
Nondeterministic Algorithms

ROBERT W. FLOYD

Carnegie Institute of Technology,* Pittsburgh, Pennsylvania

ABSTRACT. Programs to solve combinatorial search problems may often be simply written by
using multiple-valued functions. Such programs, although impossible to execute directly on
conventional computers, may be converted in a mechanical way into conventional backtrack-
ing programs. The process is illustrated with algorithms to find all solutions to the eight queens
problem on the chessboard, and to find all simple cycles in a network.

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it beat in the undergrowth

--Robert Frost
All the time life is a fork. If you are straight up with yourself

you don't have to decide which road to take. Your karma will look
after that.--George Harrison

Nondeterministic algorithms are conceptual devices to simplify the design of back-
tracking algorithms [3] by allowing considerations of program bookkeeping required
for backtracking to be ignored. Typically, a backtracking program solves some prob-
lem by exhaustive enumeration of a set of possible solutions. I f at any point in the
algorithm the tenta t ive and partially specified solution is found to be inconsistent
with the stated problem, the program "backt racks" ; tha t is, it restores the values
of all variables at the most recent time tha t it added to its partial specification of the
solution, and tries the next alternative at tha t level of specification. When all
alternatives at one level of specification have been tried, another al ternative must
be tried at the previous level of specification.

Nondeterministic algorithms resemble conventional algorithms as represented by
flowcharts, programming languages, machine language programs, etc., except that:

(1) One may use a multiple-valued function, choice(X), whose values are the
positive integers less than or equal to X. (Other multiple-valued functions may also
be introduced, bu t this one is adequate.)

(2) All points of termination are labeled as successes or failures.
In general, there may be many ways to execute a nondeterministic algorithm,

carrying out all assignments, branches, etc., in the conventional way, and making
an arbi t rary selection f rom the set of possible values each t ime a multiple-valued
function is encountered. Of these execution sequences, however, only those whose
terminations are labeled as successes are considered to be computat ions of the
algorithm.

For example, consider an algorithm to solve the problem of the eight queens:
to place eight queens on the chessboard so tha t no two are on the same row, column,
or diagonal [1, p. 165]. (See Figure 1.) Rephrasing, the problem is to find a sequence

* Department of Computer Science. This work was supported by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (SD-146).

Journal of the Association for Computing Machinery, Vol. 14, No. 4, October 1967, pp. 636.-644

(
N ondeterministic Algorithms 637

of eight numbers (r , , r2, . , . , r~), where 1< r'~ < 8 represents the row occupied
by the queen in the ith column of the board, such that if i ~ j , then r~ -~ r i ,
r i ÷ i # r j + j , a n d r ~ - i ~ r j - - j .

We construct a nondeterministie algorithm to solve this problem. To record which
rows and diagonals are occupied we use aj to represent the number (always 0 or 1)
of queens in the j th row, bs to represent the number of queens on that diagonal
for which the row index plus the column index equals j, and ci to record the number
of queens on that diagonal for which the row index minus the column index equals
j. We speciIy the solution by letting col range over the column indices from 1 to 8,
and for eaeh column choosing a row betwee, 1 and 8, using the choice function. A
failure is registered as soon as any row or diagonal is occupied by two queens; a
success is registered it all eight choices are made without a failure. In flowchart
form, the program is represented by Figure 2. The reader may verify that letting
the value of choice(8) be successively 2, 4, 6, 8, 3, 1, 7, and 5 allows the algorithm
to reach its successful termination. In fact, there is a one-for-one correspondence
between computations of the algorithm and the 92 solutions of the problem.

The simplicity of specification of the algorithm is apparent. I t corresponds rcla-

1 2 3

(2, 4, 6,

4 5

8, 3,

FIG. 1

6 7 8

1, 7, 5)

START)

IA
I co, -1 I -q:

~D

F ' (" FAILURE

{a

(c°z = 8 ~ (~succK s

cot+t]

~J

h } L
¢ol

FIG. 2.

)

I
M] Arrays a, b, and c are initialized to zeroes.

