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ABSTRACT. Programs to solve combinatorial search problems may often be simply written by 
using multiple-valued functions. Such programs, although impossible to execute directly on 
conventional computers, may be converted in a mechanical way into conventional backtrack- 
ing programs. The process is illustrated with algorithms to find all solutions to the eight queens 
problem on the chessboard, and to find all simple cycles in a network. 

Two roads diverged in a yellow wood, 
And sorry I could not travel both 
And be one traveler, long I stood 
And looked down one as far as I could 
To where it beat in the undergrowth ....  

--Robert Frost 
All the time life is a fork. If you are straight up with yourself 

you don't have to decide which road to take. Your karma will look 
after that.--George Harrison 

Nondeterministic algorithms are conceptual devices to simplify the design of back- 
tracking algorithms [3] by  allowing considerations of program bookkeeping required 
for backtracking to be ignored. Typically,  a backtracking program solves some prob- 
lem by  exhaustive enumeration of a set of possible solutions. I f  at any point in the 
algorithm the tenta t ive  and partially specified solution is found to be inconsistent 
with the stated problem, the program "backt racks" ;  tha t  is, it restores the values 
of all variables at the most recent time tha t  it added to its partial  specification of the 
solution, and tries the next alternative at tha t  level of specification. When all 
alternatives at  one level of specification have been tried, another  al ternative must 
be tried at  the previous level of specification. 

Nondeterministic algorithms resemble conventional algorithms as represented by 
flowcharts, programming languages, machine language programs, etc., except that:  

(1) One may use a multiple-valued function, choice(X), whose values are the 
positive integers less than or equal to X. (Other multiple-valued functions may  also 
be introduced, bu t  this one is adequate.) 

(2) All points of termination are labeled as successes or failures. 
In general, there may  be many  ways to execute a nondeterministic algorithm, 

carrying out all assignments, branches, etc., in the conventional way, and making 
an arbi t rary  selection f rom the set of possible values each t ime a multiple-valued 
function is encountered. Of these execution sequences, however, only those whose 
terminations are labeled as successes are considered to be computat ions of the 
algorithm. 

For  example, consider an algorithm to solve the problem of the eight queens: 
to place eight queens on the chessboard so tha t  no two are on the same row, column, 
or diagonal [1, p. 165]. (See Figure 1.) Rephrasing, the problem is to find a sequence 
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of eight numbers (r , ,  r2, . , .  , r~), where 1< r'~ < 8 represents the row occupied 
by the queen in the ith column of the board, such that if i ~ j ,  then r~ -~ r i ,  
r i ÷  i # r j + j ,  a n d r ~ - i  ~ r j - - j .  

We construct a nondeterministie algorithm to solve this problem. To record which 
rows and diagonals are occupied we use aj to represent the number (always 0 or 1) 
of queens in the j th  row, bs to represent the number of queens on that  diagonal 
for which the row index plus the column index equals j, and ci to record the number 
of queens on that  diagonal for which the row index minus the column index equals 
j. We speciIy the solution by letting col range over the column indices from 1 to 8, 
and for eaeh column choosing a row betwee, 1 and 8, using the choice function. A 
failure is registered as soon as any row or diagonal is occupied by two queens; a 
success is registered it all eight choices are made without a failure. In flowchart 
form, the program is represented by Figure 2. The reader may verify that  letting 
the value of choice(8) be successively 2, 4, 6, 8, 3, 1, 7, and 5 allows the algorithm 
to reach its successful termination. In fact, there is a one-for-one correspondence 
between computations of the algorithm and the 92 solutions of the problem. 

The simplicity of specification of the algorithm is apparent. I t  corresponds rcla- 
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tively closely to a verbal algorithm such as "Pick  one square in each column, being 
careful riot. to pick two on the same row or diagonal, and write down, for each col- 
umn, the row you choose." There is, furthermore, a purely mechanical process of 
translation which may be used to convert ~ nondcterministic algorithm to a con- 
ventional deterministic one. Because this process is a local one, being applied to 
each eormmand of the algorithm in turn, it is amenable to incorporation in compilers, 
maeroassemblers, or simulators of machines. Each command is expanded into one 
or more commands, some of which carry out, the effect of the original command in 
the nondegerministie algorithm, and which also stack information required to re~ 
verse the effect of the command when backtracking is needed, while others carry 
out the backtracking by undoing all the effects of the first set. 

