- 
225 

Domains and Columns Containing 
Names of Arguments (RF-IO), 
344, 449 

Domains Applicable to Columns of 
Views (RV-8), 291 

DROP COLUMN command (RE-13), 
161-162 

DROP INDEX command (RE-16), 
163 

Dropping a Relation from a Site 
(RX-19), 412 

DROP R-TABLE command (RE-9), 
159-160 

Duplicate-primary-key Indicator 
(R J-9), 225 

Duplicate-primary-key indicator, 88 
Duplicate-row Indicator (R J-8), 225 
Duplicate row indicator, 88 
Duplicate rows, 6 

CONTROL DUPLICATE ROWS 
command and, 164-166 

corrective steps for, 386-387 
exclusion of, 18-19 
prohibition within a relation, 300- 

301 
removal of, 189-191 
SOL and, 372-379 

alleged security problem and, 378 
application of statistical functions 

and, 374 
ordering of relational operators 

and, 374-378 
semantic problem and, 373-374 
supermarket check-out problem 

and, 378-379 
Duplicate Rows Prohibited in Every 

Relation (RS-3), 32-33 
Duplicate values, user-defined prohi- 

bition of, 251 
"Dynamically," 21 
Dynamic Mode (RM-8), 235 
Dynamic On-line Catalog (RC-1), 278 

E 
Each Integrity Constraint Executable 

as a Command (RI-21), 255 

Economy of transmission, 349, 426 
Edges, 451 
Empty Divisor Indicator (R J-2), 223 
Empty relation(s), temporary replace- 

ment of, 211 
Empty-relation Indicator (R J-l), 223 
Empty sets, application of statistical 

functions to, 188-189 
Empty trigger, 188 
Encryption, responsibility for, 358 
END, explicit, for multi-command 

blocks, 363-364 
Entity integrity, 175, 244 

missing information and, 176 
rules, 176 

Entity-relationship approaches 
to database management, 7 
relational approach versus, 477-478 

Equality, missing information and, 
178-180 

inapplicable information and, 180 
missing-but-applicable informa- 

tion and, 179 
Equi-join, 73-74 

missing information and, 183 
view updatability and, 304-309 

E-relation, 25 
Essential ordering, prohibition of, 239 
EXCLUDE SIBLINGS qualifier 

(RQ-IO), 216 
Execution modes, 235-236 
Expert systems, 436 
Explicit BEGIN and END for Multi- 

command Blocks (RL-7), 363- 
364 

Exploratory database, 5 
Expressing Time-oriented Conditions 

(RL-16), 367-368 
Expression, relation-valued, 87 
Extended data types, 43-59, 150 

declaration of domains as, 34-35 
domains as. See Domain(s), as ex- 

tended data types 
names of arguments of functions as, 

55 
names of functions as, 54-55 
user-defined, 50 

Extended Data Types Built into the 
System (RT-2,) 49-50 

Extended theta-join, 77 
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Extended theta-select, 72 
Extend operator, 103-104 
Extend the Description of one Rela- 

tion to Include all the Columns 
of Another Relation (RZ-2), 
103-104 

Extension, of relation, 9, 10 
EXTRACT AN R-TABLE command 

(RE-19), 164 

F 
Factoring advantage, 35 

support of domains and, 45 
F A O _ A V  Command (RE-l), 56-57 
FAOmLIST Command (RE-2), 57-58 
Fault-tolerant channel organization, 

395 
Feature(s), present situation and, 

441-443 
errors of commission and, 443 
errors of omission and, 442 

FIND commands, 55-58 
FK-targeting, 26 
Flexible Role of Operators 

(RL-17), 368-369 
Foreign Key (RS-IO), 36-37 
Foreign key, 23 

of base relations, 175 
cascaded update of, primary-key 

update with, 90-92 
dependent, 91 
semantic aspects of, 23-25 

Foreign key value, 23, 175,245 
Formal equality. See Symbolic 

equality. 
Formal ordering. See Symbolic 

ordering. 
Four-valued, first-order predicate 

logic, 20 
Four-valued logic, 20 

inadequate support for, SOL and, 
383-386 

of RM/V2, 182-183 
Four-valued Logic: Truth Tables 

(RM-IO), 236 
Fragmentation, 402 
Frame identifier, 99 
Framing, of relations, 98-103 

applying aggregate functions to 
framed relations and, 101-103 

introduction to, 98-99 
partitioning relation by individual 

values and, 99-100 
partitioning relations by ranges of 

values and, 100-101 
Framing a Relation (RZ-1), 98-99 
Free Decimal Currency (RT-9), 54 
Freedom, naming, 148 
Freedom from Positional Concepts 

(RS-2), 32 
Function(s), 337-344 

interchangeability of, 367 
names of, as extended data type, 

54-55 
naming, 146 
safety and interface, 342-344 
scalar and aggregate, 338-340 
user-defined, 340-342 
view-interpretation, 313 

Functional Dependency (RI-28), 272 
Function-derived function, 88 

G 
General Transformation for Distribut- 

ing Data (RX-11), 404 
Global catalog, 396-397 

composite, 397 
n copies of, 397 
normalized, 397 

Global database, 396-397 
assignment or relations from, 401 
combination of relations from, 404 
decomposition of relations from, 

401-404 
redistribution in, 401 
reversibility in, 401 
single, 392 

Global Database and Global Catalog 
(RX-3), 396-397 

Global deadlocks, 423 
Global names, 397 
Global Optimization (RL-13), 366- 

367 
Granted permission. See Authoriza- 

tion, granting and revoking. 
Granting and Revoking Authorization 

(RA-IO), 333-334 
Granting Authorization: Space-time 

Scope (RA-2), 327-329 
Guaranteed Access (RM-1), 229-230 
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H 
Heading relation, 31 
Heterogeneous distributed database 

management system, 424 
Hidden from the user's view, 4 
Hiding Selected Columns in Views 

(RA-3), 329-330 
Hierarchic structure, 452 
Hierarchy, 142 

strict, integrity checks and, 456 
High-level Insert, Update, and Delete 

(RM-4), 231-232 
Highly discriminating character, 124- 

125 
HL. See Host language(s) 
Homographs, 103 
Host language(s) ("HL"), 22 

interface to, 203 
single-record-at-a-time, interface to, 

239 
user-defined functions and, 342 

Host-language statements, intermixing 
with relational-language state- 
ments, 362 

I 
IBM systems, distribution indepen- 

dence and, 348 
Identifier, 31 
Illegal Tuple (RI-14), 251 
I-mark(s) (inapplicable value mark), 

173-174 
rows containing, 175-176 
updating, 177-178 

I-marked values 
insertion involving, 267-268 
update involving, 268 

Implementation anomalies, 202 
Improper relations, 3 
IMS Fastpath, 438 
Inadequately identified objects, 244 
Incapability, 212 
Inclusion constraint, 26 
Inclusion Dependency (RI-31), 273 
Inclusion dependency(ies), 26 

implementation of domains and, 47 
Independence 

concurrency and, 353 

in distributed database manage- 
ment, 424 

distribution, 392, 427 
location, 392 
performance, in distributed data- 

base management, 422 
replication, 393 
types, 350 

Indexes 
commands for, 162-163 
domain-based, 49, 355 

Indicators, 221-227 
argument, 222 
catalog block, 226 
domain-check-error, 224 
domain-not-declared, 224 
domain not droppable, column still 

exists, 224-225 
duplicate-primary-key, 89, 225 
duplicate-row, 89, 225 
empty divisor, 223 
empty-relation, 223 
missing-information, 223 
non-existing argument, 224 
non-redundant ordering, 225 
other than view-defining indicators, 

