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1. Introduction 

Although computer memory systems have always 
used several levels of storage media, it was not until 
multiprogramming and virtual memory came into exist- 
ence that the problems of managing and evaluating 
them efficiently became severe. The complexity of 
computer memory systems--besides the lack of reliable 
prior information about the memory demands of pro- 
grams running in them--has  stimulated interest in 
analytic program-behavior models from which adaptive 
memory management policies can be derived. The 
working-set model for program behavior [6, 7] has 
proved to be a useful starting point. A program's work- 
ing set is, intuitively, the smalle stsubset of its pages 
that must reside in main memory in order that the pro- 
gram operate at some desired level of efficiency. 1 The 
working-set principle of memory management states 
that a program may use a processor only if its working 
set is in main memory, and that no working-set page of 
an active program may be considered for removal from 
main memory. Simulation results on the RCA Spectra 
70/46 [16] and experimental observations of raM TSS/360 
[9] provide evidence that this principle is viable. 

Programs, to one degree or another, obey the prin- 
ciple of locality which asserts: (I)  during any interval 
of time, a program distributes its references nonuni- 
formly over its pages; (2) taken as a function of time, 
the frequency with which a given page is referenced 

* Department of Electrical Engineering, Brackett Hall, Engi- 
neering Quadrangle, Princeton, NJ 08540. The work reported herein 
was supported in part by NASA Grant NGR-31-001-170 and by 
NSF Grants GK-13193 and GJ-30126. 

1The results of this paper are formulated in the context of 
paging; generalizations to nonpaging systems are straightforward 
and not considered here. 
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tends to change slowly, i.e. it is quasi-stationary; and 
(3) correlation between immediate past and immediate 

future reference patterns tends to be high, whereas the 
correlation between disjoint reference patterns tends to 
zero as the distance between them tends to infinity. 
This principle is an abstraction of at least three phe- 
nomena observed in practice. First, programs use 
sequential and looping control structures heavily, and 
they cluster references to given pages in short time in- 
tervals. Second, programmers tend to concentrate on 
small parts of large problems for moderately long in- 
tervals; simple alterations in algorithm strategy and 
data organization can magnify the manifestations of 
this effect manyfold [3, 14]. Third, programs may be 
run efficiently with only a subset of their pages in main 
memory [2, 11, 14]. 

According to the above, we may picture a program as 
making transitions from time to time among "localities," 
a locality being some subset of its pages. The pages in 
the "current locality" are referenced with high proba- 
bility. Ideally, a program's working set should com- 
prise the pages of its current locality. We define a 
program's working set W ( t ,  T )  at time t to be the set of 
distinct pages it has referenced among the T most recent 
page references [6]. This definition uses the principle of 
locality to form an estimate of immediate future memory 
demand on the basis of immediate past reference pat- 
terns. 

This paper presents some new analysis and results 
for program behavior. Informally stated, it will be 
shown that the interreference-interval density function 
is the negative slope of the missing-page-rate function, 
which, in turn, is the slope of the average-working-set- 
size function. In order to underscore the generality of 
the results and their applicability to practical measure- 
ment, the derivations emphasize time, rather than sto- 
chastic, analysis. 

2. Definitions 

Consider an n-page program whose pages constitute 
the set N = { 1, 2, ..., n}. Neither the page size nor the 
manner in which address-space words are distributed 
among the pages are of concern here. The dynamic 
behavior of the program for given input data can be 
modeled in machine-independent terms by its reference 
string, which is a sequence p = r~r~ . . .  rt . . "  , each 
rt being in N. If rt = i we understand that page i was 
referenced at the tth reference; thus t measures process 
time, which is discrete. 

The analysis of this paper is based on three assump- 
tions related to those of locality: 

W I. Reference strings are unending. 
W2. The stochastic mechanism underlying the genera- 

tion of a reference string o is stationary, i.e. in- 
dependent of absolute time origin. 

W3. For  all t > 0, rt and rt+z become uncorrelated as 
X ----> oo. 