Nondeterministie algorithm for
the eight queens problem

Journal of the Association for Computing Machinery, Vol. 14, No. 4, October 1967

638 ROBERT W. FLOYD

tively closely to a verbal algorithm such as "Pick one square in each column, being
careful riot. to pick two on the same row or diagonal, and write down, for each col-
umn, the row you choose." There is, furthermore, a purely mechanical process of
translation which may be used to convert ~ nondcterministic algorithm to a con-
ventional deterministic one. Because this process is a local one, being applied to
each eormmand of the algorithm in turn, it is amenable to incorporation in compilers,
maeroassemblers, or simulators of machines. Each command is expanded into one
or more commands, some of which carry out, the effect of the original command in
the nondegerministie algorithm, and which also stack information required to re~
verse the effect of the command when backtracking is needed, while others carry
out the backtracking by undoing all the effects of the first set.

We add to the variables of the algorithm a new temporary variable T, and the

0)

~+

@

(s)

(6)

I ~ o ~ -1 l - ~ s c k M ~o ~ "t
X ~ !

i

J/A

4A ~A'

........ - ~ X

o~ W ~ondestructivciy | |
...... ,# L

FIo. 3 (Part 1)

Journal of the Association for C0mputing Machinery, VoL 14, No. 4, October !907

Nondeterministic Algorithms t i~

three stacks M (memory), W (write), mid R (read). In Figure 3 we show for each
command ~ of a nondeterministie algorithm the corresponding augmented com-
mand(s) Z + of the deterministic algorithm, and the corresponding backtracking
command 2 - which undoes all the effects of Z +. In these commands, X is an ar-
bitrary variable, f is an arbi trary expression, P is an arbi t rary condition governing a
conditional branch, and S is a subroutine, treated for simplicity as parameterless.
All flowchart connections are assumed to be labeled; this labeling is used as the basis
for reconnection of the flowchart after conversion into deterministic form. Brief
explanations are as follows:

(1) Before assigning a new value to X, the old value is stacked for restoration during
backtracking.

(2) Because branching normally causes no loss of information, no special provisions for
backtracking are required.

(3) All output is stacked, to be printed only if a successful termination is reached.

~ t , ,
I Call. subroutlneS __1

(8) ~,B

(~n,,an,~?!,ub,o~,~dS)
(9) ~

~B

C

(10)

~ G B

~A
I X<---cholce(f) ' '[

(11) ~¢

. ~A IAt

] C a l ~ I

' Entrance of subrgutinc S

, I B'
(','~o-ub~ou~inos)

.... ' ~ , ,~B ~-~-- ~.~ '
I Sta°"°°°'M'li S,ackionM i
"

f .l
'tc'

sttack X on M l UnstackMtoX ,,[& X < - / '1

gt

FIG. 3 (Part 2)

Journal of the Association for Computing Machinery, Vol. 14, No. 4, October 1967

6~0 ROBERT W. FLOYD

w

A Where [

(ia) [ii X ~ f (X)]l~2:e;ac

~A
(Sa)'VCall subroutine s]

Where S contains no halts:,
choices,input or output,

Save on M all variables]
] which may be I
[altered by S [

~t
[C~i~subroutine S ,,1

~A'
Restore from Mall variables t
which may have been t
altered by S]

1

The body of subroutine S
need not be converted.

Where P is always
(IOa) C true at A, false at B.

FIG. 3 (Part 3)

(4) Because most input devices are irreversible, a stack R, initially empty, is used to
hold all input which has been backtracked over.

(5) Upon backtracking to the beginning of the nondeterministic algorithm, all possible
solutions have been inspected, and the deterministic algorithm halts.

(6), (7) Upon reaching a success, all accumulated output is printed. If all solutions of the
problem are desired, backtracking is initiated. A failure always initiates backtrack-

inf.
(8), (9) Subroutine calls and returns use a temporary storage cell, 7', to indicate whether or

not the program is in the backtracking state, thereby allowing free use of multiple~
valued functions, and of points of termination, within subroutines. Recursive sub-
routines inn nondeterministic algorithms are translated into recursive subroutines ia
deterministic algorithms.