223-226 
view-defining, 226-227 
view not component-updatable, 226 
view not tuple-deletable, 227 
view not tuple-insertible, 226 

Inequality join, missing information 
and, 183 

Information Feature (RS-1), 30, 31-33 
Information in a User-defined Integ- 

rity Constraint (RI-23), 260 
Information Portability (RS-4), 33 
INGRES project, 348 
Inheritance of Column Names 

(RN-11), 152 
Inner equi-join, outer equi-join versus, 

as views, 321-322 
Inner identity relationship, 116 
Inner joins, other than equi-joins, 

view updatability and, 309-311 
Insert, high-level, 231-232 
Insert command, 7 
Insertion, universal relation versus re- 

lational approach and, 469 
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Insertion Involving I-marked Values 
(RI-26), 267-268 

Insert Operator (RB-31), 88-89 
Integrability, with relational approach, 

436 
Integrity checks, 35 

domains and, 48 
extending relational model and, 

455-456 
checking for unintended cycles 

and, 455 
isolated subgraphs and, 455-456 
strict hierarchy and, 456 

Integrity constraints, 243-258 
conceiving and expressing, binary 

relationship approach versus re- 
lational approach and, 477 

creating, executing, and dropping, 
253-254 

distributed, 406 
five types of, 244-246 
independent of the data structure, 

244 
involving cascading the action, im- 

plementation of domains and, 
47 

linguistic expression of, 244 
naming, 153 
performance-oriented features and, 

254-257 
referential, in catalog, 281 
safety features and, 250-252 
timing and response specification 

and, 246-250 
user-defined, 259-275 

in catalog, 281 
condition part of, 261-264 
examples of, 268-270 
execution of, 264-266 
implementation of domains and, 

47 
information in, 260-261 
relating to missing information, 

266-268 
simplifying features and, 271-273 
special command for triggered ac- 

tion and, 273"274 
triggered action and, 264 
triggered by date and time, 266 

"user-defined," 244 
Integrity Constraints that Straddle 

Two or More Sites (RX-13), 
406 

Integrity features, implementation of 
domains and, 47 

Integrity Independence (RP-3), 347 
Integrity rules, missing information 

and, 176-177 
Intension, of relation, 9, 10 
Intent, analyzability of, 427 
Inter-command concurrency, 353, 422 
Interface features, functions and, 342- 

344 
Interface to Single-record-at-a-time 

Host Languages (RM-17), 239 
Intermixing Relational- and Host- 

language Statements (RL-3), 
362 

Interpretation algorithms, 299 
"Interrogation," 21 

view definitions and, 288 
Interrogation of Statistics (RD-9), 

355 
Intersection Operator (RB-27), 81-82 
Intersection operato r, view updatabil- 

ity and, 314-315 
Inter-site deadlocks, 423 
Inter-site Move of a Relation 

(RX-17), 410 
Inter-site Moves of Rows of a Rela- 

tion (RX-18), 411 
I-timed. See Command-interpretation 

time. 
Intra-command concurrency, 353, 422 
Introducing a Column Integrity Con- 

straint for Disallowing Missing 
Database, Values (Rl-19), 253- 
254 

Introducing a New Site (RX-22), 414 
Inverse Function Required, If It Ex- 

ists (RF-5), 341 
Investment, protection of, 345-350 

integrity, 347 
logical, 346 
physical, 345-346 
redistribution, 347-349 

Isolated subgraphs, integrity checks 
and, 455-456 
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J 
Join(s), 76 

calendar dates and, 51 
heavy load of, binary relationship 

approach versus relational ap- 
proach and, 476 

involving value-ordering, 184-185 
recursive, 140-143 
restriction to entity-based joins, bi- 

nary relationship approach ver- 
sus relational approach and, 
476 

user-defined, 138-140 
names of columns of results of, 151 

Join Dependency (RI-30), 273 

K 
Key(s), 22-26 

composite, 36 
binary relationship approach ver- 

sus relational approach and, 
474 

foreign, 23, 36-37 
semantic aspects of, 23-25 

joins based on, universal relation 
versus relational approach and, 
470 

primary, 22-23 
for certain views, 36 
on common domain, 25-26 
for each base R-table, 35-36 
semantic aspects of, 23-25 

referential integrity and, 23-26 
Knowledge bases, databases and, 29- 

30 
Known by the system, 199 

L 
Language. See also specific languages 

host. See Host languages 
role in relational model, 21-22 
comprehensive data sublanguage 

and, 240 
relational 

parsable, 230 
power of, 231 
principles of design for, 361-369 

Left Outer Equi-Join (RZ-13), 107- 
108 

Left outer increment, 112, 134 
Left Outer Natural Join (RZ-16), 114 
Library Check-out (RM-19), 240-241 
Library check-out and return, 240-241 
Library Return (RM-20), 241 
LOAD AN R-TABLE command 

(RE-18), 164 
Local Autonomy (RX-2), 394-395 
Local management of local data, 395 
Local names, 397 
Location independence, 392-393 
Location transparency, 392-393 
Locking, long-term, unauthorized, 

protection against, 353-354 
Locking in Distributed Database Man- 

agement (RX-29), 423-424 
Logic 

Boolean, 19 
mathematical, 19-20 

Logical support, 381 
Logical Data Independence (RP-2), 

346 
Logical data independence, 322 
Logical impairment, 356 
Logic-based approach, 62 

M 
Malfunction 

automatic protection in case of, 356 
automatic recovery in case of, 356 

Manipulation, 21 
extending relational model and, 454 

Manipulation Using Views (RV-5), 
289-290 

Manipulative activities, authorizable, 
332 

Manipulative operators, 63, 86-94 
delete, 92 

with cascaded A-marking and op- 
tional sibling deletion, 94 

with cascaded deletion, 93 
insert, 88-89 
primary-key update with cascaded 

marking and, 92 
primary key update with cascaded 

update of foreign keys and op- 
tional update of sibling primary 
keys and, 90-92 

relational assignment, 88, 89 
update, 89 
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Mark(s), 172-174, 197-198. See also 
A-marks; 1-mark(s); 1-marked 
values 

operator-generated, 191 
ordering of, 183-184 

MARK command (RI-34), 274 
Marked arguments, scalar functions 

applied to, 185 
Marked values, 23. See also A-marks; 

1-mark(s); 1-marked values 
concatenation and, 237-238 
criticisms of arithmetic on, 186 
non-generation of, by functions, 

342-343 
property inapplicable, exercise, 482 
property-not-applicable, exercise, 