We add to the variables of the algorithm a new temporary variable T, and the 
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three stacks M (memory),  W (write), mid R (read). In  Figure 3 we show for each 
command ~ of a nondeterministie algorithm the corresponding augmented com- 
mand(s) Z + of the deterministic algorithm, and the corresponding backtracking 
command 2 -  which undoes all the effects of Z +. In  these commands, X is an ar- 
bitrary variable, f is an arbi trary expression, P is an arbi t rary condition governing a 
conditional branch, and S is a subroutine, treated for simplicity as parameterless. 
All flowchart connections are assumed to be labeled; this labeling is used as the basis 
for reconnection of the flowchart after conversion into deterministic form. Brief 
explanations are as follows: 

(1) Before assigning a new value to X, the old value is stacked for restoration during 
backtracking. 

(2) Because branching normally causes no loss of information, no special provisions for 
backtracking are required. 

(3) All output is stacked, to be printed only if a successful termination is reached. 
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(4) Because most input  devices are irreversible, a stack R, initially empty, is used to 
hold all input  which has been backtracked over. 

(5) Upon backtracking to the beginning of the nondeterministic algorithm, all possible 
solutions have been inspected, and the deterministic algorithm halts. 

(6), (7) Upon reaching a success, all accumulated output is printed. If all solutions of the 
problem are desired, backtracking is initiated. A failure always initiates backtrack- 

inf.  
(8), (9) Subroutine calls and returns use a temporary storage cell, 7', to indicate whether or 

not  the program is in the backtracking state,  thereby allowing free use of multiple~ 
valued functions, and of points of termination, within subroutines. Recursive sub- 
routines inn nondeterministic algorithms are translated into recursive subroutines ia 
deterministic algorithms. 

(10) At a point where two paths of control join, one must preserve a record of which path 

was taken. 
(11) One implementation of X ~ choice(f) saves the original value of X, and assigns f 

to X. After all possible computations with any particular value of choice(f) have been 
tried, the next smaller value is tried. When all values have been tried, the original 
value of X is restored and backtracking continues. 

(la) If an assignment command does not cause loss of information (e.g., X *- X + 1), 
no stacking is required; on backtracking the inverse command (e.g., X ~-- X - 1) is 
executed. Stacking operations, and assignments which initialize previously undefined 
variables, may be treated similarly. 

(8a) Conventional  deterministic subroutines may be isolated from the conversion proc- 
ess, s imply stacking the original values of any variables potentially altered by the 

subroutine. 
(10a) More frequently than not, a t  the point  where two paths of control join, the values 

of the program variables indicate which path was taken. 

Applying these conversions to Figure 2, we construct Figure 4, a conventional 
deterministic algorithm for the eight queens problem. As is characteristic of such 
macro-expansion processes, there are minor inefficiencies, principally the duplica- 
tion of the stack M by the stack W, but  the algorithm appears to be reasonably 

satisfactory. 
Another example of a nondeterministic algorithm enumerates all simple cycles 

in a network (loops in a flowchart, for example). Let us assume that the vertices of 
the network are named X~, X2, • • - , X~, as in Figure 5, and that step is an array 
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FIG. 5. A network 

of truth values such t h a t  step~,j is t rue  if there is a direct connection from X~ to 
Xi in the network.  A s imple  cycle is a sequence ( i l ,  i2, • • • , ik) of numbers  between 
1 and n such t ha t  step~. ~+1 is t rue  for 1 _< j < k, step,k, ~1 is true,  and if a # 
then i~ # i~. We will ob ta in  s imple cycles in a canonical form such tha t  i l  is the 
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largest number in the cycle. In Figure 6 the cycles of Figure 5 are given in canonical 
form. 