Since reference strings (or substrings of interest) gen- 
erated by practical programs are long from a statistical 
s tandpoint--hundreds or thousands or more of ref- 
ferences--the error introduced by assumption W 1 is not 
significant. Assumption W3, which can be summarized 
by "references are asymptotically uncorrelated," is al- 
most always met in practice. Assumption W2 does 
restrict the results somewhat, limiting the analysis to 
the context of a single program locality in the following 
sense. As mentioned above, a program passes through a 
sequence of localities as it generates references. One 
would expect that whatever nonstationarities exist de- 
pend only on the locality. In other words, we could 
approximate a reference string p as a sequence of sub- 
strings p = pip2 • • • m • • • ,  substring p~ being generated 
by a stationary model obeying W1-W3. Therefore the 
results are applicable locally in a given reference string, 
but not necessarily globally. Since our primary interest 
is understanding the behavior of the working-set model 
as an adaptive estimator for use in memory manage- 
ment, assumption W2 will not be severe as long as the 
measurement intervals are comparable to or less than 
the average interlocality transition time. 

Following are definitions of working set, working-set 
size, missing-page rate, and interreference distributions. 
We have elected to present the definitions as time aver- 
ages, rather than stochastic averages, in order to make 
their applicability in practical measurement more evi- 
dent. 

A program's work ing  set W ( t ,  T )  at time t is the set 
of distinct pages referenced in the time interval [t -- T 
+ 1, t], i.e. among the T > 1 most recent references 
rt--T+l "'" r t .  If  t < T, W ( t ,  T )  contains only the 
distinct pages among rxr2 . . .  rt ; if t < O, W ( t ,  T )  is 
empty. The parameter T is called the "window size," 
since W ( t ,  T )  can be regarded as the contents of a 
window looking backward at the reference string. The 
working-se t  size w( t ,  T )  is the number of pages in 
W ( t ,  T ) .  Let 

'2 = w (t, T) (2.1) sk( T )  lc t=l 

denote the working-set size averaged over the first k 
references; we define the average work ing-se t  size to be 

s ( T )  = l i m s k ( T ) .  (2.2) 
k ~  

The existence of this limit is guaranteed by our assump- 
tion of stationarity (W2). 
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In Section 5, we shall define s(T)  as a stochastic 
average, i.e. s* (T) = Y]-iP~ wherepi  = Pr [w (t, T) = j].  
In general, stationarity is not a sufficient condition for 
the time-average working-set size ( 2 . 1 ) t o  converge to 
the stochastic-average working-set size. According to 
the development in [15, pp. 16-22] however, W3 is a 
sufficient additional condition; it guarantees that the 
time average converges to the stochastic average in 
probability: 

lim Pr [1 s~(T) -- s*(T) l > el = o, a w e  > o. (2.3) 
k~oo 

The limits given below (eqs. (2.5), (2.6), (2.8)) con- 
verge under these same conditions. It should be noted 
that the following analysis depends on W1 and W2 
only; W3 is required for convergence of time-average 
definitions to the corresponding stochastic quantities. 

The missing-page rate m (T) measures the number of  
pages per unit time returning to the working set. In 
systems using the working-set principle of  memory 
management,  a page may leave the working set and 
return without being removed from main memory in 
the meantime; therefore re(T) will be an upper bound 
on the page-fault rate experienced by the program. 
Define the binary variable, for t >_ 0, 

A (t, T) = f~ if rt+~ is not in W(t, T), 
otherwise. (2.4) 

Note that A(0, T) = 1 for all T since r~ is never in 
W(0, T), which is empty. The missing-page rate is 
defined to be 

k--1 

m(T)  = lim 1 ~ A ( t , T ) .  (2.5) 
k~oo k t=o 

In the next section we shall show that re(T) can be 
regarded as the slope of s(T).  

Suppose that in reference string rlr2 . . .  rt . . .  two 
successive references to page i occur at times t and 
t + x~. We call x~ an interreference interval for page/. 
The interreference distribution for page i is defined to be 

F~(x) = l i m [  n ° ' x l i n r ~  " ' "  r k w i t h x '  <--x I (2.6) 
~ ~ x ~  in r~ _7 .  )'7- ' 

i.e. F~(x) is the fraction of x~'s for which x~ _< x. The 
interreference density function for page i is defined to be 

f i ( x )  = Fi(x) -- F~(x -- 1), (2.7) 

so that f~(x) is interpreted as the fraction of x~'s for 
which xg = x. Define also the relative frequency of 
references to page i, 

Xi = lim 1 [no. refs. to page i in r~ . . -  rk] (2.8) 