482 
Mathematical logic, 20 
Mathematics, non-violation of funda- 

mental laws of, 351-352 
MAYBE__A qualifier (RQ-1), 209 
MAYBE~I qualifier (RQ-2), 210 
MAYBE qualifier (RQ-3), 210 
MAYBE qualifier, outer join opera- 

tors with, 110-113 
Meta-data, 31 
Minimal Adequate Scope of Checking 

(RI-20), 254-255 
Minimality property, 23 
Minimum Standard for Statistics 

(RX-24), 421 
Minimum Standard for the Optimizer 

(RX-25), 422 
Missing information, 169-195 

application of equality and, 178-180 
inapplicable information and, 180 
missing but applicable informa- 

tion and, 179 
application os statistical functions 

and, 187-188 
empty sets and, 188-189 

criticisms of arithmetic on marked 
values and, 186 

definitions and, 171-174 
four-valued logic of RM/V2 and, 

182-183 
integrity constraints relating to, 

266-268 
integrity rules and, 176-177 
introduction to, 169-171 

joins involving value-ordering and, 
184-185 

manipulation of, 176, 236-238 
necessary language changes and, 

191-193 
normalization and, 193-194 
operator-generated marks and, 191 
ordering of values and marks and, 

183-184 
primary keys and foreign keys of 

base relations and, 175 
removal of duplicate rows and, 189- 

19! 
response to technical criticisms re- 

garding, 197-206 
alleged breakdown of normaliza- 

tion and, 200-201 
alleged counter-intuitive nature 

and, 198-200 
application to statistical functions 

and, 202-203 
implementation anomalies and, 

202 
interface to host languages and, 

203 
legitimate use of default values 

and, 204-205 
problems encountered in default- 

value approach and, 203-204 
value-oriented misinterpretation 

and, 197-198 
rows containing A-marks an/or 

1-marks and, 175-176 
scalar functions applied to marked 

arguments and, 185 
selects, equi-joins, inequality joins, 

and relational division and, 183 
three-valued logic of RM/V1 and, 

180-182 
treatment by SOL, 385-386 
updating A-marks and I-marks and, 

177-178 
Missing-information Indicator (R J-3), 

223 
Missing Information: Manipulation 

(RM-11), 236-237 
Missing Information: Representation 

(RS-13), 39-40 
Missing values, arithmetic operators 

and, 237 

i i  , • 
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"Modification," 21 
Multi-command blocks, explicit BE- 

GIN and END for, 363-364 
Multi-site Action from a Single Rela- 

tional Command (RX-1), 393 
Multi-valued Dependency (RI-29), 272 
Multi-valued logic, corrective steps for 

supporting, 387 

N 

Name Resolution with a Distributed 
Catalog (RX-16), 409 

Names 
global, 397 
local, 397 

Names of Arguments of Functions 
as an Extended Data Type 
(RF-9), 55 

Names of Columns Involved in the 
Union Class of Operators 
(RN-6), 148-150 

Names of Columns of Result of a 
Project Operation (RN-9), 151 

Names of Columns of Result of the 
Join and Division Operators 
(RN-8), 151 

Names of Columns of Views (RV-7), 
291 

Names of Functions as an Extended 
Data Type (RF-8), 54-55 

Naming, 145-154 
of archived relations, 152 
basic features and, 146-148 
columns in intermediate and final 

results and, i48-152 
for detective mode, 153 
of integrity constraints, 153 

Naming Archived Relations (RN-12), 
152 

Naming for the Detective Mode 
(RN-14), 153 

Naming Freedom (RN-5), 148 
Naming Objects in a Distributed Da- 

tabase (RX-7), 399-401 
Naming of Columns (RN-3), 146-147 
Naming of Domains and Data Types 

(RN-1), 146 
Naming of Integrity Constraints 

(RN-13), 153 

Naming of Relations and Functions 
(RN-2), 146 

Naming rules, 398-401 
Naming the Columns whose Values 

are Function-generated 
(RN-IO), 151-152 

Natural Join Operator (RB-25), 77-78 
Natural join operator, view updatabil- 

ity and, 312 
Natural language, universal relation 

and, 472 
N Copies of Global Catalog (N>I) 

(RX-4), 397 
Need to know basis, 326 
Nested versions, permitted in SQL, 381 
Network, 392 
New Integrity Constraints Checked 

(RI-18), 253 
Nodes, 451 

starting, 451 
terminating, 451 

Non-existing Argument Indicator 
(R J-4), 224 

Non-generation of Marked Values by 
Functions (RF-8), 342-343 

Non-impairment of Commutativity 
(RN-7), 150-151 

Non-keys, joins based on, universal 
relation versus relational ap- 
proach and, 470 

Non-negative Decimal Currency 
(nr-8), 53-54 

Non-PK projection, 27 
Non-redundant Ordering Indicator 

(nJ-lO), 225 
Non-subversion (RI-16), 252 
Non-violation of Any Fundamental 

Law of Mathematics (RD-1), 
351-352 

Normalization, 193-194, 317-319 
alleged breakdown of, 200-201 
binaryrelationship approach versus 

relational approach and, 473- 
474 

view updatability and, 317-322 
archiving and deletion anomalies 

and, 319 ~ 
insertion anomalies and, 318-319 
new operators and, 320-321 
update anomalies and, 319 
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N-person Turn-key (RA-5), 330 
Nulls, 172, 197-198 
Null values, 172, 197 

O 
Object-oriented approaches, relational 

approach versus, 479-480 
Occurance, 263 
On-the-fly, End of Command, and 

End of Transaction Techniques 
(RI-22), 255-257 

ONCE ONLY qualifier (RQ-8), 214- 
215 

Operand 
left, 134 
right, 134 

Operational Closure (RM-5), 232 
Operator(s) 

advanced. See Advanced operators 
built-in, 137 
basic. See Basic operators 
manipulative. See Manipulative 

operators 
for retrieval and modifying, imple- 

mentation of domains and, 47 
set-oriented, 365 
superiority or subordination of, 368 
techniques for explaining, 63-66 
universal relation versus relational 

approach and, 468-469 
Operators Constrained by Basic Data 

Type (RM-15), 238-239 
Optimizability 

analyzability of, 427 
with relational approach, 437 

Optimization, 76 
by DBMS, 377, 382 
in distributed database manage- 

ment, 417-422 
financial company example of, 

418-421 
global, 366-367 
uniform, 367 

Optimization problem, 437 
Optimizer, 76 

in distributed DBMS, 393-394 
minimum standard for, 422 

Order 
ascending, 133 
descending, 133 

ORDER BY qualifier (RQ-7), 211- 
213 

Ordering, essential, prohibition of, 
239 

Orthogonality in DBMS Design 
(RD-6), 354 

Orthogonality in Language Design 
(RL-8), 364 

Outer difference operator 
implementation of domains and, 47 
view updatability and, 316 

Outer equi-join operator 
inner equi-join versus, as views, 

321-322 
view updatability and, 312 

Outer increments, 134 
left, 134 
right, 134 

Outer intersection operator 
implementation of domains and, 47 
view updatability and, 315 

Outer equi-join operators, 106-110 
implementation of domains and, 47 
with MAYBE qualifier, 110-113 

Outer Set Difference (RZ-20), 119- 
120 

Outer Set Intersection (RZ-21), 120- 
122 

Outer set operators, 115-122 
inner operators and, 115-116 
relationship between, 122 

Outer T-joins (RZ-26--RZ-37), 134- 
135 

Outer Union (RZ-19), 117-119 
Outer union operator 

view updatability and, 314 
implementation of domains and, 47 

P 
Parsable Relational Data Sublanguage 

(RM-2), 230 
Passing on Authority to Grant 

(RA-11), 334 
Performance Independence in Distrib- 

uted Database Management 
(RX-26), 422 

Physical Data Independence (RP-1), 
345-346 

PK-based projection, 27 
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PK-targeting, 26 
Positional concepts, freedom from, 32 
Potentially incorrect, 199 
Power, of relational approach, 432 
Power of the Relational Language 