(10) At a point where two paths of control join, one must preserve a record of which path

was taken.
(11) One implementation of X ~ choice(f) saves the original value of X, and assigns f

to X. After all possible computations with any particular value of choice(f) have been
tried, the next smaller value is tried. When all values have been tried, the original
value of X is restored and backtracking continues.

(la) If an assignment command does not cause loss of information (e.g., X *- X + 1),
no stacking is required; on backtracking the inverse command (e.g., X ~-- X - 1) is
executed. Stacking operations, and assignments which initialize previously undefined
variables, may be treated similarly.

(8a) Conventional deterministic subroutines may be isolated from the conversion proc-
ess, s imply stacking the original values of any variables potentially altered by the

subroutine.
(10a) More frequently than not, a t the point where two paths of control join, the values

of the program variables indicate which path was taken.

Applying these conversions to Figure 2, we construct Figure 4, a conventional
deterministic algorithm for the eight queens problem. As is characteristic of such
macro-expansion processes, there are minor inefficiencies, principally the duplica-
tion of the stack M by the stack W, but the algorithm appears to be reasonably

satisfactory.
Another example of a nondeterministic algorithm enumerates all simple cycles

in a network (loops in a flowchart, for example). Let us assume that the vertices of
the network are named X~, X2, • • - , X~, as in Figure 5, and that step is an array

Journal of the Association for Computing Machinery, Vol. 14, No. 4, October 1967

Nondeterministic Algorithms 641

- row - - 1

C."AL ~)

I ~M~° , ' °w 1

...... ~ E E'.
IY

F'

a ~-0 ~] I row !

] row+col

I H t

~ I'
[Unstacl~ W I

Write contents of W ~--~--~I J'

| LJ

1 ~ o l o ~ o l - ~

FiG. 4. Deterministic algorithm for the eight queens problem

xl I
(2, 1)
(3, 2, 1)
(4, 1, 2)
(4, 1, 3, 2)
(4, 3, 2)

FIG. 6. Cycles of Figure 5

FIG. 5. A network

of truth values such t h a t step~,j is t rue if there is a direct connection from X~ to
Xi in the network. A s imple cycle is a sequence (i l , i2, • • • , ik) of numbers between
1 and n such t ha t step~. ~+1 is t rue for 1 _< j < k, step,k, ~1 is true, and if a #
then i~ # i~. We will ob ta in s imple cycles in a canonical form such tha t i l is the

Journal of the Association for Computing Machinery, Vol. 14, No. 4, October 1967

642 ROBERT W. FLOYD

largest number in the cycle. In Figure 6 the cycles of Figure 5 are given in canonical
form.

The algorithm of Figure 7 first selects il (= i n i t i a l) , then repeatedly selects the
value of i j+t (= new) such that stepo~a is true (is = old), and such that is+ ~

is not equal to any of i 2 , i~, • • . , is (used~w is false). Initially the vector used l ,

u sed~ , • • • , used~ is assumed false. The process ends when ij+l = ix, at which time
i l , i2, • • • , ij have been printed. In Figure 8 we show the array representation of
Figure 5. Figure 7 corresponds to the verbal algorithm, "Pick an initial point for the

[ini,iaZ eholce(,O .]

I o d.-ioi, a i.]

Write old

neat ~-- choice (initial)

used [new] V --1 step [old, new] ?

FAILURE)

new = initial ? ~

~ SUCCESS)

Initlally, used[1], used[2], . . . used[n] arefal~

used[new] ~ true

old ~ new [

F~6.7. Nondeterministic algorithm to print any cycle of a network

i \ l 2 3 4

1 F T T F

2 T F F T

3 F T F F

4 T F T F

FIG. 8. Array s t e p ~ d representing Figure 5

Journal of the Association for Computing Machinery, Vol. 14, No. 4, October 1967

Tondeterministic Algorithms 643

ycle; then repeatedly pick a new one, of index no larger than the initial one, which
.as not been used before and which is directly accessible from the previous point.
)ontinue until you return to the initiM point. Write down all the points you pick,
xcept the final repetition of the initial point."