Note that X~ + . . .  + M = 1. The overall density and 
distribution functions are defined, respectively, to be 

f ( x )  = k M f , ( x ) ,  F(x)  = k X,F,(x), (2.9) 
i = l  i = 1  

and the mean overall interreference interval is 

2 = ~ M 2 i ,  where 2i = Y'~.xfi(x). 
i~l x>O 

Page i will be called "recurrent" if M # 0, and na will 
denote the number of recurrent pages in N. I f  ~,~ ~ 0, 

2i = l / M ,  (2.10) 

so that M can be interpreted as the rate at which the 
program references page i. To see this, consider r~r2 
• ..  rk: The average number of  references to page i 
is Mk, and the average distance between two of them is 
k/Mk. I f  X~ = 0, assumption W2 (stationarity) can be 
used to show that Xi& = 0; together with (2.11), this 
implies that the mean overall interreference interval 
~? of (2.10) satisfies 

= na. (2.11) 

One can show also that assumption W2 implies that a 
nonrecurrent page i is referenced at most a finite number 
of  times in rlr2 . . .  rt "." . It follows that nonrecurrent 
pages make no contribution in the limit to the definitions 
of  s(T) ,  re(T), or Fi(x).  In the following analysis, 
therefore, we shall assume n = nR unless otherwise 
specified. 

Equation (2.12) asserts that, the more recurrent pages 
a program has, the longer will be its mean overall inter- 
reference interval; since W(t, T) can be defined as the 
set of  pages i whose current interreference intervals 
satisfy xi < T, this implies that, the more recurrent 
pages a program has, the larger will its working set tend 
to be. 

Later on, we shall interpret thef~ and F~ as probability 
density and distribution functions, respectively, and M 
as the long-run (i.e. over a locality) probability page i is 
referenced. 

3. Time Analysis  

The analysis in this section establishes the relation- 
ships between the functions s(T) ,  m(T) ,  and f i ( x ) .  
We are referring to it as "time analysis" since the time- 
average definitions given earlier will be used, and with 
the exceptions of assumptions W 1 and W2, nothing will 
be assumed about the statistical properties of reference 
strings. Even though the results are straightforward to 
derive, the lack of assumptions about reference-string 
structure suggests their generality. 
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The average working-set size s (T), missing-page rate 
m(T) ,  overall interreference density f ( x ) ,  overall in- 
terreference distribution F(x) ,  and number  of recurrent 
nR = n pages satisfy these properties: 

P I . I  = s(1) < s(T)  < s ( T +  1) < min{n, T +  I}. 
P2. s ( T q -  1) -- s(T)  = m(T) .  
P3.0  _< m ( T  q- 1) < m ( T )  < m(O) = 1. 
P4. m(T)  = 1 - - F ( T )  = ~-~u>rf(y). 
P5. m(T-k-  1) -- m ( T )  = - - f ( T - F  1). 

T--1 P6. s (T)  = ~-~.~=0m(z) = ~r---01 (1 - - F ( z ) )  = 
~ ~r=oa ~--~.u>, f ( y ) .  

P7. [ s ( T -  1) q- s (T  q- 1)]/2 < s(T) .  
P8. l i m r ~ s ( T )  = nR. 
P9. l i m r ~  m (T) = 0. 

Property P1 states that x (T) is nondecreasing and is 
bounded above and below. It  follows immediately from 
the definition and W ( t, T) CC_ W ( t, T q- 1). 

Property P2 states that the "s lope" of  s(T)  is the 
missing-page rate. F rom Figure 1 and (2.4), 

w(t q- 1, T q- 1) = w(t, T) q- A(t, T). (3.1) 

Summing both sides from t = 0 to k -- 1, dividing by 
k, taking the limit as k --+ m, and applying (2.2) and 
(2.5), we have s ( T  + 1) = s(T)  + m(T) ,  which es- 
tablishes P2. 

Property P3 states that m ( T )  is nonincreasing in T. 
(The lower and upper bounds follow immediately from 

the definition o f m  (T) . )  To prove P3, we shall show that  

A(t, T-q- 1) ~ A(t, T). (3.2) 

I f  this is true, we can sum both sides from t = 0 to k -- 1, 
divide by k, take the limit as k --+ ~ ,  and apply (2.5) 
to conclude m ( T  q- 1) < re(T) .  I f  A(t, T -k- 1) = 0, 
relation (3.2) clearly holds. I f A ( t ,  T q- 1) = I, then 
by (2.4) rt+l is not in W(t, T-k- 1); then W(t, T) c 
W(t,  T -k 1) implies A (t, T -q- 1) = 1 also. This estab- 
lishes P3. 