(RM-3), 231 
Power-oriented features, 229-232 
Predicate logic, 180, 231,384 
Predicate Logic versus Relational Al- 

gebra (RL-9), 364-365 
Primary-key Update with Cascaded 

Marking (RB-34), 92 
Primary-key Update with Cascaded 

Update of Foreign Keys and 
Optional Update of Sibling Pri- 
mary Keys (RB-33), 89-92 

Primary key(s), 22-23, 36 
of base relations, 175 
on common domain, 25-26 
semantic aspects of, 23-25 
sibling 

optional update of, with primary- 
key update, 90-92 

values of, 93 
Primary Key for Certain Views 

(RS-9), 36 
Primary Key for Each Base R-table 

(RS-8), 35-36 
Primary key update, implementation 

of domains and, 47 
Principal Relational Language Is Dy- 

namically Executable (RL-4), 
363 

Production-oriented database, 5 
Productivity, of relational approach, 

433 
Prohibition of Essential Ordering 

(RM-16), 239 
Project operator, 76 

names of columns of result of, 151 
view updatability and, 303-304 

Project Operator (RB-2), 67-69 
Property P, 316 
Protection Against Unauthorized 

Long-term Locking (RD-5), 
353-354 

Psychological mix-up 
corrective steps for, 387 
SOL and, 379-382 

adverse consequences of, 382 

problem of, 379-382 
support, 381 

Q 
Quad, 130, 308 
Qualifiers, 207-219 

appended DEGREE OF DUPLI- 
CATION, 216-218 

authorizable, 333 
DOMAIN CHECK OVERRIDE, 

215-216 
EXCLUDE SIBLINGS, 216 
existential, 86 
MAYBE, 210 
MAYBE___A, 209 
MAYBE_I, 210 
ONCE ONLY, 214-215 
ORDER BY, 211-213 
SAVE, 218 
temporary replacement of empty re- 

lations, 211 
temporary replacement of missing 

database values, 210 
truth values and, 207-208 
universal, 86 
VALUE, 218 

QUEL, 21 
Queries, 21 

authorizable, 332 
nested versus non-nested, choosing, 

382 
set constants and nesting of, 365- 

366 

R 
RA-1 Affirmative Basis, 327 
RA-2 Granting Authorization: Space- 

time Scope, 327-329 
RA-3 Hiding Selected Columns in 

Views, 329-330 
RA-4 Blocking Updates That Remove 

Rows From a View, 330 
RA-5 N-person Turn-key, 330 
RA-6 Delayed Deletions of Data and 

Drops By Archiving, 331 
RA-7 Authorizable Database-control 

Activities, 331-332 
RA-8 Authorizable Query and Manip- 

ulative Activities, 332 
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RA-9 Authorizable Qualifiers, 333 
RA-IO Granting and Revoking Au- 

thorization, 333-334 
RA-11 Passing on Authority to Grant, 

334 
RA-12 Cascading Revocation, 334 
RA-13 Date and Time Conditions, 

334 
RA-14 Resource Consumption, 335 
RA-15 Choice of Terminal, 335 
RA-16 Assigning Authorization, 335- 

336 
RB-1 De-emphasis of Cartesian Prod- 

uct as an Operator, 66 
RB-2 Project Operator, 67-69 
RB-3--RB-12 The Theta-Select Oper- 

ator, 69-71 
RB-13 The Boolean Extension of 

Theta-Select, 72 
RB-14-RB-23 The Theta-Join Opera- 

tor, 73-76 
RB-24 The Boolean Extension of 

Theta-Join, 76-77 
RB-25 The Natural Join Operator, 

77-78 
RB-26 The Union Operator, 78-81 
RB-27 The Intersection Operator, 81- 

82 
RB-28 The Difference Operator, 82- 

83 
RB-29 The Relational Division Opera- 

tor, 83-87 
RB-30 Relational Assignment, 87-88 
RB-31 The Insert Operator, 88-89 
RB-32 The Update Operator, 89-90 
RB-33 Primary-key Update with Cas- 

caded Update of Foreign Keys 
and Optional Update of Sibling 
Primary Keys, 90-92 

RB-34 Primary-key Update with Cas- 
caded Marking, 92 

RB-35 The Delete Operator, 92 
RB-36 The Delete Operator with Cas- 

caded Deletion, 93 
RB-37 The Delete Operator with Cas- 

caded A-marking and Optional 
Sibling Detection, 94 

R C-1 Dynamic On-line Catalog, 278 
R C-2 Concurrency, 278 
RC-3 Description of Domains, 279 

RC-4 Description of Base R-tables, 
279-280 

RC-5 Description of Composite Col- 
umns, 280 

RC-6 Description of Views, 280-281 
RC-7 User-defined Integrity Con- 

straints, 281 
RC-8 Referential Integrity Con- 

straints, 281 
RC-9 User-defined Functions in the 

Catalog, 282 
RC-IO Authorization Data, 282 
RC-11 Database Statistics in the Cata- 

log, 282-283 
RD-1 Non-violation of Any Funda- 

mental Law of Mathematics, 
351-352 

RD-2 Under-the-covers Representa- 
tion and Access, 352 

RD-3 Sharp Boundary, 352-353 
RD-4 Concurrency Independence, 

353 
RD-5 Protection Against Unauthor- 

ized Long-term Locking, 353- 
354 

RD-6 Orthogonality in D BMS Design, 
354 

RD-7 Domain-based Index, 355 
RD-8 Database Statistics, 355 
RD-9 Interrogation of Statistics, 355 
RD-IO Changing Storage Representa- 

tion and Access Options, 355- 
356 

RD-11 Automatic Protection in Case 
of Malfunction, 356 

RD-12 Automatic Recovery in Case 
of Malfunction, 356 

RD-13 Automatic Execution of Rela- 
tional Commands, 356-357 

RD-14 Automatic Archiving, 357 
RD-15 Avoiding Cartesian Product, 

357 
RD-16 Responsibility for Encryption 

and Decryption, 358 
RE-1 The FAO__AV Command, 56- 

57 
RE-2 The FAO__LIST Command, 

57-58 
RE-3 CREATE DOMAIN command, 

156-157 
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RE-4 RENAME DOMAIN com- 
mand, 157 

RE-5 ALTER DOMAIN command, 
157 

RE-6 DROP DOMAIN command, 
158 

RE-7 CREATE R-TABLE command, 
158 

RE-8 RENAME R-TABLE com- 
mand, 159 

RE-9 DROP R-TABLE command, 
159-160 

RE-IO APPEND COLUMN com- 
mand, 161 

RE-11 RENAME COLUMN com- 
mand, 161 

RE-12 ALTER COLUMN command, 
161 

RE-13 DROP COLUMN command, 
161-162 

RE-14 CREATE INDEX command, 
162-163 

RE-15 CREATE DOMAIN-BASED 
INDEX command, 163 

RE-16 DROP INDEX command, 163 
RE-17 CREATE SNAPSHOT com- 

mand, 163-164 
RE-18 LOAD AN R-TABLE com- 

mand, 164 
RE-19 EXTRACT AN R-TABLE 

command, 164 
RE-20 CONTROL DUPLICATE 

ROWS command, 164-166 
RE-21 ARCHIVE command, 167 
RE-22 REACTIVATE command, 

167-168 
REACTIVATE command (RE-22), 

167-168 
Recomposition, upon output, binary 

relationship approach versus re- 
lational approach and, 475 

Recomposition power, 349, 426 
Recovery at Multiple Sites (RX-28), 

423 
Recursive Join (RZ-40), 140-143 
Redistribution, in global database, 401 
Referential integrity, 22-26, 175,244- 

245 
implementation and, 26 

implementation of domains and, 47 
missing information and, 176 
primary keys on a common domain 

and, 25-26 
rules, 176 
semantic aspects of primary and for- 

eign keys and, 23-25 
Referential Integrity Constraints 

(RC-8), 281,283 
REJECT command (RI-32), 274 
Relation(s), 1-5 

conceptual, 320 
corrupted. See Corrupted relations 
distinct, inter-relating the informa- 

tion contained in, 7-8 
dropping and creating, 412 
duplicate rows prohibited in, 32-33 
empty, temporary replacement of, 