One may frequently make a backtracking algorithm more selective in its search
or solutions, with great gains in processing speed, by adding tests in the nondeter-
ninistie forraulation of the algorithm, with one branch of each leading to a failure
Lalt. For example, if we know for each X~ and Xj in a given network whether Xj
~an be reached from X~ (let the truth value of this be called r~.~), we may add at
r in Figure 7 the following test:

[n a network containing a rich collection of blind alleys and one-way streets, this
Lest may greatly increase the efifieiency of the generated algorithm. For other net-
woNs, of course, the test may simply consume time without eliminating any sig-
nificant number of paths from consideration. One merit of the nondeterministic
algorithm viewpoint is that such tests may be inserted and removed by local changes
to the nondeterministic algorithm and its generated deterministic algorithm.

One might usefully extend the notion of the nondeterministie algorithm to allow
some information to be carried over from one computation of the algorithm to
another. This can be done by providing, for example, a form of assignment command
whose effects are not reversed during backtracking. In programming a backtrack-
ing algorithm to find the solution of a given problem which achieves the minimum
cost according to some measure, one may record by such an irreversible assignment
the minimum cost of any solution yet found. As other solutions become partially
specified, their partial costs are accumulated, and a failure may be programmed to
occur when the implicit cost of a partially specified solution becomes greater than
the minimum cost of the previous solutions. An irreversible assignment would be
converted as follows:

Implementations of nondeterministic algorithm other than by the macro-ex-
pansion suggested by Figure 2 are possible. One may save the current values of all
variables at each choice point, for example, unstacking the saved variables if a
failure is reached and trying the next value for the choice. It is also possible to simu-
late a multiprocessing machine which replicates itself at each choice point, pursuing
all possibilities in parallel. In many typical applications, however, these approaches
may be inefficient by comparison with macro-expansion.

Journal of the Association for Computing Machinery, Vol. 14, No. 4, October 1967

644 ROBERT W. FLOYD

Areas of application of backtracking are numerous. They include, but are cer-
tainly not limited to, syntactic analysis [2, 4], economic resource allocation, crypt-
analysis, design of efficient sorting procedures, and such applications in artificial
intelligence as theorem proving and game playing. For use in such areas it is possible
that programming languages capable of representing nondeterministie algorithms
would be valuable, in the same way that simulation languages have proved valuable
in certain areas of application. In both instances, a process with a very complicated
control structure is represented by an algorithm with a simpler structure for an
imaginary processor, and then converted to a more complicated algorithm for a
conventional processor.

Because the word "nondeterministie" has a double meaning, it is perhaps desir-
able to make clear that nondeterministie algorithms are not probabilistie, random,
or Monte Carlo algorithms. Rather, they are convenient representations of syste-
matic search procedures. From one point of view, a nondeterministie algorithm
represents a method of thinking of computer programs as being in part governed,
not by efficient causes (causes which precede their effects) but by final causes (goals:
causes for the sake of which their effects are carried out). Achievement of success
and avoidance of failure is the goal of a nondeterministic algorithm, or, more pre-
cisely, of its imagined processor. One may say of the nondeterministie algorithm
for the four queens problem, ~ for example, that when col is equal to 1, row will never be
chosen equal to 1 in any eotnputation of the algorithm, because there are no solu-
tions having a queen in the corner, and the goal of the processor is to find a solution.
We may say that these algorithms are nondeterministie, not in the sense of being
random, but in the sense of having free will.

RECEIVED DECEMBER, 1966

REFERENCES

1. BALL, W.R. Mathematical Recreations and Essays (12th ed.). Macmillan, New York, 1947.
2. FLOYD, R. W. The syntax of programming languages - -a survey. I E E E Trans. EC-I3,

4 (Aug. 1964), 346-353.
3. GOLOMB, S. W., AND BAUMERT, L . D . Backt rack programming. J. A C M 12, 4 (Oct. 1965),

516-524.
4. IRONS, E. T. A syntax-directed compiler for ALGOL 60. Comm. A C M ~4, 1 (Jan. 1961),

51-55.

I I. e., placing four queens on a 4 X 4 board.

Journal of the Association for Computing Machinery, Vol. 14, No. 4, October 1967

i~ii,