Property P4 states that m (T) can be regarded as the 
probability x > T. Define the binary variable ~i(t, x)  
to be 1 if and only if rt = r~ = i for some u < t such that 
t -- u < x (cf. Figure 2). Define re(k) to be the number  
of  references to page i in rl . . .  rk. The definition of 
F(x)  (eqs. (2.6) and (2.9)) can be expressed as 

F(x)  = ~ MFi(x) 
i=1 

~.~ lim (n , (k ) ,~ (  1 k ) = ~ 5,(t, x)  (3.3) 
,=l k-= \ k ] \n , ( k )  -- 1 ,=1 

= lim 1 ~ ~_,~i ( t ,x )  
k~eO k t=l  i=1 

where we have used the assumption that each page i is 
recurrent, so that re(k) ~ ~ .  Now, define ~(t, x)  = 
~l(t, x)  q- . . .  -F ~,(t ,  x),  and observe that t3(t, x)  = 
1 - A(t -- 1, x).  Therefore 

1 - -  F ( x )  = lim 1 ~ (1 --/3(t, x)) 
k ~  k t=l  

= l i m l  ~ A ( t _  1, X) 
(3.4) 

k ~  k t=l  

= m ( x ) .  

This establishes P4. 
Property P5 is a statement that the "s lope" of  m ( T ) - -  

the "second slope" of  s (T ) - - i s  the negative value of the 
overall interreference density f .  It follows immediately 
from P4. 

Property P6 gives formulas for calculating s(T) .  
It follows immediately from P2 and substitution of P4. 

Property P7 states that the curve s(T)  is concave 
down. From P3, m(T)  < m ( T  -- 1); substituting the 
result of  P2 on both sides, we obtain 

s (T  q- 1) -- s(T)  < s(T)  -- s ( T -  1), (3.5) 

which upon rearrangement of terms becomes P7. 
Property P8 states that the limiting average working- 

set size is nn. To see this, consider from P6 

lim s(T)  = ~.~ ~~ f ( y ) .  (3.6) 
T ~  oo z >  0 y > z  

I f  one expands the right side of (3.6), one finds that it 
can be rewritten in the form )--~ z f (z) ,  which is the de- 
finition of ~. By (2.12), ~ = nR, and P8 is established. 

Finally, Property P9 follows from P4 and the fact 
that F(T)  ~ 1 as T ~ ~ .  

The results of  P1-P9 are summarized in Figures 3 and 
4. In these figures T is represented as a real number, and 
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s(T)  and re(T) have been extended to piecewise linear 
functions. 

The result P6 can be used as the basis for a one-pass 
algorithm that estimates the functions f ,  F, m, and s for a 
given reference string rlr2 . . .  rk. (This algorithm is 
analogous to one suggested by Mattson et al. for 
measuring page fault rates [12].) Let (cl, . . . ,  CL+I) 
be a vector of  integer variables, initially all 0; after the 
tth iteration of the algorithm (1 < t < k) ,  G' (1 < j < L) 
will count the number  of  interference intervals of  length 
j in rlr2 • .. rt, and CL+I the number of  interreference 
intervals of  length L -t- 1 or greater. An array TIME[1 : n] 
can be used to record the times of the most recent 
reference to pages. Consider each successive r t .  I f  
rt = i is the first reference to i, set TIME[i] = t. I f  rt = i 
is not the first reference to i, let j = t -- TIME[i] and set 
TIME[i] = t; then add 1 to c3' i f j  <_ L and to cc+~ other- 
wise. At the termination of  this procedure (after t = k),  
one may estimate the interreference density function 
f rom 

~f(x) = c~/ (cl -t- " "  q- CL+I) (3.7) 

and apply P l -P9 to obtain estimates F, rh = 1 - F, and 
.~ of  the functions F, m, and s, respectively. The es- 
timates will be good if k is large and L large enough so 
that CL+I <~( Cl + ' ' '  -q-- C L .  