211 
examples of, 8-10 
extension of, 9, 298 
from global database 

assignment of, 401 
combination of, 404 
decomposition of, 402-404 

improper, 3 
intension of, 9 
inter-site move of, 410 
inter-site move of one or more rows 

of, 410-411 
of mathematics and relational 

model, distinctions between, 4 
naming, 146 
as only compound data type, 6-7 
prohibition of duplicate rows 

within, 300-301 
properties of, 2-3 
tables versus, 17-20 
universal. See Universal relation 

Relational 
DBMS, 17 
Fully, 16 

Relational algebra, predicate logic 
versus, 364-365 

Relational approach, 431-440 
adaptability of, 432 
concurrent action by multiple proc- 

essing units and, to achieve 
fault tolerance, 438-439 
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to achieve superior performance, 
437 

database controllability and, 434- 
435 

distributability and, 436-437 
ease of conversion and, 439 
flexible authorization and, 435-436 
integratability and, 436 
optimizability and, 437 
person-to-person communicability 

and, 434 
power of, 432 
productivity and, 433 
richer variety of views with, 435 
round-the-clock operation and, 433- 

434 
safety of investment and, 432-433 
summary of advantages of, 439-440 

Relational Assignment (RB-30), 87-88 
Relational capabilities, 17 
Relational commands 

automatic execution of, 356-357 
single, multi-site action from, 393 

Relational data sublanguage, parsable, 
230 

Relational database(s), 7, 395 
Relational database management sys- 

tem, 395 
Relational difference operator, 79, 82- 

83 
implementation of domains and, 47 
view updatability and, 315 

Relational Division Operator 
(RB-29), 83-87 

Relational division operator, 64 
implementation of domains and, 47 
missing information and, 183 
view updatability and, 312 

Relational intersection operator, 79, 
81-82 

imPlementation of domains and, 
47 

Relational languages RL, 21 
as both source and target language, 

363 
power of, 21-22, 231 
principal, dynamically executable, 

363 
principles of design for, 361-369 

Relational-language statements, inter- 
mixing with host-language 
statements, 362 

Relational model, 5-14 
as abstract machine, 11-12 
abstract machine standard and, 13- 

14 
claimed alternatives to, 465-482 

entity-relationship approaches 
and, 477-478 

object-oriented approaches and, 
479-480 

semantic data approaches and, 
476-477 

SQL and, 444 
universal relation and binary rela- 

tions and, 468 
why binary approach will not re- 

place relational model and, 
473-477 

why universal relation will not re- 
place relational model and, 
468-473 

classification of features of, 15-17 
examples of relations and, 8"10 
extending, 447-457 

bill-of-materials problem and, 451 
computational aspects and, 456 
constructing, examples and, 451- 

453 
general rules and, 448-451 
integrity checks and, 455 
manipulation aspects and, 454 
representation aspects and, 453- 

454 
requested extensions and, 447-448 

goals of Version 2 (RM/V2) of, 10- 
11 

inter-relating data contained in dis- 
tinct relations and, 7-8 

omission of features from, 10 
relation as only compound data 

type and, 6-7 
role of language in, 21-22 
structured query language and, 12- 

13 
Relational operators, ordering of, du- 

plicate rows and corrupted rela- 
tions and, 374-378 
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Relational schema, 16 
Relational union operator, 78-81 

implementation of domains and, 47 
Relation-valued expression, 87 
Relationships 

many-to-many, 306 
time-independent P-K to F-K rela- 

tionship, 307 
RENAME COLUMN command 

(RE-11), 161 
RENAME DOMAIN command 

(RE-4), 157 
RENAME R-TABLE command 

(RE-8), 159 
Rendezvous, 472 
Reordering parts, automatically, 269- 

270 
Repeating groups, 30-31 
Replicas, global database and, 405 
Replicas and Snapshots (RX-12), 405 
Replication independence, 393 
Representation 

extending relational model and, 
453-454 

missing information and, 39-40 
under-the-covers, 352 

Request time, 298 
Resource Consumption (RA-14), 

335 
Response specification, integrity con- 

straints and, 246-250 
Response to Attempted Violation for 

Types R and U (RI-7), 248 
Responsibility for Encryption and De- 

cryption (RD-16), 358 
Result of a function, 187 
Retention, view definitions and, 288 
Retention of Constraint Definitions 

for Types R and U (RI,9), 
248-249 

"Retrieval," 21,232 
Retrieval conditioning, 26 
Retrieval targeting, 26 
Retrieval Using Views (RV-4), 288- 

289 
Retrieve command, 7 
Retrieved data, ordering imposed on, 

211-213 
Reversibility, in global database, 

401 

Reversibility and Redistribution 
(RX-8), 401 

Revocation, cascading, 334 
RF-1 Built-in Aggregate Functions, 

338-340 
RF-2 DOD Versions of Built-in Statis- 

tical Functions, 340 
RF-3 Built-in Scalar Functions, 340 
RF-4 User-defined Functions: Their 

Use, 341 
RF-5 Inverse Function Required, If It 

Exists, 341 
RF-6 User-defined Functions: Com- 

piled Form Required, 341-342 
RF-7 User-defined Functions Can Ac- 

cess the Database, 342 
RF-8 Non-generation of Marked Val- 

ues by Functions, 342 
RF-9 Domains and Columns Contain- 

ing Names of Functions, 54-55, 
343,449 

RF-IO Domains and Columns Con- 
taining Names of Arguments, 
55,344, 449 

RI-I--RI-5 Types of Integrity Con- 
straints, 246 

RI-6 Timing of Testing for Types R 
and U, 247-248 

RI-7 Response to Attempted Viola- 
tion for Types R and U, 248 

RI-8 Determining Applicability of 
Constraints, 248 

RI-9 Retention of Constraint Defini- 
tions for Types R and U, 248- 
249 

RI-IO Activation of Constraint Test- 
ing, 249 

RI-11 Violations of Integrity Con- 
straints of Types D, C, and E, 
249-250 

RI-12 User-defined Prohibition of 
Missing Database Values, 250- 
251 

RI-13 User-defined Prohibition of Du- 
plicate Values, 25t 

RI-14 Illegal Tuple, 251 
RI-15 Audit Log, 252 
RI-16 Non-subversion, 252 
RI-17 Creating and Dropping an In- 

tegrity Constraint, 253 
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RI-18 