The algorithm of Figure 7 first selects il ( =  i n i t i a l ) ,  then repeatedly selects the 
value of i j+t ( =  new)  such that  stepo~a . . . .  is true (is = old), and such that  is+ ~ 

is not equal to any of i 2 ,  i~,  • • . ,  is (used~w is false). Initially the vector used l ,  

u sed~ ,  • • • , used~ is assumed false. The process ends when ij+l = ix, at which time 
i l ,  i2, • • • , ij have been printed. In Figure 8 we show the array representation of 
Figure 5. Figure 7 corresponds to the verbal algorithm, "Pick an initial point for the 
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ycle; then repeatedly pick a new one, of index no larger than the initial one, which 
.as not been used before and which is directly accessible from the previous point. 
)ontinue until you return to the initiM point. Write down all the points you pick, 
xcept the final repetition of the initial point." 

One may frequently make a backtracking algorithm more selective in its search 
or solutions, with great gains in processing speed, by adding tests in the nondeter- 
ninistie forraulation of the algorithm, with one branch of each leading to a failure 
Lalt. For example, if we know for each X~ and Xj in a given network whether Xj 
~an be reached from X~ (let the truth value of this be called r~.~), we may add at 
r in Figure 7 the following test: 

[n a network containing a rich collection of blind alleys and one-way streets, this 
Lest may greatly increase the efifieiency of the generated algorithm. For other net- 
woNs, of course, the test may simply consume time without eliminating any sig- 
nificant number of paths from consideration. One merit of the nondeterministic 
algorithm viewpoint is that such tests may be inserted and removed by local changes 
to the nondeterministic algorithm and its generated deterministic algorithm. 

One might usefully extend the notion of the nondeterministie algorithm to allow 
some information to be carried over from one computation of the algorithm to 
another. This can be done by providing, for example, a form of assignment command 
whose effects are not reversed during backtracking. In programming a backtrack- 
ing algorithm to find the solution of a given problem which achieves the minimum 
cost according to some measure, one may record by such an irreversible assignment 
the minimum cost of any solution yet found. As other solutions become partially 
specified, their partial costs are accumulated, and a failure may be programmed to 
occur when the implicit cost of a partially specified solution becomes greater than 
the minimum cost of the previous solutions. An irreversible assignment would be 
converted as follows: 

Implementations of nondeterministic algorithm other than by the macro-ex- 
pansion suggested by Figure 2 are possible. One may save the current values of all 
variables at each choice point, for example, unstacking the saved variables if a 
failure is reached and trying the next value for the choice. It  is also possible to simu- 
late a multiprocessing machine which replicates itself at each choice point, pursuing 
all possibilities in parallel. In many typical applications, however, these approaches 
may be inefficient by comparison with macro-expansion. 
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Areas of application of backtracking are numerous. They include, but are cer- 
tainly not limited to, syntactic analysis [2, 4], economic resource allocation, crypt- 
analysis, design of efficient sorting procedures, and such applications in artificial 
intelligence as theorem proving and game playing. For use in such areas it is possible 
that  programming languages capable of representing nondeterministie algorithms 
would be valuable, in the same way that  simulation languages have proved valuable 
in certain areas of application. In both instances, a process with a very complicated 
control structure is represented by an algorithm with a simpler structure for an 
imaginary processor, and then converted to a more complicated algorithm for a 
conventional processor. 

Because the word "nondeterministie" has a double meaning, it is perhaps desir- 
able to make clear that  nondeterministie algorithms are not probabilistie, random, 
or Monte Carlo algorithms. Rather, they are convenient representations of syste- 
matic search procedures. From one point of view, a nondeterministie algorithm 
represents a method of thinking of computer programs as being in part governed, 
not by efficient causes (causes which precede their effects) but by final causes (goals: 
causes for the sake of which their effects are carried out). Achievement of success 
and avoidance of failure is the goal of a nondeterministic algorithm, or, more pre- 
cisely, of its imagined processor. One may say of the nondeterministie algorithm 
for the four queens problem, ~ for example, that  when col is equal to 1, row will never be 
chosen equal to 1 in any eotnputation of the algorithm, because there are no solu- 
tions having a queen in the corner, and the goal of the processor is to find a solution. 
We may say that  these algorithms are nondeterministie, not in the sense of being 
random, but in the sense of having free will. 
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