Two guidelines for the choice of  window size T are 
immediately deducible from PI-P9 .  First, a specified 
lower bound on efficiency would imply an upper bound 
on m(T) ,  and in turn a lower bound on T(property  
P3). Second, the concave-down property (P7) of  s(T)  
indicates that varying T need not be advantageous. 
Suppose T is varied in some manner, let g r (u )  denote 
the fraction of time at which T = u, and let 

T = ~ ugh(u) 
u 

be the average value of T. The equation of the straight- 
line tangent to s(T)  at T = Tis  s (T )  + m (IT]) (T -- T), 
where [T] is the largest integer not exceeding T; since 
s (T) is concave down, this tangent is an upper bound on 
s ( T )  : 

s(7") + m ( [ ~ ) ( T - -  ~') > s(T) ,  T >_ O. (3.8) 

Taking averages with respect to gr  (u) on both sides of  
(3.8), we have 

s (T)  > s(T). (3.9) 

In words, eq. (3.9) states that the variation on T with 
average value T produces an average working-set size 
smaller than when holding T fixed at T. A similar argu- 
ment can be applied to the curve m(T)  which (by P5) 
is concave up in every range of T over which f ( T )  
is nonincreasing: 

rn(T) >_ m(T) .  (3.10) 

In this case, varying T would have the additional effect 
of  increasing the missing-page rate. 
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lnterarrival distributions and densities encountered 
in practice frequently have nonincreasing tails [4, 10]. 
Assuming f ( x )  is such a density, there exists an x0 
(relatively small compared to ~) such that f ( x )  is 

nonincreasing for x >_ x0. By P5, m (T) would be con- 
cave up for T > x0 and (3.10) would hold. 

4. Relation to LRU Paging 

There is an intimate relationship between LRU (least 
recently used) paging and the working-set model. The 
curve m(T) can be used to estimate the page-fault rate 
of LRU paging, and the working-set model can be used 
to simulate LRU paging. 

The LRU paging algorithm is a demand paging al- 
gorithm that operates in a fixed memory space of  k 
pages (1 < k < n). At each page fault, Lau replaces 
from memory  the page which has not been referenced 
for the longest time; thus the LRU memory always con- 
tains the k most recently used pages. By comparison, 
W(t, T) always contains the w (t, T) most recently used 
pages. Therefore the slope of s(T) at s(T) = k can 
be used to estimate the page-fault rate L(k)  of LRU in 
a k-page memory,  as suggested in Figure 5, i.e. L(k)  
m(Tk). 

To use the working-set model to simulate LRU pag- 
ing, we vary T so that W(t, T) always contains precisely 
k pages, in which case W(t, T) will be precisely the 
contents of  LRU'S memory.  Letting T(t, k) denote the 
smallest value of T for which w(t, T) = k, we have 

w(t, T(t, k)) = k. (4.1) 

Let Tk denote the average value of T(t, k) over all t. 
The constraint (4.1) implies that s(Tk) = k, whence 
Tk is precisely Tk, as shown in Figure 5. Now, suppose 
m(T) is concave up in the interval of  T over which 
T(t, k) varies. Using (3.10), we have m(T) >_ m(Tk), 
where m(T) is the average value of rn (T) resulting from 
the variation of T(t, k). Since W(t, T(t, k)) is simulat- 
ing LRU, it follows that  L(k) = m(T) and 

L(k)  >_ m(Tk). (4.2) 

In other words, when m(T) is concave up in the range 
of T over which T(t, k) varies, a working-set policy with 
T = Tk will be at least as efficient as LRU. 

5. Stochastic Analysis 

It is useful to reconsider the analysis of the working- 
set model from a statistical standpoint. This will permit 
other analysis techniques not directly applicable in the 
time analysis and will lead to results not otherwise ob- 
tainable. We regard the program's  reference string 
rlr2 . . .  rt . . .  as a sequence of random variables. The 

basic transition probabilities of interest are 2 

gij(t, x) = Pr [rt+x = j lr, = i], 
(5.1) 

i, j i n N ,  t>_ I, x>_ 1. 