RI-19 

RI-20 

R1-21 

RI-22 

RI-23 

RI-24 

R~ -25 

RI-26 

RI-27 

RI-28 
RI-29 
RI-30 
RI-31 
RI-32 
RI-33 
RI-34 
Right 
Right 

New Integrity Constraints 
Checked, 253 
Introducing a Column Integrity 
Constraint for Disallowing 
Missing Database Values, 253- 
254 
Minimal Adequate Scope of 
Checking, 254-255 
Each Integrity Constraint Exe- 
cutable as a Command, 255 
On-the-fly, End of Command, 
and End of Transaction Tech- 
niques, 255-257 
Information in a User-defined 
Integrity Constraint, 260 
Triggering Based on AP and 
TU Actions, 260 
Triggering Based on Date and 
Time, 261 
Insertion Involving I-marked 
Values, 267-268 
Update Involving I-marked Val- 
ues, 268 
Functional Dependency, 272 
Multi-valued Dependency, 272 
Join Dependency, 273 
Inclusion Dependency, 273 
REJECT Command, 274 
CASCADE command, 274 
MARK command, 274 
operand, 134 
Outer Equi-Join (RZ-14), 
108 

Right outer increment (ROI), 112, 
134 

Right Outer Natural Join (RZ-17), 
114 

R J-1 Empty-relation Indicator, 223 
R J-2 Empty Divisor Indicator, 223 
R J-3 Missing-information Indicator, 

223 
R J-4 Non-existing Argument Indica- 

tor, 224 
R J-5 Domain-not-declared Indicator, 

224 
R J-6 Domain-check-error Indicator, 

224 
RJ-7 Not Droppable, Column Still 

Exists Indicator, 224-225 
R J-8 Duplicate-row Indicator, 225 

R J-9 Duplicate-primary-key Indicator, 
225 

RJ-IO Non-redundant Ordering Indi- 
cator, 225 

R J-11 Catalog Block Indicator, 226 
R J-12 View Not Tuple-insertible, 

226 
RJ-13 View Not Component-updata- 

ble, 226 
R J-14 View Not Tuple-deletable, 227 
RE. See Relational languages 
RL-1 Data Sublanguage: Variety of 

Users, 362 
RL-2 Compiling and Re-compiling, 

362 
RL-3 Intermixing Relational- and 

Host-language Statements, 362 
RL-4 Principal Relational Language Is 

Dynamically Executable, 363 
RL-5 RL Both a Source and a Target 

Language, 363 
RL-6 Simple Rule for Scope Within 

an RE Command, 363 
RL-7 Explicit BEGIN and END for 

Multi-command Blocks, 363- 
364 

RL-80rthogonality in Language De- 
sign, 364 

RL-9 Predicate Logic versus Rela- 
tional Algebra, 364-365 

RL-IO Set-oriented Operators and 
Comparators, 365 

RL-11 Set Constants and Nesting of 
Queries Within Queries, 365- 
366 

RL-12 Canonical Form for Every Re- 
quest, 366 

RL-13 Global Optimization, 366-367 
RL-14 Uniform Optimization, 367 
RL-15 Constants, Variables, and 

Functions Interchangeable, 367 
RL-16 Expressing Time-oriented Con- 

ditions, 367-368 
RL-17 Flexible Role for Operators, 

368-369 
RE Both a Source and a Target Lan- 

guage (RL-5), 363 
RM-1 Guaranteed Access, 229-230 
RM-2 Parsable Relational Data Sub- 

language, 230 
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RM-3 Power of the Relational Lan- 
guage, 231 

RM-4 High-level Insert, Update, and 
Delete, 231-232 

RM-5 Operational Closure, 232 
RM-6 Transaction Block, 233-234 
RM-7 Blocks to Simplify Altering the 

Database Description, 234- 
235 

RM-8 Dynamic Mode, 235 
RM-9 Triple Mode, 235-236 
RM-IO Four-valued Logic: Truth Ta- 

bles, 236 
RM-11 Missing Information" Manipu- 

lation, 236-237 
RM-12 Arithmetic Operators: Effect 

of Missing Values, 237 
RM-13 Concatenation: Effect of 

marked Values, 237-.238 
RM-14 D0main-constraine d Operators 

and DOMAIN CHECK OV- 
ERRIDE, 238 

RM-15 Operators Constrained by 
Basic Data Type, 238.-239 

RM-16 Prohibition of Essential Order- 
ing, 239 

RM-17 Interface to Single-record-at-a- 
time Host Languages, 239 

RM-18 Comprehensive Data Sublan- 
guage, 240 

RM-19 Library Check-out, 240-241 
RM-20 Library Return, 241 
RM/V1. See also Relational model 

three-valued logic of, 180-182 
RM/V2; See also Relational model 

four-valued logic of, 182-183 
RN-1 Naming of Domains and Data 

Types, 146 
RN-2 Naming of Relations and Func- 

tions, 146 
RN-3 Naming of Columns, 146-147 
RN-4 Selecting Columns within Rela- 

tional Commands, 148 
RN-5 NamingFreedom, 148 
RN-6 Names of Columns Involved in 

the Union Class of Operators, 
148-150 

RN-7 Non-impairment of Commuta- 
tivity, 150-151 

RN-8 Names of Columns of Result of 
the Join and Division Opera- 
tors, 151 

RN-9 Names of Columns of Result of 
a Project Operation, 151 

RN-IO Naming the Columns whose 
Values are Function-generated, 
151-152 

RN-11 Iriheritance of Column Names, 
152 

RN-12 Naming Archived Relations, 
152 

RN-13 Naming of Integrity Con- 
straints, 153 

RN-14 Naming for the Detective 
Mode, 153 

ROLLBACK command, 248 
Round-the-clock operation, with rela- 

tional approach, 433-434 
Rounding, calendar dates and, 51 
RP-1 Physical Data Independence, 

345-346 
RP-2 Logical Data Independence, 346 
RP-3 Integrity Independence, 347 
RP-4 Distribution Independence, 347- 

349 
RP-5 Distributed Database Manage- 

ment: Decomposition and Re- 
composition, 349 

RQ-1 MAYBE____A qualifier, 209 
RQ-2 MAYBE_I  qualifier, 210 
RQ-3 MAYBE qualifier, 210 
RQ-4, RQ-5 Temporary Replacement 

of Missing Database Values, 
210 

RQ-6 Temporary Replacement of 
Empty Relation(s), 211 

RQ-7 ORDER BY qualifier, 211-213 
RQ-8 ONCE ONLY qualifier, 214- 

215 
RQ-9 DOMAIN CHECK OVER- 

RIDE (DCO) qualifier, 215- 
216 

RQ-IO EXCLUDE SIBLINGS quali- 
fier, 216 

RQ-11 Appended DEGREE OF DU- 
PLICATION (DOD) qualifier, 
216-218 

RQ-12 SAVE qualifier, 218 
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RQ-13 VALUE qualifier, 218 
RS-1 Information Feature, 30, 31-33 
RS-2 Freedom from Positional Con- 

cepts, 32 
RS-3 Duplicate Rows Prohibited in 

Every Relation, 32-33 
RS-4 Information Portability, 33 
RS-5 Three-Level Architecture, 34 
RS-6 Declaration of Domains as Ex- 

tended Data Types, 34-35 
RS-7 Column Descriptions, 35 
RS-8 Primary Key for Each Base 

R-table, 35-36 
RS-9 Primary Key for Certain Views, 

36 
RS-IO Foreign Key, 36-37 
RS-11 Composite Domains, 37 
RS-12 Composite Columns, 37-39 
RS-13 Missing Information: Represen- 

tation, 39-40 
RS-14 Avoiding the Universal Rela- 

tion, 40-41 
RT-1 Safety Feature when Comparing 

Database Values, 46-49, 71- 
72, 105 

RT-2 Extended Data Types Built into 
the System, 49-50 

RT-3 User-defined Extended Data 
Types, 50 

RT-4 Calendar Dates, 50-52 
RT-5 Clock Times, 52-53 
RT-6 Coupling of Dates with Times, 

53 
RT-7 Time-zone Conversion, 53 
RT-8 Non-negative Decimal Currency, 

53-54 
RT-9 Free Decimal Currency, 54 
R-tables, 17-18 

base, 18 
integrity constraints and, 36 
catalog and, 279-280 
primary key for, 35-36 

CREATE R-TABLE command 
and, 158 

derived, 18-19 
DROP R-TABLE command and, 

159-160 
EXTRACT AN R-TABLE com- 

mand and, 164 

LOAD AN R-TABLE command 
and, 164 

RENAME R-TABLE command 
and, 159 

Rule Zero, 16-17 
RV-1 View Definitions: What They 

Are, 285-287 
RV-2 View Definitions: What They 

Are Not, 287-288 
RV-3 View Definitions: Retention and 

Interrogation, 288 
RV-4 Retrieval Using Views, 288- 

289 
R V-5 Manipulation Using Views, 289- 

290 
RV-6 View Updating, 290-291,322- 

323 
RV-7 Names of Columns of Views, 

291 
R V-8 Domains Applicable to Columns 

of Views, 291 
RX-1 Multi-site Action from a Single 

Relational Command, 393 
RX-2 Local Autonomy, 394-395 
RX-3 Global Database and Global 

Catalog, 396-397 
RX-4 N Copies of Global Catalog 

(N > 1), 397 
RX-5 Synonym Relation in Each Cat- 

alog, 398 
RX-6 Unique Names for Sites, 399 
RX-7 Naming Objects in a Distributed 

Database, 399-401 
RX-8 Reversibility and Redistribution, 

401 
RX-9 Decomposition by Columns for 

Distributing Data, 403-404 
RX-IO Decomposition by Rows for 

Distributing Data, 404 
RX-11 General Transformation for 

Distributing Data, 404 
RX-12 Replicas and Snapshots, 405 
RX-13 Integrity Constraints that 

Straddle Two or More Sites, 
406 

RX-14 Views that Straddle Two or 
More Sites, 407 

RX-15 Authorization that Straddles 
Two or More Sites, 408 
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RX-16 Name Resolution with a Dis- 
tributed Catalog, 409 

RX-17 Inter-site Move of a Relation, 
410 

RX-18 Inter-site Moves of Rows of a 
Relation, 411 

RX-19 Dropping a Relation from a 
Site, 412, 

RX-20 Creating a New Relation, 412 
RX-21 Abandoning an Old Site and 

Perhaps Its Data, 413-414 
RX-22 Introducing a New Site, 414 
RX-23 Deactivating and Reactivating 

Items in the Catalog, 415 
RX-24 Minimum Standard for Statis- 

tics, 421 
RX-25 Minimum Standard for the Op- 

timizer, 422 
RX-26 Performance Independence in 

Distributed Database Manage- 
ment, 422 

RX-27 Concurrency Independence in 
Distributed Database Manage- 
ment, 423 

RX-28 Recovery at Multiple Sites, 423 
RX-29 Locking in Distributed Data- 

base Management, 423-424 
RZ-1 Framing a Relation, 98-99 
RZ-2 Extend the Description of one 

Relation to Include all the Col- 
umns of Another Relation, 
103-104 

RZ-3--RZ-12 Semi-Theta-Join, 105- 
106 

RZ-13 Left Outer Equi-Join, 107-108 
RZ-14 Right Outer Equi-join, 108 
RZ-15 Symmetric Outer Equi-Join, 

108-110 
RZ-16 Left Outer Natural Join, 114 
RZ-17 Right Outer Natural Join, 114 
RZ-18 Symmetric Outer Natural Join, 

114-115 
RZ-19 Outer Union, 117-119 
RZ-20 Outer Set Difference, 119-120 
RZ-21 Outer Set Intersection, 120- 

122 
RZ-22--RZ-25 Inner T-joins, 125 
RZ-26--RZ-37 Outer T-joins, 134-135 
RZ-38 User-defined Select, 137-138 

RZ-39 User-defined Join, 138-140 
RZ-40 Recursive Join, 140-143 
RZ-41 Semi-insert Operator, 320- 

321 
RZ-42 Semi-update Operator, 321 
RZ-43, RZ-44 Semi-archive and Semi- 

delete Operators, 321 

S 
Safety feature(s), 238-240 

functions and, 342-344 
Safety Feature when Comparing Data- 

base Values (RT-1), 46-49, 71- 
72, 105 

SAVE qualifier (RQ-12), 218 
Scalar functions, 338-340 

applied to marked arguments, 185 
Security problem, alleged, duplicate 

rows and corrupted relations 
and, 378 

Select operator, 7: 
algebraic, 69 
missing information and, 183 
of SOL, 69 
user-defined, 137-138 
view updatability and, 302-303 

Selecting Columns within Relational 
Commands (RN-4), 148 

Semantic data approaches, relational 
approach versus, 478-479 

Semantic distinctiveness, analysis of, 
379 

Semantic equality, missing informa- 
tion and, 178 

Semantic features, 150 
Semantic notions of equality 
Semantic ordering, 183, 184 
Semantics, duplicate rows and cor- 

rupted relations and, SOL and, 
373-374 

Semi-archive and Semi-delete Opera- 
tors (RZ-43, RZ-44), 321 

Semi-insert Operator (RZ-41), 320- 
321 

Semi-join operator, 104-106 
Semi-Theta-Join (RZ-3--RZ-12), 105- 

106 
Semi-update Operator (RZ-42), 321 
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Set Constants and Nesting of Queries 
Within Queries (RL-11), 365- 
366 

Set-oriented Operators and Compara- 
tors (RL-IO), 365 

Sharp Boundary (RD-3), 352-353 
Simple Rule for Scope Within an RL 

Command (RL-6), 363 
Single-table view, 287 
Snapshots, 9 

CREATE SNAPSHOT command 
and, 163-164 

global database and, 405 
Sole tool, 328 
Source code 

form, 356 
globalized, 397 

SOL. See Structured Query Language 
Starting node, 451 
Statistical functions 

application of, 187-188, 202-203 
duplicate rows and corrupted re- 

lations and, 374 
to empty sets, 188-189 

built-in, 340 
Statistics 

database, 355 
interrogation of, 355 
minimum standard for, 421 

Storage representations, 33 
changing, 355-356 

Storage space, extra, binary relation- 
ship approach versus relational 
approach and, 475 

Strict hierarchy, integrity checks and, 
456 

Structured Query Language (SOL), 12- 
13, 21, 62-63 

NonStop, 438 
serious flaws in, 371-389 

corrective steps for, 386-387 
duplicate rows and corrupted re- 

lations and, 372-379 
inadequate support for three- and 

four-valued logic and, 383-386 
precautionary steps and, 387-388 
psychological mix-up and, 379- 

382 
Substitution qualifier, 187 

Supermarket check-out problem, du- 
plicate rows and corrupted rela- 
tions and, 378-379 