In particular, the densities gii(t, x) are nonstationary 
generalizations of the interreference densities f i (x) .  
Under the assumptions that (5.1) is stationary within 
a locality (i.e. g,(t ,  x) = f i (x) ) ,  that references are 
asymptotically uncorrelated, and that each page is re- 
current (i.e. ~"~>lgii(t, x) -~ 1 for all t > 0), the results 
obtained from modeI (5.1) will converge to those ob- 
tained earlier. (Convergence will be in the sense dis- 
cussed in connection with eq. (2.3).) Under these con- 
ditions, the interreference density functions f i  exist, 
n = n R  , and xi = 1/;~. It  remains to show that P I - P 9  
follow. 

Since the random process generating working-set size 
w(t, T) is assumed stationary, we shall drop t and use 
w(T)  as the random variable "working-set size." Then 
s(T) = w(T) and re(T) = Pr [next ref. not in working 
set]. To show that P1-P9 follow, it is sufficient to show 
that 

T--1  

s (T)  = Y~ (1 -- F(z)),  (5.2) 
Z ~ 0  

m(T) = 1 -- F(T). (5.3) 

The remaining properties among P I - P 9  are easily 
deduced from (5.2) and (5.3). To demonstrate (5.2), 
we define the binary random variables a¢(T) to be 1 if 
and only if page i is in the working set. We then may 
write w (T) = a l (T)  + • ". + c~,~(T), whence 

n 

s(T) = w(T) = )--~.~T(T). (5.4) 
i = l  

In the Appendix we show that 

T--1  

a,(T) = X ~  (1 -- F~(z)). (5.5) 
z ~ 0  

Substituting (5.5) for (5.4) and applying the definition 
F(x) = XlF~(x) -k- . . .  q- XnF,(x), we obtain (5.2). 

To demonstrate (5.3), we define the binary random 
variable/x (T) to be 1 if and only if the next-referenced 
page is not in the working set; then m(T) = A(T). 
From Figure 1, w(T + 1) = w(T) + A(T). Taking 
expectations on both sides, we find m(T) = iX(T) = 
s(T -q- 1) -- s (T) ;  from (5.2), s(T q- 1) -- s(T) = 
1 - -  F ( T ) .  

It is important  to note that the random variables ai (T) 

To be precise, r~r2.  • • r r  • • represents an ensemble of  reference 
strings, and g i j ( t ,  x )  is defined across the ensemble at t ime t. Thus 
we can define nonstat ionary interreference densities, nonstat ionary 
mean interreference interval ~i(t) = ~ _ , ~ x f ~ ( t ,  x ) ,  page-reference 
probabilities ),i(t) = 1 / ~ ( t ) ,  missing-page probabili tern(t ,  T), and 
average working-set size s ( t ,  T ) .  
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used above are dependent, but the linearity of expecta- 
tion allows us to derive s (T) without assumptions on the 
nature of  this dependence. The same is not true for the 
variance of working-set size, given by 

J ( r )  = w~(r) -- w ~  ~, 

= ~ ~ ,~,(r)c~j(T) - s:(r). (5.6) 
4=1  3'=1 

Since e~i(T),j(T) = Pr[c~i(T)ai(T) = 1], it is not 
possible to evaluate a2(T) without assumptions about 
the distributions g~j(t, x )  for all i and j in (5.1). The 
variance a 2 (T) would be a complicated function of the 
gi~. Because s(1) = 1 and s(oo) = n, a2(T) is con- 
strained to be small when T is small and when T is 
large; therefore cr2(T) achieves a maximum for some 
T > 1. Since we are not prepared to offer assumptions 
about  the gi3. here, we shall not pursue the problem of 
expressing a~(T) further. 

I f  the program size n is not too small and assumption 
W3 is satisfied, working-set size w ( T )  will be normally 
distributed. Regarding w(t ,  T)  as a random process, 
we can write 

w(t ,  T)  = w( t  -- 1, T) + O(t, T)  (5.7) 

where O(t, T)  assumes the values + l ,  0, or --1 (the 
definition of working set implies that these are the only 
possible values). Therefore the working-set size at time 
t can be written 

w(t ,  7 )  = ~ O ( k ,  r ) .  (5.8) 
k = l  

Now, the sequence 0 (t, T) for t = 1, 2, ... is a sequence of 
dependent random variables; but according to assump- 
tion W3, it is reasonable to assume that O(t, T)  and 
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0 (t + x, T) become uncorrelated as x ---* oo. This in 
turn implies the conditions used in [13J, from which 
we can conclude that the distribution of w(t ,  T)  as 
expressed in (5.8) converges to a normal distribution 
with mean s ( T )  and standard deviation ~r(T) as given 
by (5.6). These conclusions are corroborated by ex- 
periments cited in [5]. 

6. The  Independent  Reference  M o d e l  

According to the independent reference model [1], 
a program's  reference string rlr2 • • • rt • • • is a sequence 
of independent random variables with stationary prob- 
abilities 

Pr[r ,  = iJ = xl, 1 < i < n, t > 0. (6.1) 

The reference string is " r andom"  if Xi = 1/n for each i. 
Although it would be dangerous to use this model 
indiscriminately for practical programs, it does yield 
some additional insight into the nature of statistical 
dependence exhibited by practical programs. 

It is possible to obtain expressions for the quantities 
f i ( x ) ,  Fi ( x ) ,  re(T) ,  and s ( T )  under the assumption 
(6.1). The interreference distributions are geometric: 

1 - -  F , ( x )  = Pr[x~ > x] = (1 --  X~) =, (6 .2 )  

f i ( x )  = F , ( x )  -- F , ( x  -- 1) = X,(1 -- X~) =-1, (6.3) 

for which the mean is 2i = 1/X~ and variance is 
Xi(1 - X~). (To verify (6.2), note that Pr[x~ > x] = 
Pr [rt+l # i . . . .  , rt+= ~ i].) The missing-page rate and 
average working-set size are, respectively, 

re (T)  = 1 -- F ( T )  = ~X~(1  -- Xi) r, (6.4) 
, /=1 

T--1 n 

s ( r )  = ~ (1 -- F ( z ) )  = n - -  ~ (1 -- X~) r. (6.5) 
z=O i = 1  

An interesting aspect of  the independent reference 
model concerns the constraints it imposes on s ( T ) .  
From property P1, we know that s ( T )  < min{n, T}. 
This bound can be achieved by the reference string 
l, 2, ..., n, l, 2, ..., n, .... Since programs which generate 
cyclic reference strings only cannot be modeled by 
independent references, this bound cannot be achieved 
within the independent reference assumption. Let 
s (T]  Xl, . . . ,  Xn) denote the expression of (5.5). It can 
be shown that (6.5) is maximized when X~ = 1/n for 
all i, 

s (T[  Xl, .. . ,  X,) <_ s (T[  1/n . . . .  , 1/n) .  (6.6) 

That  is, the expected working-set size is maximum for a 
purely random reference string. 

Now, suppose s*(T)  is an experinaentally measured 
average working-set size curve, and X~*, ..., X,* are 
the experimentally measured page reference rates. I f  

s* (T )  > s (T[  1/n . . . .  , 1/n) ,  (6.7) 
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t h e n  in v iew o f  (6.6) ,  t he  p r o g r a m  c a n n o t  poss ib ly  be  

r ep r e sen t ab l e  w i th in  the  i n d e p e n d e n t  re fe rence  m o d e l .  

I f  (6.7) does  n o t  ho ld ,  t h e n  it  w o u l d  be  f ru i t fu l  to  in- 

ves t iga te  w h e t h e r  

s * ( r )  ~ s ( T [  Xl*, . . . ,  X,*) ,  (6.8)  

for  i f  so, t he  i n d e p e n d e n t  r e fe rence  m o d e l  c o u l d  be  usefu l  

for  i nves t i ga t i ng  ce r t a in  aspec t s  o f  t h a t  p r o g r a m ' s  be-  

hav io r .  
Sti l l  m o r e  can  be  d e d u c e d  f r o m  c o m p a r i s o n s  b e t w e e n  

s * ( T )  a n d  s ( T  I Xl*, . . . ,  X,*) .  I f  t he re  exists  a To such  

tha t  (6.7) h o l d s  for  T < To b u t  n o t  for  T > To, we  

c o u l d  c o n c l u d e  tha t  t he  p r o g r a m  inc ludes  a set o f  k 

pages ,  w h e r e  k < s*(To) ,  which  c o n t a i n  a t i gh t  l oop .  