Suppliers, cutting off orders to, 269 
Symbolic equality, 189 

missing information and, 178 
Symbolic ordering, 183 
Symmetric Outer Equi-Join (RZ-15), 

108-110 
Symmetric Outer Natural Join 

(RZ-18), 114-115 
Synonym Relation in Each Catalog 

(RX-5), 398 
Systems application architecture 

(SAA), 446 

T 
T-join operators, 123-137 

implementation of domains and, 47 
inner, 125-134 

non-strict ordering in, 130-134 
strict ordering in, 126-130 

introduction to, 123-125 
outer, 134-135 

Tables, relations versus, 17-20 
Tandem Corporation, 438 
Target list, 337 
Temporary Replacement of Empty 

Relation(s) (RQ-6), 211 
Temporary Replacement of Missing 

Database Values (RQ-4, 
RQ-5), 210 

Terminating node, 451 
Theta-join(s) 

Boolean extension of, 76-77 
effect of ONCE qualifier on, 213- 

218 
implementation of domains and, 47 

Theta-Join Operator (RB--14-RB- 
23), 73-76 

Theta-sdect 
Boolean extension of, 72 
implementation of domains and, 47 

Theta-Select Operator (RB-3-- 
RB-12), 69-71 

Three-Level Architecture (RS-5), 34 
Three-level architecture, 33-34 
Three-valued, first-order predicate 

logic, 20 
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Three-valued logic, 20 
clock, 52-53 

coupling dates with, 53 
time-zone conversion and, 53 

how to support, 383-385 
inadequate support for, SOL and, 

383-386 
of RM/V1, 180-182 

Tie-breaking columns, 124 
Time(s) 

integrity constraints triggered by, 
266 

Time-independent PK-to-FK relation- 
ship, 307 

Time-oriented conditions, expressing, 
367-368 

Time-zone Conversion (RT-7), 53 
Timing, integrity constraints and, 246- 

250 
Timing of Testing for Types R and U 

(RI-6), 247-248 
Trailing relation, 31 
Transaction, 14, 233,423 
Transaction Block (RM-6), 233-234 
Transaction concept, 14-15 
Transaction routing, 393 
Transformed case, 301 
Transitive closure, 454 
Traversal of a path 

downward, 142 
upward, 142 

Triggered action, 264, 266 
special commands for, 273-274 

Triggering Based on AP and TU Ac- 
tions (RI-24), 260 

Triggering Based on Date and Time 
(RI-25), 261 

Triggering event, 266, 269 
Triple Mode (RM-9), 235-236 
Truncation, calendar dates and, 51 
Truth tables, 236 
Tuple ids, 297 
Tuple, illegal, 251 
Types of Integrity Constraints 

(RI-1--RI-5), 246 

U 
Under-the-Cover Representation and 

Access (RD-2), 352 

Under-the-covers, 4, 264 
Uniform Optimization (RL-14), 367 
Unintended cycles, integrity checks 

and, 455 
Union-compatibility, 79, 115 
Union Operator (RB-26), 78-81 
Union operator(s) 

names of columns involved in, 148- 
150 

view updatability and, 312-314 
Unique Names for Sites (RX-6), 399 
Uniqueness property, 23 
Universal relation 

avoiding, 40-41 
inability to replace relational model, 

468-473 
coping with change and, 471-472 
cyclic key states and, 470-471 
insertion, deletion, and updating 

and, 471 
joins based on keys and, 470 
joins based on non-keys and, 470 
lack of comprehensive data model 

and, 472 
natural language and, 472 
operators and, 469-470 

Unknowable, 180 
Unknown, 171, 180 
Unmarked values, 187 
Untransformed case, 301 
Update, high-level, 231-232 
Update command, 7 
Update Involving I-marked Values 

(RI-27), 268 
Update Operator (RB-32), 89 
Updating, 21 

removing rows from views, block- 
ing, 330 

universal relation versus relational 
approach and, 471 

of views, 290-291 
User-defined Extended Data Types 

(RT-3), 50 
User-defined function, exercise, 283 
User-defined Functions Can Access 

the Database (RF-7), 342 
User-defined Functions: Compiled 

Form Required (RF-6), 341- 
342 
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User-defined Functions in the Catalog 
(RC-9), 282 

User-defined Functions: Their Use 
(RF-4), 341 

User-defined Integrity Constraints 
(RC-7), 259-275,281,283 

User-defined Join (RZ-39), 138-140 
User-defined Prohibition of Duplicate 

Values (RI-13), 251 
User-defined Prohibition of Missing 

Database Values (RI-12), 250- 
251 

User-defined Select (RZ-38), 137-138 

V 
Value(s), 188 

applicable, 172 
decreasing, 127-128 
duplicate, user-defined prohibition 

of, 251 
inapplicable, 172 
increasing, 126 
missing . 

introducing column integrity con- 
straint for disallowing, 253-254 

and-applicable, 182 
and-inapplicable, 182 
treatment of, 180 
user-defined prohibition of, 250- 

251 
ordering of, 183-184 

Value-ordering, joins involving, 184- 
185 

VALUE qualifier (RQ-13), 218 
Variables, interchangeability of, 367 
View(s), 16, 18, 285-292 

catalog and, 16, 280-281 
component-updatable, 296 
definitions of, 285-288 

fully expanded version, 297 
unexpanded version, 297 

distributed, 406-407 
fully expanded, 297 
hiding columns in, 329-330 
naming and domain features and, 

291 
primary key for, 36 
richer variety of, with relational ap- 

proach, 435 

single-table, 287 
tuple-deletable, 296 
tuple-insertable, 296 
use of, 288-291 

View Definitions: Retention and In- 
terrogation (RV-3), 288 

View Definitions: What They Are 
(R V-l), 285-287 

View Definitions: What They Are 
Not (RV-2), 287-288 

View-definition time, 298 
View Not Component-updatable 

(R J-13), 226 
View Not Tuple-deletable (R J-14), 

227 
View Not Tuple-insertible (R J-12), 

226 
Views that Straddle Two or More 

Sites (RX-14), ~ 407 
View updatability, 293-324 

algorithms an d , 297 
algorithms VU-1 and VU-2 and, 

299-316 
decision problem and, 302 
equi-join operator and, 304-309 
inner joins other than equi-joins 

and, 309-311 
intersection operator and, 314- 

315 
natural join operator and, 312 
outer difference operator and, 316 
outer equi-join operator and, 312 
outer intersection operator and, 

315 
outer union operator and, 314 
prohibition of duplicate rows 

within a relation and, 300-301 
project operator and, 303-304 
relational difference operator and, 

315 
relational division operator and, 

312 
select operator and, 302-303 
solution-oriented definitions and, 

301-302 
union operator and, 312-314 

assumptions and, 297-299 
fully and partially normalized views 

and, 317-322 
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new operators for partially nor- 
malized views and base rela- 
tions and, 320-321 

normalization and, 317-319 
outer equi-join versus inner equi- 

join as views and, 321-322 
relating view updatability to nor- 

malization and, 319-320 
more comprehensive relational re- 

quests and, 316-317 
problem-oriented definitions and, 

296-297 

View Updating (RV-6), 290-291,322- 
323 

Violation response, 248 
Violations of Integrity Constraints of 

Types D, C, and E (RI-11), 
249-250 

W 
Weak identifier, 36, 109 
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