8. Conclusions 

W e  h a v e  s h o w n ,  in t he  c o n t e x t  o f  t he  w o r k i n g - s e t  

m o d e l ,  t h a t  a l a rge  v a r i e t y  o f  resul t s  can  be  o b t a i n e d  

w i t h  o n l y  m i n i m a l  a s s u m p t i o n s :  r e f e rence  subs t r i ngs  o f  

i n t e re s t  a re  q u a s i - s t a t i o n a r y ;  a n d  r e fe rences  a r e  a s y m p -  

t o t i ca l l y  u n c o r r e l a t e d .  S t a r t i n g  f r o m  th is  basis ,  we  f ind 

t h a t  m a n y  e x t e n s i o n s  a r e  poss ib le .  F o r  e x a m p l e ,  refer -  

ence  s t r ings  c a n  be  d e c o m p o s e d  i n t o  i n s t r u c t i o n  a n d  

d a t a  re fe rences ,  a n d  th i s  d e c o m p o s i t i o n  c a n  be  used  t o  

d e c o m p o s e  the  w o r k i n g  set  i n t o  i n s t r u c t i o n  a n d  d a t a  

w o r k i n g  sets.  A l so ,  t he  effects  o f  i n f o r m a t i o n  s h a r i n g  

( o v e r l a p p i n g  w o r k i n g  sets) c a n  be  s t ud i ed  wi th  r e spec t  

to  m e m o r y  d e m a n d  a n d  eff iciency.  O r  i n t e r r e f e r e n c e  

d i s t r i b u t i o n s  k n o w n  to  exh ib i t  c l u s t e r i ng  effects  (e.g. t he  

g a m m a  d i s t r i b u t i o n )  can  be  used  to  o b t a i n  be t t e r  ap-  

p r o x i m a t i o n s  to  loca l i t y  w i t h i n  t he  f r a m e w o r k  o f  a s ta-  

t i o n a r y  m o d e l .  

Appendix 

We wish to prove eq. (5.5). Since ~(T)  is 0 or 1, we need to 
determine Pr[a~(T) = 1]. To simplify the discussion, we omit the 
use of subscript i and window size T. 

Consider an interreference interval of length y; for convenience 
we suppose this interval spans the time interval (0, y). Consider an 
arbitrarily chosen time point t in this interval, where 0 < t < y. 
I f 0  < t < T a n d y  > T o r i f y  < T, then the back end of the 
window is at t -- T + 1 < 0, and the reference to page i at time 0 
is in the working set, i.e. ~ = 1. It is therefore necessary to deter- 
mine the probabilities that y _< T, and 0 _ t < T when y > T. 

The distribution of intervals containing the arbitrarily chosen 
time point t is not the same as the interreference distribution f(x),  
because the probability that t falls in an interval of given length is 
proportional to the fraction of the time axis occupied by intervals 
of that length. Let g(y) denote the distribution of the interval (0, y) 
containing t. Consider a long time interval defined by a large num- 
ber k of successive interreference intervals. The expected number of 
these intervals which are of length y is kf(y) and the expected total 
length occupied by intervals of length y is kyf(y). Therefore the 
fraction of space occupied by intervals of length y is 

kyf(y) yf(y) 
-- -- Xyf(y) (A.1) 

g(Y) -- ~_~ kxf(x) 
2>1 

The distribution function of y is 

G(y) = ~ g(x) = X ~ xf(x). (A.2) 

Using the fact that f(x) = F(x) -- F(x -- 1), we can rearrange 
(A.2) so that 

/ /-- l  

G(y) = XyF(y) - X ~_, F(z). (A.3) 
z = o  

From the remarks in the second paragraph above, we have 
a = l i f y _ <  T o r i f 0 _ <  t < T a n d y  < T. Therefore 

Pr[a = 1] = Pr[y < T] -k- Y~. g(y)Pr[0 <_ t < T < y]. (A.4) 
y >  T 

Given y, we may suppose t falls uniformly within (0, y), whence 
Pr[0 < t < T < y] is T/y. Using this in eq. (A.4), we have 

Pr [a = 1] = G(T) -t- ~ Xyf(y) T 
Y u> r (A.5) 

= G(T)-t- XT(1 -- F(T)). 

Applying (A.3) to (A.5), we have 
T - - 1  

Pr[a = 1] = XTF(T) -- ),~_, F(z) = XT(1 -- F(T)), 
..-~0 

T - I  

= x r -  x lE  F(z), 

T - - 1  

= X ~  (1 -- F(z)), 

which was to be shown. 
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